Латунь и бронза реферат

Обновлено: 04.07.2024

Механические, технологические и антифрикационные свойства латуни. История открытия необычного сплава. Классификация групп латуни. Применение сплава в производстве: изготовление художественных изделий, знаков отличия и фурнитуры. Технология плавки латуни.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 05.11.2011
Размер файла 24,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Общие сведения

· хорошая обрабатываемость давлением в горячем и холодном состояниях;

· высокие механические свойства;

· коррозионная стойкость латуней в атмосферных условиях - средняя между стойкостью элементов, образующих сплав, т.е. цинка и меди;

· электропроводность и теплопроводность латуни ниже, чем меди.

Для улучшения свойств латуни дополнительно легируют алюминием, марганцем, железом, никелем, оловом, свинцом, кремнием,мышьяком, которые вводят в небольших количествах (1. 2%, в редких случаях до 4%).Комплексное легирование специальных латуней позволяет получить более высокие по сравнению с двойными сплавами системы Cu-Zn механические свойства, лучшую коррозионную и кавитационную стойкость. Вместе с тем, удается сохранить достаточно хорошую обрабатываемость давлением при высоких температурах и несколько меньшую при низких.

Временное сопротивление разрыву латуней наиболее эффективно повышают алюминий и олово и в меньшей степени марганец. Относительное удлинение увеличивается при введении железа и небольших количеств марганца (до 2. 3%), остальные элементы уменьшают относительное удлинение латуней. Железо практически нерастворимо в латунях и присутствует в них в свободном виде. Частицы железа увеличивают скорость образования центров при кристаллизации и рекристаллизации, а также тормозят последующий рост зерен и поэтому способствуют измельчению структуры. Уменьшение размеров зерна при легировании железом является причиной уже отмеченного повышения относительного удлинения латуней, содержащих железо. Алюминий, марганец, олово и никель повышают коррозионную стойкость латуней; никель вместе с тем уменьшает склонность к коррозионному растрескиванию. Благоприятное действие этих элементов на коррозионную стойкость связано с образованием на поверхности плотной оксидной защитной пленки. Олово повышает прочность и сильно повышает сопротивление коррозии в морской воде. Латуни, содержащие олово, часто называют морскими латунями. Свинец ухудшает механические свойства, но улучшает обрабатываемость резанием. Свинец--своеобразная смазка, уменьшающая износ инструмента при обработке резанием латуни. Мелкая, легко отделяющаяся стружка, образующаяся при механической обработке, позволяет получать поверхность обрабатываемых изделий с параметрами низкой шероховатости. Им легируют (1-2%) латуни, которые подвергаются механической обработке на станках-автоматах. Поэтому эти латуни называют автоматными.

Кремний ухудшает твердость, прочность. При совместном легировании кремнием и свинцом повышаются антифрикционные свойства латуни, и она может служить заменителем более дорогих, например оловянных бронз, применяющихся в подшипниках скольжения. Мышьяк предохраняет латунь от обесцинкования в агрессивных пресных водах при комнатной и повышенных температурах. Добавки никеля, мышьяка и железа к алюминиевым латуням повышают их стойкость к щелочам и разбавленным кислотам.

Латуни по сравнению с бронзой обладают менее высокими прочностью, коррозионной стойкостью и антифрикционными свойствами. Они весьма стойки на воздухе, в морской воде, растворах большинства органических кислот, углекислых растворах.

2. История открытия

При раскопках в Фивах были найдены рукописи, принадлежавшие древнеегипетским жрецам, в которых сообщался секрет изготовления золота из меди. Как оказалось, он был довольно прост: в медь нужно было всего-навсего добавить определенное количество цинка. По сути дела, речь шла об изготовлении из меди латуни, напоминающей золото цветом и блеском.

Латунь - один из самых необычных сплавов древности - появился в арсенале металлургов значительно позже, чем все остальные известные металлы и сплавы. Его регулярное производство начинается в восточных провинциях Римской империи только в I веке до н.э. Удивительно также, что история цинка как чистого металла значительно короче, чем история самого сплава. Дело в том, что цинк никогда не встречается в природе в металлическом виде. Он закипает при Т=907°C, и это ниже той температуры, при которой цинк может быть выплавлен из руды. В Европе металлический цинк научились получать только в 18 столетии. В ряду драгоценных металлов латуни занимали третье место после золота и серебра. С течением времени монополия и, следовательно, контроль над качеством сплава были утрачены; в обращении преобладал многократно переплавленный лом, смешанный с бронзой и свинцом. В средние века производство этого сплава возрождается, к XII столетию он доминирует в цветной металлообработке Западной Европы.

Путем сплавления меди с металлическим цинком, латунь впервые была получена в Англии в 1781 г. В XIX веке в Западной Европе и России латунь использовали в качестве поддельного золота

Обычно латуни делят на 2 группы:

Для двухкомпонентной латуни особое значение имеет фазовый состав сплава. Предел растворимости цинка в меди при комнатной температуре равен 39%. При повышении температуры он снижается и при 905 °C становится равным 32%. По этой причине латуни, содержащие цинка менее 39%, имеют однофазную структуру (a-фаза) твердого раствора цинка в меди. Их называют а-латунями. Если в расплав ввести больше цинка, то он не сможет полностью раствориться в меди, и после затвердевания возникнет вторая фаза - (b-фаза). b-фаза очень хрупка и тверда, поэтому двухфазные латуни имеют более высокую прочность и меньшую пластичность, чем однофазные. При увеличении концентрации цинка до 30% возрастают одновременно и прочность, и пластичность. Затем пластичность уменьшается, вначале за счет усложнения твердого раствора, затем происходит резкое ее понижение, так как в структуре сплава появляется хрупкая b-фаза. Прочность увеличивается до концентрации цинка около 45%, а затем уменьшается так же резко, как и пластичность. Большинство латуней хорошо обрабатывается давлением. Особенно пластичны однофазные латуни. Они деформируются при низких и при высоких температурах. Однако в интервале 300 - 700 (°C) существует зона хрупкости, поэтому при таких температурах латуни не деформируют. Особенностью обработки латуней давлением является то, что для обработки в холодном состоянии (тонкие листы, проволока, калиброванные профили) используют a-латунь с содержанием цинка до 32%, так как она при комнатной температуре имеет высокую пластичность и малую прочность. При повышении температуры до 300-700 °C ее пластичность уменьшается, поэтому в горячем состоянии ее не обрабатывают. Для этой цели используют или b-латунь с большим содержанием цинка (до 39%), способную переходить при нагреве в двухфазное состояние a+b, либо (a+b)-латунь.

Марку этих латуней составляют следующим образом: первой, как в простых латунях, ставится буква Л, вслед за ней - ряд букв, указывающих, какие легирующие элементы, кроме цинка, входят в эту латунь; затем через дефисы следуют цифры, первая из которых характеризует среднее содержание меди в процентах, а последующие - каждого из легирующих элементов в той же последовательности, как и в буквенной части марки. Порядок букв и цифр устанавливается по содержанию соответствующего элемента: сначала идет тот элемент, которого больше, а далее по нисходящей. Содержание цинка пределяется по разности от 100%. Например, марка ЛАЖМц66-6-3-2 расшифровывается так: латунь, в которой содержится 66% Cu, 6%A l, 3% Fe и 2% Mn. Цинка в ней 100-(66+6+3+2)=23%.

Медно-цинковые сплавы, легированные одним или несколькими элементами, называют специальными латунями. Наименование таких латуней дается по легирующим элементам, например, латунь, содержащую свинец, называют свинцовой. Простые латуни маркируют буквой Л, за которой пишут содержание меди в %. В специальных латунях после буквы Л пишут заглавную букву дополнительных легирующих элементов и через тире после содержания меди указывают содержание вводимых элементов в процентах. В зависимости от способа обработки латуни подразделяют на деформированные и литейные. Последние могут изготовляться из вторичного сырья (вторичные литейные латуни). Из деформированных латуней изготовляют листы, ленты, полосы, прутки, трубы, проволоку и поковки; из литейных -- фасонные отливки.

Обрабатываемость резанием медных сплавов оценивается в процентах по отношению к обрабатываемости латуни марки ЛС 63-3, которая принимается за 100%.

Латуни, за исключением свинцовосодержащих, легко поддаются обработке давлением в горячем и холодном состоянии. Все они хорошо паяются твердыми и мягкими припоями и легче свариваются, чем медь. Следует иметь в виду, что латуни, содержащие более 15% цинка в холоднодеформированном состоянии, в том числе и после обработки резанием, склонны к самопроизвольному коррозионному растрескиванию при хранении, особенно во влажной атмосфере, содержащей сернистые газы или аммиак. Для предохранения от растрескивания латунные полуфабрикаты и изделия подвергают низкотемпературному отжигу (250--300° С), при котором уменьшаются остаточные напряжения, но не снижается их прочность. Латуни, за исключением марки ЛАНКМц 75-2-2,5-0,5-0,5, упрочняют деформационным наклепом. Латунь последней марки -- единственный дисперсионно-твердеющий сплав, упрочняемый в результате закалки и старения.

Плоский прокат выпускают в мягком (отожженном), полутвердом (обжатие 10--30%), твердом (обжатие 30-50%) и особотвердом (обжатие более 60%) состоянии. В машиностроении применяют круглый и плоский прокат из латуней.

Латуни подразделяются на обрабатываемые давлением и литейные. Большинство латуней допускает электрическую и газовую сварку и паяются мягкими и твердыми припоями. Марки и состав латуней, обрабатываемых давлением определяется ГОСТ 15527-70, а литейных латуней - ГОСТ 17711-80. Механические свойства латуней зависят от технологии изготовления, механической и термической обработки.

Ниже представлены характеристики наиболее распространенных марок латуней.

Медь (лат.Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным медь была хорошо известна египтянам еще за 4000 лет до н.э.. Знакомство человечества с медью относится к более ранней эпохе,чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состаянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum),откуда и название ее Cuprum.

Медь особенно важна для электротехники. По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из аллюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в XIX в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.

Медь и ее сплавы

Медь – металл характерного красного цвета, который обладает след. св-ми:

Плотность 8940 кг/м3

Температура плавления 1083 ◦С

Температура кипения 2595 ◦С

Медь - химический элемент I группы периодической системы Менделеева;

атомный номер 29

атомная масса 63,546

Кристаллическая решетка меди – гранецентрированный куб с параметром a=3,61 Å. Механические свойства чистой меди в в отожженом состоянии после деформации σв=220-240 Мпа, δ=50%, ψ=75%, KCU=1,6-1,8 МДж/м2 и твердость HB=45. Медь обладает высокой электро- и теплопроводностью, устойчива против атмосферной коррозии и коррозии в пресной и морской воде благодаря образованию на ее поверхности тонкой защитной пленки, состоящей из CuSO4 * 3Cu(OH)2. Медь хорошо обрабатывается в холодном и горячем состояниях.

Техническую медь в зависимости от чистоты разделяют на десять марок:

М0б (99,97% Cu, бескислородная медь);

М1p (99,9% Cu, раскисленная медь);

Примеси меди Bi, Pb, H2, Sb затрудняют обработку давлением в горячем состоянии, а O2 и S придают ей хладноломкость. Все примеси, особенно P, As, Sb снижают электропроводность.

Технически чистую медь широко применяют в электротехничекой промышленности для проводов кабелей, шин, других токопроводящих частей, в машиностроении, судостроении, котлостроении для теплообменников. В большом колличестве медь используют для изготовления важнейших конструкционных сплавов – латуней и бронз.

В материаловедении было установлено, что многие сплавы на основе меди, серебра, и золота, легированные цинком, оловом и т.д. образуют похожие фазы с похожими свойствами. При этом тип образующейся фазы и соответственно свойства определяются электронной концентрацией сплавов e/n.

e – среднее число электронов на элементарную ячейку

n – число атомов в элементарной ячейке

Следовательно, e/n – это средняя электронная концентрация на атом сплава

Такие фазы называют электронными соединениями или фазами Юм-Розери.

В таблице приведены условия образования этих фаз и примеры таких сплавов:

Cu-Bo, Cu-Al, Ag-Cd, Au-Al

Латунями называют сплавы меди с цинком. Кроме двухкомпонентных (простых) латуней, имеются многокомпонентные, которые содержат один или несколько лигирующих компонентов (Al, Ni, Fe, Mn и т.д.). практическое значение имеют медно-цинковые сплавы, с содержанием цинка до 45%, левая часть диаграммы которых представлена на рис. 1 а)

Рис 1. Диаграмма состояния системы медь – цинк (а) и механические свойства литой латуни в зависимости от содержания цинка (б)

В твердом состоянии медноцинковые сплавы образуют:

твердый α-раствор цинка меди (типовой твердый раствор замещения) при содержании до 39% Zn. Такой сплав обладает высокой пластичностью и достаточно высокой прочностью;

твердый β-раствор на базе соединения электронного типа CuZn при содержании 45-49% Zn;

смесь α+β твердых растворов.

Латуни, имеющие в структуре однофазный твердый α-раствор, хорошо поддаются обработке давлением в горячем и холодном состоянии, сварке, пайке и лужению.

Однофазный β-раствор при температуре примерно 453 ◦С имеет упорядоченное расположение атомов меди и цинка и обозначается β'. Эта фаза, в отличие от β-фазы, является твердой и хрупкой. Обработке давлением она подвергается только в горячем состоянии.

Латуни, имеющие двухфазную структуру α+β также обладают низкой пластичностью и обрабатываются давлением только в горячем состоянии.

Все латуни имеют хорошие антикоррозийные свойства; в атмосферных условиях скорость коррозии составляет 0,0001-0,00075 мм/год.

Механические свойства латуней в зависимости от содержания цинка представлены на рис 1 б) Увеличение содержания цинка до 39% приводит к образованию при комнатной температуре α-фазы и сопровождается повышением прочности и пластичности. При дальнейшем увеличении содержания цинка образуются две фазы α+β', что приводит к интенсивному уменьшению пластичности с одновременным увеличением прочности. При переходе в однофазную область β' латунь становится весьма хрупкой, вследствие чего резко снижаются прочность и пластичность. Поэтому на практике используют латуни, содержащие не боее 42% Zn, т.е. одно- и двухфазные латуни.

По технологическому признаку латуни разделяют на деформируемые и линейные.

К этим латуням относят медноцинковые сплавы с содержанием 4-10% Zn (томпаки марок Л96 и Л90); 15-20% Zn (полутомпаки марок Л85 и Л80); 30-50% Zn (латуни марок Л70, Л68, Л63 и Л60), а так же специальные илимногокомпонентные латуни, легированные алюминием, кремнием, оловом, никелем, свинцом и т.д. (с содержанием легирующих элементов примерно 2%), например, алюминиевая латунь ЛА77-2, алюминийжелезистая латунь ЛАЖ60-1-1 и др.

Деформируемые латуни обрабатывают прессованием, прокаткой, волочением и штамповкой. Применяют латуни для изготовления труб, листов, лент, полос, прутков и поковок для деталей машин, приборов и агрегатов.

Литейные латуни используют для изготовления фасонных отливок в виде подшипников, втулок и других антифрикционных деталей для арматуры и деталей морского судостроения и т.д.

Бронзами называют сплавы меди с оловом, алюминием, марганцем, кремнием, берилием и другими элементами, которые являются основными легирующими элементами.

Бронзы делят на две основные группы:

Оловянистые, в которых основным легирующим элементом является олово;

Специальные, в которых основными элементами являются алюминий, марганец, кремний, берилий и т.д.

Название специальных бронз дается по основному легирующему элементу: алюминиевые, марганцовистые, кремнистые и т.п.

Рис 2. Диаграмма состояния системы медь – олово (а) и механические свойства литой бронзы в зависимости от содержания олова (б)

Весьма широкое применение получили технические оловянистые бронзы с содержание 10-12% Sn и реже до 20-22% Sn. Из диаграммы состояния медь – олово рис 2 а) (левая часть полной диаграммы) видно, что меднооловянистые сплавы при 800-700 ◦С образуют:

твердый α-раствор олова в меди (при содержании до 13,5% Sn);

сесь двух фаз α+β (при содержании 13,5-22% Sn).

В отличие от латуней в бронзе β-фаза существует только при высоких температурах и на диаграмме имеется горизонтальная линия между α+β-фазой, β-фазой и α+δ-фазой. Это означает что такие материалы можно подвергать закалке и старению.

При медленном охлаждении с 588 ◦С кристаллы β-фазы претерпевают эквивалентный распад с образованием смеси α-фазы и g-фазы, а при 520 ◦С кристаллы твердого раствора g-фазы распадаются на смесь фаз α и δ. В свою очередь при 350 ◦С δ-фаза распадается на твердый α-раствор и ε-фазу (соединение Cu3Sn). В результате медленного охлаждения при комнатной температуре микроструктура оловянистой бронзы состоит из смеси фаз α+ε. При реальных условиях охлаждения последнее превращение не успевает произойти и бронза состоит из фаз α+δ (соединение Cu31Sn8)

Оловянистые бронзы по технологическому признаку разделяют на литейные и деформируемые.

Литейные оловянистые бронзы

К ним относят бронзы марок БрО10, БрОФ10-1, БрОЦ10-2, Бр ОЦС5-5-5, БрОЦС6-6-3, БрОНС11-4-3 b и др. Эти бронзы, содержащие свыше 5-6% Sn, относят к двухфазным. Наличие в макроструктуре, кроме твердого α-раствора, эвтектоида (α+δ) обуславливает их хрупкость.

Деформируемые оловянистые бронзы

Используются для получения лент, полос, прутков, проволоки, пружин, трубок, подшипниковых деталей и т.д., относят бронзы марок БрОФ4-0,25, БрОФ6,5-0,4, БрОЦ4-3, БрОЦС4-4-2,5 и др. Эти бронзы однофазные (твердый α-раствор); они обладают удовлетворительной пластичностью.

Кроме того, различают специальные, или безоловянистые, бронзы, к которым относяталюминивые, марганцовистые, кремнистые и другие, обладающие в ряде случаев более высокими механическими и антикоррозийными свойствами, чем оловянистые, поэтому они нашли широкое приминение в промышленности. В зависимости от назначения и механических свойств специальные бронзы делятся на деформируемые и литейные.

Деформируемые специальные бронзы

К ним относят однофазные бронзы с содержанием основного легирующего элемента 5-10%. Эти бронзы хорошо обрабатываются в горячем и в ряде случаев в холодном состоянии. Они обладают высокой коррозийной стойкостью и предназначены для производства листов, лент, труб, прутков и профилей, получаемых прессованием и прокаткой. Бронзу БрА5 широко применяют для изготовления монет. Примерами деформируемых специальных бронз являются: алюминивые бронзы марок БрА7, БрА5, как говорилось выше, алюминевожелезомарганцевая БрАЖМц10-3-1,5, алюминевожелезоникелевая БрАЖН10-4-4, алюминевомарганцевую БрАМц9-2, кремнивомарганцевая БрКМц3 – 1, марганцевистая БрМц5 и др.

Литейные специальные бронзы

Эти бронзы используют для фасонного литья в авиа- и машиностроении при получении шестерен, втулок, седел капанов, пружин, ободов подшипников для различных массивных деталей, работающих в агрессивных средах и при больших давлениях,а также для антифрикционных деталей. К таким бронзам относят алюминевожелезную БрАЖ9-4, алюминевожелезномарганцевую БрАЖМц10-3-1,5, берилиевую БрБ2, кремнистую БрКМц3-1, марганцовистую БрМц5 и др.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.




Московский Государственный Технический Университет

им.Н.Э.Баумана
Реферат по

свойства,применение.”
Выполнила: Горбунова Юлия

Преподаватель: Герасимов С.А.


Бронза.
Бронза - это сплавы меди с оловом в различных пропорциях (медь в избытке), затем сплавы меди с оловом и цинком, а также некоторыми другими металлами или металлоидами (свинцом, марганцем, фосфором, кремнием и др., в небольших количествах). Название бронзе дают по легирующим элементам (например, сплав меди с алюминием называют алюминиевой бронзой). Маркируют бронзы буквами Бр, за которой следуют заглавные буквы легирующих элементов и через дефис цифры — их процентное содержание. Марки обозначаются следующим образом: первые буквы в марке означают: Бр. – бронза; буквы, следующие за Бр., означают: А - алюминий, Б - бериллий, Ж - железо, К - кремний, Мц - марганец, Н - никель, О - олово, С - свинец, Ц - цинк, Ф. - фосфор. Цифры, помещенные после буквы, указывают среднее процентное содержание элементов.

В марках бронзы содержание основного компонента - меди - не указывается, а определяется по разности. Цифры после букв, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов; цифры расположенные в том же порядке, как и буквы, указывающие на легирование бронзы тем или иным компонентом. Например, Бр.АЖНЮ-4-4 означает бронзу с 10% Al , 4% Fe и 4% Ni (и 82% Cu); Бр. КМц3-1 означает бронзу с 3% Si , и 1% Mn (и 96% Cu).

Присутствие посторонних металлов в настоящей бронзе (сплавах меди с оловом) носит иногда случайный характер и обуславливается неполной чистотой исходного материала, но обыкновенно прибавка известного количества тех или других веществ производится заведомо, с определенными целями, и тогда такая бронза получает особые названия (марганцовая бронза, фосфорная бронза и т.д.). От прибавки олова медь становится более легкоплавкой, твердой, упругой, а, следовательно, способной к полировке, но менее тягучей, а потому бронза, главным образом, идет на отливку различных предметов. Качества бронзы зависят от состава, способов приготовления и последующей обработки. Если сплавы меди с оловом, содержащие от 7% до 15% последнего и наиболее употребительные в практике, подвергнуть медленному охлаждению, то происходит разделение сплава и часть более богатая медью застывает ранее; такое явление, называемое ликвацией бронзы. Разделение до известной степени можно устранить прибавкой некоторых веществ (напр., фосфористой меди, цинка) или быстро охлаждая отлитые предметы (обратно, примесь свинца обусловливает более легкое разделение сплава, так что следует избегать прибавки этого последнего свыше 3%). При закалке бронзы происходит явление совершенно обратное тому, которое наблюдается для стали: бронза становится мягкой и до известной степени ковкой.

Цвет бронзы, с увеличением процентного содержания олова, переходит из красного (90% - 99% меди) в желтый (85% меди), белый (50%) и стально-серый (до 35% меди). Что касается тягучести, то при 1% - 2% олова сплавы ковки на холоду, но менее, нежели чистая медь; при 5% олова бронзу можно ковать только при температуре красного каления, а при содержании свыше 15% олова ковкость совершенно пропадает; сплавы с очень большим процентом олова опять становятся несколько мягкими и вязкими. Сопротивление разрыву зависит частью от состава, частью от агрегатного состояния, обусловливаемого способом охлаждения; при полной однородности и одинаковом составе, бронза с мелко кристаллическим строением обладает большею способностью сопротивления.
Классификация бронз.

Различают две группы бронз: оловянные, в которых преобладающим легирующим элементом является олово, и безоловянные (специальные).

По технологическому признаку бронзы делят на деформируемые и литейные. Первые легко поддаются штамповке, ковке, рифлению и другим видам обработки давлением, используемым при изготовлении изделий. Литейные бронзы предназначены для фасонных отливок. Бронзы по сравнению с латунью обладают более высокими прочностью, коррозионной стойкостью и антифрикционными свойствами. Они весьма стойки на воздухе, в морской воде, растворах большинства органических кислот, углекислых растворах.
Легирующие элементы.

В качестве легирующих элементов в бронзах используют олово, алюминий, никель, марганец, железо, кремний, свинец, фосфор, бериллий, хром, цирконий и другие элементы. Бронзы, в которых легирующие элементы входят в твердый раствор, упрочняют деформационным наклепом. Последующим низкотемпературным отжигом (250— 300° С) могут быть повышены их упругие свойства. Бронзы, содержащие бериллий, хром, цирконий и некоторые другие элементы с переменной их растворимостью в α-твердом растворе, упрочняют дисперсионным твердением. К этому классу относится также бронза марки БрАЖН10-4-4.

Из перечисленных элементов олово, алюминий, никель и кремний главным образом повышают прочность, упругие свойства и коррозионную стойкость бронз, а в сочетании с другими элементами (свинцом, фосфором, цинком) также и антифрикционные свойства. Железо и никель сильно измельчают зерно и повышают температуру рекристаллизации бронз. Марганец и кремний повышают их жаростойкость. Бериллий, хром и цирконий, особенно после закалки и старения, повышают прочностные свойства сплавов, одновременно незначительно снижая их электропроводность. Эти элементы существенно повышают жаропрочность бронз. Большинство бронз (за исключением алюминиевых) хорошо поддаются сварке и пайке твердыми и мягкими припоями.

Оловянные бронзы. Из диаграммы состояния Cu – Sn следует, что предельная растворимость олова в меди соответствует 15,8 % (рис.10.11а). Сплавы этой системы характеризует склонность к неравновесной кристаллизации, в результате чего в реальных условиях охлаждения значительно сужается область α-твердого раствора, его концентрация практически не меняется с понижением температуры, не происходит эвтектоидного превращения δ -фазы. (см.штриховые линии диграммы) и при содержании олова более 6 – 8 % в структуре сплавов присутствует эвтектоид (α + δ), где δ-фаза – электронное соединение Cu Sn со сложной кубической решеткой. Оно обладает высокой твердостью и хрупкостью. Появление δ-фазы в структуре бронз вызывает резкое снижение их вязкости и пластичности(рис.10.11б). Поэтому практическое значение имеют бронзы, содержащие только до 10 % Sn .

Двойные оловянные бронзы применяют редко, так как они дороги. Широкий температурный интервал кристаллизации обусловливает у них большую склонность к дендритной ликвации, низкую жидкотекучесть, рассеянную усадочную пористость и поэтому невысокую герметичность отливок.

Оловянные бронзы легируют Zn , Pb , Ni , P . В бронзы добавляют от 2 до 15 % Zn . В таком количестве цинк полностью растворяется в альфа-твердом растворе, что способствует повышению механических свойств. Уменьшая интервал кристаллизации оловянных бронз, цинк улучшает их жидкотекучесть, плотность отливок, способность к сварке и пайке. Свинец повышает антифрикционные свойства и улучшает обрабатываемость резанием оловянных бронз. Фосфор, являясь раскислителем оловянных бронз, повышает их жидкотекучесть, изностойкость улучшается. Кроме того, он увеличивает временное сопротивление, предел упругости и выносливость бронз.

Бронзы хорошо обрабатываются резанием, паяются, хуже свариваются.

Среди медных сплавов оловянные бронзы имеют самую низшую литейную усадку (0,8 % при литье в песчаную форму и 1,4 % при литье в металлическую форму), поэтому их используют для получения сложных фасонных отливок. Двойные и низколегированные литейные бронзы содержат 10 % Sn . Для удешевления оловянных бронз содержание олова в некоторых стандартизованных литейных бронзах снижено до 3 – 6 %. Большое количество Zn и Pb повышает их жидкотекучесть, улучшает плотность отливок, антифрикционные свойства и обрабатываемость резанием. Структура оловянных бронз (БрО3Ц12С5, БрО4Ц4С17, БрО10Ц2 и др.) полностью удовлетворяет требованиям, предъявляемым к структуре антифрикционных сплавов. Высокая коррозионная стойкость в атмосферных условиях, пресной и морской воде способствует широкому применению литейных бронз для пароводяной арматуры, работающей под давлением. Рассеянная пористость не мешает этому, поскольку у поверхности отливок имеется зона с мелкозернистой структурой, обладающая высокой плотностью. При усовершенствовании технологии получают отливки, выдерживающие давление до 30 МПа.

Деформируемые бронзы содержат до 6 – 8 % Sn . В равновесном состоянии они имеют однофазную структуру (α – твердого раствора)(рис.10.12а). В условиях неравновесной кристаллизации наряду с твердым раствором может образоваться небольшое количество δ-фазы. Для устранения дендритной ликвации и выравнивания химического состава, а также улучшения обрабатываемости давлением применяют диффузионный отжиг, который проводят при 700-750 ° С. При холодной пластической деформации бронзы подвергают промежуточным отжигам при 550 – 700 º С. Деформируемые бронзы характеризуются хорошей пластичностью и более высокой прочностью, чем литейные.

Деформируемые бронзы обладют высокими упругими свойствами и сопротивлением усталости. Их используют для изготовления круглых и плоских пружин в точной механике, электротехнике, химическом машиностроении и других областях промышленности.
Безоловянные бронзы по своим свойствам не уступают, а по некоторым превосходят оловянные бронзы, и поэтому их широко применяют в машиностроении и других отраслях промышленности. Бронзы используют для изготовления арматуры, всевозможных шестерен, подшипников, втулок, баков, резервуаров и других ответственных деталей и узлов машин и аппаратов.
Фосфорная бронза , предложенная Кюнцелем в 1871 г., состоит из 90% меди, 9% олова и 0,5% - 0,5% фосфора; употребляется для отливки пушек, колоколов, статуй, подшипников, различных частей машин и т.п. Прибавка фосфора (в виде фосфорной меди или олова) увеличивает упругость бронзы, сопротивление разрыву и твердость; расплавленный металл легко отливается и хорошо выполняет углубления формы. Изменяя весовые отношения составных частей, можно придать сплавам желаемые свойства: сделать их мягкими как медь или вязкими как железо, и твердыми как сталь; от ударов и толчков строение фосфористой бронзы не меняется; при содержании фосфора свыше 0,5% цвет ее золотистый.
Алюминиевые бронзы отличаются высокими механическими, антикоррозионными свойствами. Их преимущества перед оловянными бронзами – меньшая стоимость, более высокие механические и некоторые технологические свойства. Например, небольшой интервал кристаллизации обеспечивает алюминиевым бронзам высокую жидкотекучесть, концентрированную усадку и хорошую герметичность отливок, малую склонность к дендритной ликвации. Вместе с тем из-за большой усадки иногда трудно получить сложную фасонную отливку.

Медь с алюминем образует α-твердый раствор (рис.10.13), концентрация которого при понижении температуры с 1035 до 565 ° С увеличивается от 7,4 до 9,4 % Al . При 565 º С β – фаза претерпевает эвтектоидное превращение: β→α+γ , где γ - промежуточная фаза переменного состава со сложной кубической решеткой.
При реальных скоростях охлаждения, в отличие от равновесного состояния, эвтектоид появляется в структуре сплавов при содержании 6 – 8 % Al . Наличие эвтектоида приводит к резкому снижению пластичности алюминиевых бронз. С увеличением содержания алюминия до 4 – 5 % наряду с прочностью и твердостью повышается пластичность, которая затем резко падает, а прочность продолжает расти при увеличении содержания алюминия до 10 – 11 % (рис.10.13б).

Однофазные бронзы (БрА5,БрА7), имеющие хорошую пластичность, относятся к деформируемым. Они обладают наилучшим сочетанием прочности (400-450 МПа) и пластичности (δ=60 %). Двухфазные бронзы выпускают в виде деформируемого полуфабриката, а также применяют для изготовления фасонных отливок. При наличии большого количества эвтектоида бронзы подвергают не холодной, а горячей обработке давлением. Двухфазные бронзы отличаются высокой прочностью (600 МПа) и твердостью (более 100 НВ). Их можно подвергать упрочняющей термической обработке. При быстром охлаждении (закалке) β-фаза претерпевает не эвтектоидное, а мартенситное превращение.

К недостаткам двойных алюминиевых бронз помимо большой усадки относятся: склонность к газонасыщению и окисляемости во время плавки, образование крупнокристаллической столбчатой структуры, трудность пайки. Эти недостатки уменьшаются при легировании алюминиевых бронз железом, никелем, марганцем.

В α-фазе алюминиевой бронзы растворяется до 4 % железа, при большем содержании образуются включения Al Fe . Дополнительное легирование сплавов никелем и марганцем способствует появлению этих включений при меньшем содержании железа. Железо оказывает модифицирующее действие на структуру алюминиевых бронз, повышает их прочность, твердость и антифрикционные свойства, уменьшает склонность к охрупчиванию двухфазных бронз из-за замедления эвтектоидного распада β-фазы. Наилучшей пластичностью алюминиево-железные бронзы (например,БрАЖ-4) обладают после термической обработки, частично или полностью подавляющей эвтектоидное превращение β-фазы. Отпуск закаленной бронзы при 250-300 ° С приводит к распаду β-фазы с образованием тонкодисперсного эвтектоида и повышению твердости до 175 – 180 НВ.

Никель улучшает технологичность и механические свойства алюминиево-железных бронз при обычных и повышенных температурах. Кроме того, он способствует резкому сужению области α-твердого раствора при понижении температуры. Это вызывает у бронз, легированных железом и никелем (БрАЖН10-4-4), способность к дополнительному упрочнению после закалки вследствие старения. Из алюминиево-железоникелевых бронз изготовляют детали, работающие в тяжелых условиях износа при повышенных температурах (400-500 ° С): седла клапанов, направляющие втулки выпускных клапанов, части насосов и турбин, шестерни и др. Высокими механическими, антикоррозионными и технологическими свойствами обладают алюминиево-железные бронзы, легированные вместо никеля более дешевым марганцем (БрАЖМц10-3-1,5).

Кремнистые бронзы характеризуются хорошими механическими, упругими и антифрикционными свойствами.

Кремнистые бронзы содержат до 3 % Si и имеют однофазную стуктуру α-твердого раствора(рис.10.14). При увеличении содержания кремния более 3% в структуре сплавов появляется твердая и хрупкая γ-фаза. Однофазная структура твердого раствора обеспечивает кремнистым бронзам высокую пластичность и хорошую обрабатываемость давлением. Они хорошо свариваются и паяются, удовлетворительно обрабатываются резанием. Литейные свойства кремнистых бронз ниже, чем оловянных, алюминиевых бронз и латуней.
Легирование цинком способствует улучшению литейных свойств этих бронз. Добавки марганца и никеля повышают прочность, твердость кремнистых бронз. Никель, обладая переменной растворимостью в α-фазе, позволяет упрочнять никель-кремнистые бронзы путем закалки и старения.

Кремнистые бронзы выпускают в виде ленты, полос, прутков, проволоки. Для фасонных отливок они применяются редко. Их используют вместо более дорогих оловянных бронз при изготовлении антифрикционных деталей (БрКН1-3),(БрКМц3-1), а также для замены бериллиевых бронз при производстве пружин, мембран и других деталей приборов, работающих в пресной и морской воде.
Марганцовая бронза получается сплавлением марганцовистого чугуна (ферромангана) с медью, затем с медью и цинком или же с медью, цинком и оловом. В Англии изготовляется пять сортов, которые отличаются друг от друга по своим свойствам (твердости, вязкости, сопротивлению разрыву) и применяются для различных целей.
Бериллиевые бронзы характеризуются чрезвычайно высокими пределами упругости, временным сопротивление, твердостью и коррозионной стойкостью в сочетании с повышенными сопротивлениями усталости, ползучести и износу. Двойные берилливые бронзы содержат в среднем 2,0-2,5 % Be (БрБ2, БрБ2,5). Согласно диаграмме состояния системы Cu - Be (рис.10.15а), они имеют структуру, состоящую из α-твердого раствора бериллия в меди и γ-фазы – электронного соединения CuBe с ОЦК решеткой. Концентрация α-твердого раствора значительно уменьшается с понижением температуры (с 2,75 % Be при 870 ° С до 0,2 % при 300 ° С). Это дает возможность подвергать бериллиевые бронзы упрочняющей термической обработке – закалке и искусственному старению.

Изменение механических свойств сплавов меди с бериллием (рис.10.15б) показывает, что их временное сопротивление резко увеличивается в интервале 1,5-2,0 % Be . При содержании бериллия более 2,0% временное сопротивление повышается незначительно, а пластичность из-за большого количества твердой и хрупкой γ-фазы становится очень низкой.
Наибольшей пластичностью (δ=30…40 %) бериллиевые бронзы обладают после закалки с 770-780 ° С. В закаленном состоянии они хорошо деформируются. Пластическая деформация на 40 % увеличивает временное сопротивление бронзы БрБ2 почти в 2 раза (с 450 до 850 МПа). Механические свойства бериллиевых бронз достигают очень высоких значений после закалки и старения.

Бериллиевые бронзы являются теплостойкими материалами, устойчиво работающими при температурах до 310-340 º С. При 500 º С они имеют приблизительно такое же временное сопротивление, как оловянно-фосфористые и алюминиевые бронзы при комнатной температуре. Бериллиевые бронзы обладают высокой теплопроводностью и электрической проводимостью; при ударах не образуют искр. Они хорошо обрабатываются резанием, свариваются точечной и роликовой сваркой, однако широкий температурный интервал кристаллизации затрудняет их дуговую сварку.

Бериллиевые бронзы выпускают преимущественно в виде полос, лент, проволоки и других деформированных полуфабрикатов. Вместе с тем из них можно получить качественные фасонные отливки. Из бериллиевых бронз изготовляют детали ответсвенного назначения: упругие элементы точных приборов (плоские пружины, пружинные контакты,. мембраны); детали, работающие на износ (кулачки, шестерни, червячные передачи); подшипники, работающие при высоких скоростях, больших давлениях и повышенных температурах.

Основным недостатком бериллиевых бронз является их высокая стоимость. Легирование Mg , Ni , Ti , Co позволяет уменьшить содержание бериллия до 1,7-1,9 % без заметного снижения механических свойств (БрБНТ1,7 и др.)
Приложение:

Вопрос о том, как отличить бронзу от латуни, неслучайно интересует многих, ведь изделия из этих медных сплавов очень похожи внешне. Между тем, решив использовать изделия из таких материалов для определенной цели, следует разграничивать два этих металла, так как они имеют серьезные отличия по многим параметрам.

Эти бюсты очень похожи, но они сделаны из различных медных сплавов

Эти бюсты очень похожи, но они сделаны из различных медных сплавов

Что собой представляют бронза и латунь

Бронза и латунь – сплавы, основу которых составляет медь. Более того, отдельные марки таких сплавов очень похожи по своему цвету, но при этом их характеристики могут иметь серьезные отличия. Для того чтобы хорошо ориентироваться в вопросе о том, в каких случаях использовать латунь, а в каких – бронзу, необходимо более подробно познакомиться с их свойствами и химическим составом.

Химический состав простых латуней

Химический состав простых латуней

Химический состав оловянных бронз

Химический состав оловянных бронз (нажмите для увеличения)

Такой материал, как бронза, используется человечеством уже на протяжении нескольких тысячелетий, и его популярность не становится меньше. Изначально человек научился производить бронзовые сплавы, основу химического состава которых составляют медь и олово. Позднее с развитием металлургической промышленности начали производить бронзы, в которых олово было заменено на другие химические элементы – алюминий, свинец, железо, кремний, бериллий, фосфор и др. Бронзы первого типа стали называть оловянными (часто их именуют колокольными, потому что раньше из них изготавливали колокола), а второго – безоловянными. Изменение химического состава бронзы приводит к изменению не только ее характеристик, но и цвета.

Латунь также является медным сплавом, но основной легирующий элемент в ней – цинк. В химическом составе различных марок латуни могут присутствовать такие элементы, как никель, свинец, железо, олово, марганец и др., но их содержание является незначительным и необходимо только для того, чтобы придать готовому сплаву определенные характеристики. Известно, что производить латунь умели еще древние римляне, которые получали ее, смешивая расплавленную медь и цинковую руду. Более эффективную технологию производства, которая предполагает смешивание расплавленной меди и чистого цинка, разработали в Англии, и произошло это в 1781 году.

Физические свойства простых латуней

Физические свойства простых латуней (нажмите для увеличения)

Физические свойства оловянных бронз

Физические свойства оловянных бронз (нажмите для увеличения)

Долгое время латунь, которая отличается красивым светло-золотистым цветом, использовалась для изготовления декоративных изделий, в том числе и тех, которые выдавались за золотые. Однако производственники не могли не обратить внимание на другие, не менее значимые характеристики данного сплава, к которым относятся высокая коррозионная стойкость и устойчивость к истиранию, пластичность, сочетаемая с достаточно высокой твердостью и прочностью.

Именно поэтому латунь, которая также отличается и хорошими литейными свойствами, стали активно применять не только в декоративных целях, но и для изготовления изделий, успешно используемых в различных отраслях промышленности.

Сравнительные характеристики

Основу бронзы и латуни, как сказано выше, составляет один и тот же металл – медь. Разница между данными сплавами заключается в их химическом составе и, соответственно, в характеристиках, которыми они обладают. Естественно, что отличия между этими медными сплавами определяют и сферы их применения.

Из-за того, что бронза является более прочным и долговечным материалом, если сравнивать ее с латунью, из данного материала издревле изготавливают колокола, скульптурные композиции, элементы ограждений, ландшафтных и интерьерных конструкций. Немаловажным является и то, что многие марки данного сплава характеризуются хорошей текучестью в расплавленном состоянии. Это позволяет отливать из них изделия даже очень сложной конфигурации. Добавляя в химический состав бронзы различные химические элементы, можно изменять ее цвет в достаточно широком диапазоне, что также имеет большое значение при производстве изделий декоративного назначения.

Это кольцо от часов, судя по цвету, скорее желтая латунь (бронза была бы краснее). На поверхности легко остаются царапины – тоже признак латуни

Это кольцо от часов, судя по цвету, скорее желтая латунь (бронза была бы краснее). На поверхности легко остаются царапины – тоже признак латуни

Латунь отличается от бронзы более высокой пластичностью и, соответственно, меньшей прочностью и износостойкостью, что ограничивает использование этого сплава во многих сферах. Кроме того, латунь менее устойчива к воздействию агрессивных сред, в частности соленой морской воды, что не позволяет использовать латунные изделия в судостроительном производстве, где бронза применяется очень активно и успешно.

Существует также заметная разница в цвете данных сплавов и в их внутренней структуре. Любой опытный специалист может рассказать, как отличить латунь от бронзы: для этого достаточно взглянуть на излом изделий из этих сплавов. Латунь на изломе имеет более светлый цвет и явно выраженную мелкозернистую структуру, в то время как бронзу легко определить по темно-коричневому цвету излома и крупнозернистой внутренней структуре.

Излом бронзовой муфты

Излом бронзовой муфты

Сравнение свойств латуни и бронзы

Сравнение свойств латуни и бронзы

Бронзу и латунь, температура плавления которых ниже, чем у меди, можно использовать для изготовления различных изделий в домашних условиях. Однако для этого, естественно, необходимо запастись соответствующим оборудованием и хорошо изучить технологию и правила выполнения такой технологической операции, как литье.

Читайте также: