Курс теоретической механики разделы курса основные понятия и определения реферат

Обновлено: 04.07.2024

Теоретическая механика – это раздел механики, в котором излагаются основные законы механического движения и механического взаимодействия материальных тел.

Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.

Механическое движение — это изменение с течением времени взаимного положения в пространстве материальных тел.

Механическое взаимодействие – это такое взаимодействие, в результате которого изменяется механическое движение или изменяется взаимное положение частей тела.

Статика твердого тела

Статика — это раздел теоретической механики, в котором рассматриваются задачи на равновесие твердых тел и преобразования одной системы сил в другую, ей эквивалентную.

    Основные понятия и законы статики

Кинематика

Кинематика — раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела.

Динамика

Динамика — это раздел теоретической механики, в котором изучаются механические движении материальных тел в зависимости от причин, их вызывающих.

Примеры решения задач

Пример 1. Условия равновесия

Рисунок к примеру 1. Задача на уравнения равновесия


Висящий на нити, под углом в сорок пять градусов к гладкой стене шар весом в десять Ньютон, находится в состоянии равновесия (рис. а). Необходимо определить давление однородного шара на гладкую стенку и натяжение нити.

Дано: P = 10 Н; α = 45°
Найти: N, T — ?

Решение.
Отбрасываем связи, а их действие на шар заменяем реакциями.
Реакция стенки N направлена перпендикулярно стенке (от точки касания С к центру шара О), реакция нити Т — вдоль нити от точки А к точке В.
Тем самым выявляется полная система сил, приложенных к покоящемуся шару.

Это система сил, сходящихся в центре О шара, и состоящая из веса шара Р (активная сила), реакции стенки N и реакции нити Т (рис. б).

Реакции N и Т по величине неизвестны. Для их определения следует воспользоваться условиями равновесия (в той или иной форме — геометрической, аналитической).

При геометрическом способе решения строится замкнутый многоугольник сил и используются соотношения школьной геометрии (теорема синусов, теорема косинусов, теорема Пифагора и т.д.).

N=10*tg<45^<circ></p>
<p>После подстановки в формулы числовых значений, получим: <br />>=10*1=10~H;~T=10/>>=10/=14,142~H
.

N=10~H;~T=14,142~H

Ответ: .

Пример 2. Уравнение траектории точки

x=2sint;~y=4cos<2t></p>
<p>Дано: <br />Движение точки задано уравнениями
;
(x, у — в сантиметрах, t — в секундах).
Найти: уравнение траектории точки в координатной форме.

Решение. Для определения уравнения траектории из уравнений движения исключаем время t. Для этого из первого уравнения выражаем и подставляем это значение во второе уравнение, преобразованное к функциям одинарного угла:
=4(^2-^2)=4(1-2^2)=4(1-2/4>)=4-2" />
.

y=4-2x^2

Опуская промежуточные выражения, получаем уравнение траектории:
.

Рисунок к примеру 2. Уравнение траектории движения точки

Уравнение определяет параболу, расположенную симметрично относительно оси у, с вершиной в точке (0, 4). Траекторией служит кусок этой параболы, заключенный между точками с координатами (-2, -4) и (2, -4).

y=4-2x^2

Ответ: .

Пример 3. Основной закон динамики точки

Свободная материальная точка, масса которой десять килограмм, движется прямолинейно с ускорением пол метра в секунду в квадрате. Определить силу, приложенную к точке.

Дано: m = 10 кг; a = 0,5 м/с 2 .
Найти: F — ?

F=m*a

Решение.
Согласно основному закону динамики: .

F=m*a=10*0,5=5~ H

Подставив значения в формулу, получим:

Ответ: сила, сообщающая массе, равной 10 кг,
ускорение 0,5 м/с 2 , равна 5 Н.

В помощь студенту
    Формулы, правила, законы, теоремы, уравнения, примеры решения задач

Список литературы:
Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах.
Буторин Л.В., Бусыгина Е.Б. Теоретическая механика. Учебно-практическое пособие.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Механика — это отрасль физики, наука, изучающая движение материальных тел и взаимодействие между ними; в этом случае движение в механике описывается как временное изменение взаимного положения тел или их частей в пространстве.

Тематическая механика и ее разделы

Что касается предмета механики, то уместно сослаться на слова авторитетного ученого-механика Х.М. Тарга во введении к 4-му изданию его широко известного учебника теоретической механики: «Наука, посвященная решению любой проблемы, связанной с изучением движения или равновесия того или иного материального тела, а значит, и взаимодействий между телами, называется механикой в широком смысле этого слова. Теоретическая механика сама по себе является частью механики, в которой изучаются общие законы движения и взаимодействия материальных тел, т.е. те законы, которые применимы, например, как к движению Земли вокруг Солнца, так и к полету ракеты или артиллерийского снаряда и т.д. Другая часть механики состоит из различных общих и специальных технических дисциплин, посвященных проектированию и расчету всех видов конкретных конструкций, двигателей, механизмов и машин или их частей (частей).

Таким образом, предметная механика делится на:

  • теоретическая механика;
  • механика твёрдых сред;

Специальные механические дисциплины: теория механизмов и машин, сопротивление материалов, гидравлика, механика грунтов и др.

Теоретическая механика (в употреблении — теорема) — наука об общих законах механического движения и взаимодействия материальных тел.

Механика твёрдых сред — раздел механики, физики твёрдых сред и физики конденсированного состояния, посвящённый движению газообразных, жидких и деформирующихся твёрдых тел и силовым взаимодействиям в таких телах.

Другая важная особенность, используемая при разделении механики на отдельные секции, основана на тех представлениях о свойствах пространства, времени и материи, которые лежат в основе той или иной конкретной механической теории.

Данному атрибуту в границах механики присваиваются такие участки:

  • классическая механика;
  • релятивистская механика;
  • Квантовая механика.

Релятивистская механика — это отрасль физики, рассматривающая законы механики (законы движения тел и частиц) со скоростями, сравнимыми со скоростью света. На скоростях гораздо меньше скорость света переходит в классическую (ньютоновскую) механику.

Квантовая механика — это отрасль теоретической физики, описывающая физические явления, в которых эффект сравним по величине с константой Планка.

Механическая система

Механика занимается исследованием так называемых механических систем.

У механической системы есть определенное число k! Его состояние описывается с помощью обобщенных координат q_1,\points q_k,! и соответствующих обобщенных импульсов p_1,\points p_k,! Задача механики — исследовать свойства механических систем и особенно узнать их временную эволюцию.

Как один из классов физических систем, механические системы делятся на изолированные (замкнутые), замкнутые и открытые по способу взаимодействия с окружающей средой и по принципу изменения свойств с течением времени — на статические и динамические.

Основные механические системы:

  • точка массы
  • негосударственная система
  • гармонический генератор
  • Маятник математики
  • физический маятник
  • Крутильный маятник
  • Твердое государство
  • деформируемое тело
  • полностью эластичное тело
  • твёрдой окружающей среды.

Нетехническая система — это механическая система, которая, помимо геометрических и кинематических связей, имеет наложения, которые не могут быть сведены к геометрическим (их называют неголономическими).

Гармонический осциллятор (в классической механике) — это система, которая при смещении из положения равновесия испытывает восстанавливающую силу F, пропорциональную смещению x (по закону Крюка).

Твердая среда — это механическая система, обладающая бесконечным числом внутренних степеней свободы.

Критические механические дисциплины

Кинематика (по-гречески: κινειν — двигаться) в физике — это отрасль механики, которая занимается математическим описанием (с помощью геометрии, алгебры, математического анализа…) идеализированных движений тела (материальная точка, абсолютно твердое тело, идеальная жидкость) без учета причин движения (масса, силы и т.д.). Оригинальные концепции кинематики — это пространство и время.

Dynamics (Greek δύναμις — force) — раздел механики, исследующий причины механических движений. Динамика работает с такими терминами, как масса, сила, импульс, импульс- момент, энергия.

Кроме того, механика включает в себя следующие механические дисциплины (содержание которых в значительной степени пересекается):

  • Теоретическая механика
  • Небесная механика
  • Нелинейная динамика
  • Механика без углекислого газа
  • теория гироскопов
  • Теория вибраций
  • Теория устойчивости и катастрофы
  • Механика твердого тела
  • Гидростатика
  • Гидродинамика
  • Аэромеханика
  • Газовая динамика
  • Теория упругости
  • теория пластичности
  • Генетическая механика
  • Механика разрушения
  • Механика композитных материалов
  • Реология
  • статистическая механика
  • Механика расчёта
  • Специальные механические дисциплины
  • теория механизмов и машин
  • Предел прочности материалов
  • Структурная механика
  • Гидравлика
  • Механика грунта.

Некоторые курсы механики ограничиваются только твердыми телами. Изучение деформируемых тел основано на теории упругости (сопротивление материала — его первое приближение) и теории пластичности. В случае жидкостей и газов, а не жестких тел, необходимо прибегнуть к механике жидкостей и газов, основными участками которой являются гидростатика и гидрогазодинамика. Общей теорией, изучающей движение и равновесие жидкостей, газов и деформированных тел, является механика твердых сред.

Основной математический аппарат классической механики: Дифференциальное и интегральное исчисление, специально разработанное для этой цели Ньютоном и Лейбницом. Современный математический аппарат классической механики включает в себя, главным образом, теорию дифференциальных уравнений, дифференциальную геометрию (симплектическую геометрию, контактную геометрию, тензорный анализ, векторное расслоение, теорию дифференциальных форм), функциональный анализ и теорию операционной алгебры, теорию катастроф и бифуркаций. Другие разделы математики также используются в современной классической механике. В классической формулировке механика основывается на трех ньютоновских законах. Решение многих задач механики упрощается, если уравнение движения позволяет сформулировать законы сохранения (импульс, энергия, импульс и другие динамические переменные).

Различные формулировки механики

Все три ньютоновских закона для широкого спектра механических систем (консервативные системы, лагранжевые системы, гамильтонские системы) связаны с различными принципами вариации. В этой формулировке классическая механика таких систем основана на принципе стационарности действия: системы движутся таким образом, что гарантируется стационарность функции действия. Эта формулировка используется, например, в механике Лагранжа и Гамильтона. Уравнения движения в лагранжевой механике являются уравнениями Эйлера-Лагранжа, а в гамильтонской механике — гамильтонскими уравнениями.

Независимыми переменными, которые описывают состояние системы, являются, в гамильтоновской механике — обобщенные координаты и импульс, а в лагранжевой механике — обобщенные координаты и их временные производные.

Гамильтоновская механика — одна из формулировок классической механики.

Если использовать функциональность действия, определенную на реальной траектории системы, связывающей определенную начальную точку с произвольной конечной точкой, то аналогом уравнений движения являются уравнения Гамильтона-Якоби.

Следует отметить, что все формулировки классической механики, основанные на голотехнических принципах, являются менее общими, чем формулировки, основанные на уравнениях движения. Не все механические системы имеют уравнения движения, представленные уравнением Эйлера-Лагранжа, уравнением Гамильтона или уравнением Гамильтона-Якоби. Однако все формулировки полезны как с практической точки зрения, так и плодотворны с теоретической. Лагранжевая формулировка оказалась особенно полезной в теории поля и релятивистской физике, в то время как уравнения Гамильтона и Гамильтона-Якоби полезны в квантовой механике.

Заключение

Сегодня существует три типа ситуаций, в которых классическая механика больше не отражает реальность.

Свойства микромира невозможно понять в рамках классической механики. Особенно в сочетании с термодинамикой это создает ряд противоречий (см. классическую механику). Адекватным языком для описания свойств атомов и субатомных частиц является квантовая механика. Подчеркивается, что переход от классической к квантовой механике — это не простая замена уравнений движения, а полная реконструкция всего набора понятий (что такое наблюдаемая физическая величина, процесс измерения и т.д.).

На скоростях, близких к скорости света, даже классическая механика перестает функционировать, и необходимо перейти к специальной теории относительности. Этот переход также предполагает полный пересмотр парадигмы, а не простую модификацию уравнений движения. Однако, если пренебречь новым взглядом на реальность, чтобы попытаться вывести уравнение движения на путь F = ma, то мы должны ввести датчик массы, компоненты которого растут со скоростью. Эта конструкция уже давно стала источником многих недоразумений, поэтому ее не рекомендуется использовать.

Классическая механика становится неэффективной, если учитывать системы с очень большим количеством частиц (или большим количеством степеней свободы). В этом случае практический переход на статистическую физику.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Предмет теоретической механики, разделы. Предмет статики. Основные понятия. Аксиомы статики

Описание: Кинематика раздел механике в котором изучаются движения тел с геометрической точки зрения без учета силовых взаимодействий между телами. Динамика – раздел механики изучающий движение тел с учетом силовых взаимодействий между телами. В природе и окружающем нас мире абсолютного равновесия нет всякое равновесие лишь временно и относительно то есть может наблюдаться равновесие тела только относительно некоторой условно неподвижной системы координат. Под равновесием тела понимается состояние покоя тела по отношению к другим телам .

Размер файла: 107.25 KB

Работу скачали: 2 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Лекция №1. П редмет теоретической механики, разделы. Предмет статики. Основные понятия. Аксиомы статики.

1. Теоретическая механика – наука, изучающая наиболее общие законы механического движения и взаимодействия материальных тел. Под механическим движением понимают происходящее с течением времени изменение взаимного положения материальных тел в пространстве.

2. Связь с другими предметами можно представить в виде структурной схемы, приведенной на рисунке.


По характеру решаемых задач теоретическую механику делят на следующие разделы: Статика, Кинематика и Динамика.

Статика – раздел изучающий равновесие тел.

Кинематика – раздел механике, в котором изучаются движения тел с геометрической точки зрения без учета силовых взаимодействий между телами.

Динамика – раздел механики, изучающий движение тел с учетом силовых взаимодействий между телами.

4. Основные определения.

Статика - это учение о равновесии тел. В природе и окружающем нас мире абсолютного равновесия нет, всякое равновесие лишь временно и относительно, то есть может наблюдаться равновесие тела только относительно некоторой условно неподвижной системы координат. В статике за такую систему выбрана система координат, неизменно связанная с Землей. Вводится понятие инерциальной системы отсчета, в которой справедливы законы Ньютона. Исходя из опытов и наблюдений, можно сделать выводы, что такой системой отсчета является система с началом в центре Солнечной системы и осями, направленными к далеким звездам. Инерциальную систему отсчета условно принимают неподвижной. В статике с долей погрешности такой системой отсчета можно принять систему, связанную с Землей. Под равновесием тела понимается состояние покоя тела по отношению к другим телам ( например Земле).

Мерой механического взаимодействия между телами в механике является сила , а результатом взаимодействия – изменение движения тел или изменение их формы (деформации). Сила, как векторная величина, характеризуется точкой приложения, направлением действия и величиной действия. За единицу силы берётся сила в 1 H. Сила, приложенная в одной точке тела, называется сосредоточенной. Силы, приложенные к какой-либо части объема тела, его поверхности или линии, называются распределёнными .

Абсолютно твердым называют такое тело, расстояние между двумя любыми точками которого считают неизменными.

Материальная точка – это тело, размерами которого при изучении его движения или равновесия можно пренебречь.

Пространство в классической механике считают абсолютным трехмерным евклидовым, его свойства не зависят от движущихся в нем материальных тел и времени, они одинаковы во всех точках и направлениях.

Время тоже абсолютно, изменяется монотонно от настоящего к будущему и протекает одинаково во всех системах отсчета.

Системой сил будем называть совокупность сил действующих на данное тело.

Система сил называется сходящейся , если линии действия такой системы пересекаются в одной точке тела.

Система сил называется параллельной , если линии действия такой системы параллельны друг другу.

Две системы, оказывающие на тело одинаковое действие, называются эквивалентными системами.

Если под действием данной системы тело находится в равновесии, то такая система называется уравновешенной системой или системой, эквивалентной нулю (часто в этом случае говорят, что тело находится в состоянии покоя ).

Сила, эквивалентная системе сил, называется равнодействующей R этой системы.

Аксиома ( др.-греч. - утверждение, положение), постулат – утверждение , принимаемое истинным без доказательств. Справедливость аксиом подтверждена огромным количеством непосредственных наблюдений, опытной проверкой следствий из них и многовековой практической деятельностью человека.

Аксиома 1. Две силы, приложенные к телу, называются уравновешенными, если они равны по величине и направлены по одной прямой в противоположные стороны.


Следствие – силу можно переносить вдоль ее линии действия в любую точку тела, добавляя двойки уравновешенных сил.

Аксиома 2. Равнодействующая двух сил, приложенных в одной точке тела, равна их геометрической сумме по правилу параллелограмма.


Аксиома 3. Два тела действуют друг на друга с силами, равными по величине и противоположными по направлению. Эта аксиома часто называется законом равенства действия и противодействия.


Аксиома 4. Если деформируемое (не абсолютно твёрдое) тело, находящееся под действием данной системы сил в равновесии, становится абсолютно твёрдым, то его равновесие при этом не нарушается.

Предмет статики. Статикой называется раздел механики, в котором излагается общее учение о силах, изучаются условия покоя тел, находящихся под действием сил.

Основные задачи статики.

Задача №1. Сложение сил и приведение системы сил к простейшему виду.

Задача №2. Определение условий равновесия, действующих на твердое тело систем сил.

Основные понятия статики

  1. Абсолютно твердое тело (АТТ). Тело, в котором расстояние между двумя любыми точками всегда остается постоянным, называется абсолютно твердым. В природе, безусловно, таких тел нет, поскольку при определенных взаимодействиях тела изменяют свою форму. Однако, например, при определении реакций связей данная гипотеза не вносит существенной погрешности.
  2. Материальная точка.Тело, размеры которого по всем направлениям весьма малы, так что различием в движении отдельных точек этого тела можно пренебречь, называется материальной точкой.
  3. Система отсчета.Система координат, неизменно связанная с каким либо физическим телом, относительно которого определяется положение данного движущегося объекта называется система отсчета.
  4. Сила. Величина, являющаяся количественной мерой механического взаимодействия тел, называется силой. За единицу силы в системе СИ принимается Ньютон (Н). Сила, величиной 1 Н, приложенная к покоящемуся телу массой 1 кг, вызывает движение тела с ускорением 1 м/с 2 . Сила является векторной величиной. Обозначение силы: . Действие силы на тело определяется:

a) модулем или скалярной величиной, численно равной длине вектора силы;

b) направлением действия;

c) точкой приложения;

d) линией действия.

Линией действия называется линия, вдоль которой действует вектор силы.

Сила, действующая на тело по малой площадке, называется сосредоточенной (условно считают, – приложена в точке).

Силы, действующие на части объема, поверхности или линии, называются распределенными. Распределенные силы характеризуются интенсивностью , т.е. значением силы, приходящейся на единицу объема (в случае объемных сил), на единицу площади (в случае поверхностных сил), на единицу длины (в случае действия сил по линии).


Пример.

На брус длиной l=10 м действует равномерно распределенная сила интенсивности q=0,2 кН/м, т.е. на каждый метр длины бруса действует сила 0,2 кН. Определим равнодействующую равномерно распределенной силы, которая приложена посредине бруса: Q=ql=0,2 кН/м*10 м = 2 кН.

Теоретическая механика

Теоретическая механика (сокр. — теормех, термех) — наука, изучающая законы движения, равновесия и механических взаимодействий материальных тел.

Курс теоретической механики состоит из трёх разделов: кинематики, статики и динамики.

  • Краткий курс теории
  • Примеры решения задач
  • Решение задач, контрольных и РГР
  • Помощь на экзаменах и защитах
  • Учебная литература
  • Задания для РГР и КР
  • Экзамен по теормеху
  • Конспект лекций

О предмете

Теормех — первый раздел технической механики, в котором рассматриваются общие законы механических взаимодействий между материальными телами, а также общие законы движения тел по отношению друг к другу.

Механическое взаимодействие между материальными телами является простейшим и одновременно самым распространенным видом взаимодействия между физическими объектами. Механическое движение, будучи самым простым видом движения, является фундаментальным свойством материи.

Основные разделы теоретической механики

Теоретическая механика, преподаваемая в техническом вузе, содержит три раздела: кинематику, статику и динамику.

  1. Кинематика – часть механики, в которой изучаются зависимости между величинами, характеризующими состояние движения систем, но не рассматриваются причины, вызывающие изменение состояния движения.
  2. Статика – это учение о равновесии совокупности тел некоторой системы отсчета.
  3. Динамика – часть механики, в которой рассматривается влияние сил на состояние движения систем материальных объектов.

Объекты и цель изучения

В разделах теоретической механики изучаются общие законы движения и равновесия материальных систем; исследуются простейшие логические модели, на которые могут быть разложены объекты техники и природы, дается научный метод познания законов механического движения систем.

Типовая задача теоретической механики

Задачи курса теоретической механики

Задачами курса теоретической механики являются:

  • выработка практических навыков решения задач механики путем изучения методов и алгоритмов построения математических моделей движения или состояния рассматриваемых механических систем, а также методов исследования этих математических моделей;
  • воспитание естественнонаучного мировоззрения на базе изучения основных законов природы и механики.

Учебные материалы по теормеху

На нашем сайте Вы можете просмотреть и использовать для изучения курса теоретической механики следующие учебные материалы:

Другие разделы механики:

Читайте также: