Космические съемочные системы реферат

Обновлено: 08.07.2024

К настоящему времени уже сложилась определенная система разработки и эксплуатации средств дистанционного зондирования, то есть определились основные направления использования космических снимков и требования к их характеристикам в каждом из этих направлений [12]. Основными такими характеристиками являются пространственное, радиометрическое, спектральное и временное разрешениевидеоданных.

Пространственное разрешение. Каждое цифровое изображение представляет собой матрицу определенного размера. Элемент этой матрицы – пиксель – отображает площадку на земной поверхности размером Dx´Dy м. Обычно эта площадка приближенно считается квадратной, и в качестве пространственного разрешения принимается линейный размер стороны такого квадрата. Пространственное разрешение определяет детальность сцены на земной поверхности и точность, с которой по данному изображению можно определить границы исследуемых объектов. При разном пространственном разрешении изобразительные характеристики изучаемых объектов земной поверхности также могут отличаться, поэтому для каждого типа задач требуется выбор подходящего пространственного разрешения.

Радиометрическое разрешение изображения определяется диапазоном возможных значений каждого пикселя. Чаще всего пиксель представляется одним байтом информации. То есть яркость в этом случае может принимать значения от 0 до 255. В новейших системах пиксель иногда представляется двумя и более байтами, что, естественно, повышает информативность данных. Ненулевой диапазон значений яркости называют динамическим диапазоном.

Спектральное разрешение является специфической (и очень важной) характеристикой именно многозональных съемочных систем. Это число, положение и ширина спектральных диапазонов съемки (каналов).

Почему мы отличаем объекты по цвету? Потому что в видимом диапазоне они отражают разное количество падающего на них излучения на разных длинах волн. Это имеет место и для всех остальных диапазонов энергетического спектра.

Зависимость отраженной солнечной энергии от длины волны обычно называют спектральной отражательной способностью объекта (английское reflectance) На рис.1 показана такая зависимость для основных типов объектов земной поверхности в диапазоне длин волн 0.45-0.9 мкм (450-900 нм). Значения функции выражены в коэффициентах отражения – отношении количества отраженного излучения к падающему на единицу площади. Серыми вертикальными полосами обозначены зоны интенсивного поглощения излучения водяными парами.

Для разновидностей объектов, приведенных на рис.1, спектральная отражательная способность может отличаться в деталях, однако общий характер зависимости для каждой из представленных групп сохраняется. По этим графикам нетрудно определить, в каких зонах спектра представленные группы объектов будут лучше всего различаться по яркости.

Почвы и асфальтовые покрытия имеют спектр отражения, монотонно возрастающий от коротковолнового диапазона к ИК. Высота и крутизна этого графика зависят от химического состава вещества и содержания влаги.

Минимум кривой спектральной отражательной способности воды приходится на ближнюю ИК зону, поэтому в этой зоне лучше всего дешифрируются границы водных объектов.

Временное разрешение – периодичность получения информации. Для разных типов задач существуют разные требования к частоте обновления данных. Так для обнаружения и контроля быстропротекающих процессов требуется высокая частота обновления, а для ландшафтного картографирования периодичность поступления информации практически не имеет значения.

В соответствии с введенными выше характеристиками космических изображений рассмотрим некоторые типы спутниковых съемочных систем, ориентированные на решение определенных задач. В настоящее время эти системы разрабатываются и запускаются в рамках целевых программ космических исследований Земли и околоземного пространства [12].

Физика атмосферы, метеорология и климатология – первые направления, где космические изображения стали систематически применяться для исследования характера атмосферной циркуляции по ее проявлению в структуре облачного покрова. Решение таких задач выполняется по изображениям с наиболее низким пространственным разрешением (5-10 км). Наблюдения за суточной динамикой облачности, обеспечивающие глобальный прогноз погоды, осуществляются с метеорологических спутников Meteosat, Goes с периодичностью 1 час.

Для тематического картографирования суши и решения ресурсно-экологических задач наибольший интерес представляют многозональные изображения высокого разрешения (1-100 м). Именно этот тип данных ДЗ преобладает в последнее десятилетие и будет использоваться в перспективе.

Практически все спутники – носители аппаратуры ДЗ - выводятся на солнечно-синхронную орбиту, обеспечивающую стабильные геометрические условия освещенности снимаемой территории.

Типичный набор данных с аппаратуры ДЗ, установленных на ресурсных спутниках, включает

- мультиспектральные изображения в трех и более каналах видимого и инфракрасного диапазонов;

- панхроматические изображения в видимом диапазоне (иногда захватывающем частично ближний ИК).

Панхроматические изображения имеют обычно более высокое пространственное разрешение, чем мультиспектральные. Это обусловлено тем, что панхроматическая аппаратура регистрирует значительно большее количество излучения, чем мультиспектральная в каждом отдельном канале, что позволяет обеспечить более высокое отношение сигнал/шум и, следовательно, более высокую детальность изображения.

С использованием панхроматического изображения, полученного синхронно с мультиспектральным, в пакетах тематической обработки данных ДЗ можно повысить пространственное разрешение мультиспектрального изображения. Эта процедура будет рассмотрена в соответствующем разделе.

Кроме трех указанных выше диапазонов, аппаратура на спутниках Spot-4, Spot-5, IRS имеет четвертый канал в ИК-диапазоне 1.55-1.7 мкм.

Аппаратура ASTER имеет также 6 каналов в средневолновом ИК-диапазоне (SWIR) и 5 каналов в тепловом диапазоне (TIR).

Пространственное разрешение на пиксель перечисленных типов мультиспектральной аппаратуры составляет:

- Liss-3 (IRS-P6) – 23.5 м;

- MS (Spot-4,Spot-5) – 20 м;

- LISS-4 (IRS-P6) – 6 м.

Пространственное разрешение аппаратуры ASTER в диапазонах SWIR и TIR составляет 30 и 90 м на пиксель соответственно.

Панхроматический канал на Spot-4 имеет разрешение 10 м на пиксель, на Spot-5 – 5-2.5 м на пиксель.

Наиболее популярна, благодаря широкой полосе охвата (188 км), аппаратура ETM+, установленная на спутнике Landsat-7 (NASA), имеет каналы: 0.45-0.52 мкм, 0.53-0.61 мкм, 0.63-0.69 мкм, 0.77-0.88 мкм, 1.55-1.75 мкм, 2.09-2.35 мкм, 10.4-12.5 мкм. Пространственное разрешение аппаратуры – 30 м на пиксель (в диапазоне 10.4-12.5 мкм – 60 м). Панхроматический канал имеет разрешение 15м на пиксель.

Перечисленные типы аппаратуры имеют временное разрешение (периодичность съемки) от месяца до 5 дней. Многие типы аппаратуры (за исключением IRS-P6 и Landsat-7) позволяют получать стереопары для построения цифровых моделей рельефа.

Поставщиками наиболее современных, высококачественных материалов ДЗ в настоящее время являются американские частные компании DigitalGlobe, OrbImage, GeoEye.

Аппаратура, установленная на спутнике QUICKBIRD (DigitalGlobe) имеет каналы 0.45-0.52 мкм, 0.52-0.6 мкм, 0.63-0.69 мкм, 0.76-0.9 мкм с пространственным разрешением 2.44 м на пиксель. Панхроматический канал имеет пространственное разрешение 61 см на пиксель. Благодаря возможности съемки с отклонением от надира в 45° аппаратура имеет достаточно широкую для такого пространственного разрешения полосу охвата (16.5 км). Аналогичная по спектральному разрешению аппаратура, установленная на спутнике OrbView-3 (OrbImage), имеет пространственное разрешение на пиксель 4м и 1 м соответственно, но меньшую полосу охвата (8 км). Аппаратура, установленная на спутнике IKONOS (GeoEye), имеет аналогичные OrbView-3 каналы и пространственное разрешение, но несколько большую полосу охвата (11 км).

Мультиспектральная аппаратура установленная на спутнике WordView-2 (DigitalGlobe), имеет каналы (мкм): 0,40–0,45 (фиолетовый - coastal); 0,45–0,51(синий); 0,51–0,58 (зеленый): 0,585–0,625 (желтый); 0,63–0,69 (красный); 0,63–0,69 (крайний красный - red-edge); 0,77–0,895 (ближний ИК-1); 0,86–1,04(ближний ИК-2). Пространственное разрешение аппаратуры 1.84 м на пиксель. Пространственное разрешение панхроматического канала – 46 см на пиксель. Ширина полосы охвата 16.4 км.

Все эти спутники позволяют получать стереопары с одного витка, что обеспечивает возможность построения высокоточных цифровых моделей рельефа.

Контрольные вопросы.

1. Перечислите основные характеристики современных космических видеоданных.

2. Что называется динамическим диапазоном изображения?

3. По графикам с рис.1 определите, в каких диапазонах длин волн лучше всего дешифрировать: 1) водные объекты; 2) почвы; 3) растительность.

4. Какие диапазоны длин волн наиболее часто используются при мультиспектральной съемке и почему?

5. Почему пространственное разрешение у панхроматических снимков обычно выше, чем у мультиспектральных?

6. Почему большая часть космических носителей аппаратуры ДЗ имеет солнечно-синхронную орбиту?

7. Для решения каких задач применяются снимки с пространственным разрешением 1) 800-1.2 км; 2) 100-200 м?

8. Каково наилучшее пространственное разрешение современных космических съемочных систем общего назначения 1) при мультиспектральной съемке; 2) при панхроматической съемке?

Общая характеристика современных программно-инструментальных средств тематической обработки аэрокосмических изображений. Представление цифровых изображений в пакетах тематической обработки.

При тематическом картографировании обычно используются не только снимки, но и целый набор сопутствующих данных. Это могут быть карты, бумажные или электронные, справочные экономико-географические и природно-климатические данные, а также пространственные измерения, полученные другими способами, например, цифровая модель рельефа (ЦМР), данные СВЧ-влагомера и т.п. Часть этих данных тоже может быть представлена в растровом виде. Кроме того, можно использовать данные предыдущих наблюдений, обработанные или не обработанные, а также изображения с разных типов аппаратуры.

В современных геоинформационных системах существует два основных способа представления пространственных данных: растровый и векторный. Цифровое изображение земной поверхности – это растровый тип данных. Поэтому пакеты тематической обработки аэрокосмических изображений иногда относят к ГИС растрового типа, поскольку все основные функции пакетов ориентированы на обработку именно этого типа данных. Векторный тип данных также используется, но выполняет вспомогательную функцию.

Современные профессиональные программные продукты обработки данных дистанционного зондирования включают весь необходимый набор процедур для перехода от исходного изображения к тематической карте. Практически все такие пакеты содержат основные функции современных ГИС: средства работы со слоями, пространственные операции, комплексный анализ информации различных типов. Среди профессиональных пакетов наиболее известны на мировом рынке ER Mapper (Австралия), ERDAS Imagine (США), EASY/PAGE (PCI) (Канада), ILVIS(Нидерланды), TNTmips(США), ENVI(США).

У отечественных пользователей наиболее популярны пакеты ERDAS Imagine и относительно новый на рынке программных продуктов пакет ENVI. Используются также легкие настольные системы, в основном для решения небольших исследовательских задач – IDRISI (США), EPPLE7(США), GRASS(США), а также небольшой пакет MultiSpec (США), бесплатно распространяемый в Интернете.

Обязательные компоненты пакетов.

1. Географическая привязка и трансформирование изображений для приведения к заданной картографической проекции и системе координат.

2. Создание цветных композиционных изображений, яркостные преобразования, пространственно-частотная фильтрация.

3. Выделений областей интереса с помощью векторной графики, наложение масок для последующей обработки.

4. Создание мозаик изображений.

5. Классификация по спектральным яркостным признакам различными методами, средства анализа и редактирования результата.

6. Элементы пространственного анализа - сегментация, сглаживание, фильтрация областей по заданным характеристикам.

7. Элементы ГИС-анализа - послойное представление, возможности оверлейных операций со слоями, преобразования типов пространственных данных, в том числе векторно-растровое и растрово-векторное преобразование.

Хорошие коммерческие пакеты обязательно включают большое количество конверторов данных в наиболее распространенные форматы.

Основные отличия. Интерфейс пользователя, в частности, способы представления многозональных изображений, возможности растрового и векторного графических редакторов; способы и средства выделения областей интереса; допустимое количество растровых и векторных слоев, средства для выполнения оверлейных операций над ними; количество и способы реализации алгоритмов классификации; наличие и возможности процедур пространственного анализа.

В некоторых из пакетов имеются собственные оригинальные процедуры тематического анализа и классификации. Последние версии пакетов ERDAS Imagine и ENVI позволяют также выполнять анализ и тематическую обработку гиперспектральных изображений. Наиболее широко представлены эти функции в последних версиях пакета ENVI. В частности, в пакете предлагается несколько способов атмосферной коррекции, в том числе с использованием распространенного пакета MODTRAN, моделирующего процесс переноса излучения в атмосфере.

Возможности разработки и подключения собственных приложений, написанных на языках высокого уровня, имеются практически во всех профессиональных пакетах, однако способы их подключения и использования не одинаково удобны и эффективны.

Здесь мы будем ориентироваться на пакет ERDAS Imagine. Главным достоинством этого пакета является подробное руководство пользователя, включающее описание реализованных в пакете методов и алгоритмов, а также их сравнительный анализ. Это очень удобно при освоении самой методологии и отработке технологий автоматизированной тематической обработки. С этой точки зрения интерфейс пакета также наиболее удобен. Пакет ENVI больше ориентирован на создание эффективных производственных технологий и предполагает наличие у пользователя значительного объема знаний и опыта в области обработки и анализа изображений.

Пакет ERDAS Imagine имеет собственный внутренний формат представления изображений. Тем не менее, окно редактора изображений (Viewer) в последних версиях воспринимает все наиболее распространенные форматы, но возможности выполнения каких-либо операций в этом случае ограничены. Для выполнения полноценной тематической обработки изображение необходимо импортировать во внутренний формат пакета. Можно импортировать и специальные форматы, при условии, что пользователю полностью известна их внутренняя структура. В этом случае в качестве входного используется тип Generic Binary и пользователь сам определяет в диалоговом окне все характеристики своего формата, как и в пакете ENVI.

Основными способами представления данных в многозональных изображениях являются:

BSQ (Band Sequential) – каналы записываются в виде последовательности отдельных изображений;

BIL (Band Interleaved by Line) – каждая строка изображения записывается в виде последовательности строк по всем каналам;

BIP (Band Interleaved by Pixel) – каждый пиксель изображения записывается в виде последовательности пикселей по всем каналам.

В большинстве пакетов обработки для каждого типа пространственных данных (векторных и растровых) существует свой способ их представления. В ERDAS Imagine существует 3 типа растровых слоев (2 основных + 1 служебный) и 2 типа векторных слоев (1 основной + 1 служебный).

Под основными подразумеваются слои, которые представляют собой исходные данные и результаты обработки (конечные или промежуточные). Основные растровые слои имеют расширение .img; они могут быть конвертированы в другие форматы, а также читаются некоторыми другими пакетами, в частности, геоинформационными продуктами линейки ArcGIS и настольным пакетом ArcView предыдущего поколения продуктов ESRI при подключении соответствующего модуля расширения.

Слои растрового формата .img бывают двух типов: непрерывные (continuous) и тематические (thematic).

Непрерывные слои представляют собой числа - результаты измерений или расчетов. То есть каждому участку земной поверхности, отображаемому определенным пикселем, сопоставляется некоторая численная характеристика. Если слой представляет собой снимок, полученный в какой-либо зоне энергетического спектра, то численная характеристика – это нормированная к определенной шкале яркость объекта в данной зоне спектра.

Численные значения в непрерывных слоях могут быть различных форматов: двоичные, целые, с плавающей точкой.

Тематические слои представляют собой растровые тематические карты, где значение каждого пикселя – это идентификатор определенной категории земной поверхности, то есть целое число. Например: 1-вода, 2-лес, 3-травянистая растительность и т.п. Расшифровка идентификаторов может быть описана в таблице атрибутов тематического слоя.

В соответствии с особенностями организации этих двух типов изображений, существуют операции, которые можно выполнять только над непрерывными и только над тематическими слоями.

В качестве основного векторного формата в ERDAS Imagine используется формат покрытий ГИС-пакета ARC/INFO (разработка компании ESRI). В последних версиях допускается непосредственное использование (без предварительного импорта) некоторых других форматов. Как уже говорилось, возможности выполнения операций над векторными слоями в ERDAS Imagine ограничены; эти слои выполняют в основном вспомогательные функции. Например, они могут быть использованы при оверлейном ГИС-анализе или картографической привязке изображений.

Контрольные вопросы.

1. Перечислите основные функции современных пакетов тематической обработки аэрокосмических изображений.

2. Опишите три основных способа представления мультиспектральных изображений.

3. Что подразумевается в ERDAS Imagine под непрерывными и тематическими слоями?

4. Можно ли использовать в пакетах ERDAS Imagine и ENVI неизвестные форматы изображений и как это можно реализовать?

Особенности съемки больших территорий при помощи приборов аэрокосмической съемки. Масштабный ряд и пространственное разрешение снимков. Кадровая, щелевая, панорамная фотосъемка, сканерная, лазерная, радиолокационная аэрокосмосъемки и методы формирования.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 12.01.2016
Размер файла 252,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Российский университет Дружбы Народов

на тему: Обзор современных съемочных аэро- и космических систем

1. Аэрокосмические съемки

1.2 Приборы аэрокосмической съемки

2. Масштаб и пространственное разрешение

3. Кадровая, щелевая, панорамная фотосъемка, сканерная, лазерная, радиолокационная аэрокосмосъемки и методы формирования аэрокосмоснимков

4. Аэрокосмосъемочное оборудование

Список используемой литературы

Возможности получения нужной и качественной информации с использованием аэрокосмических снимков в существенной степени зависят от используемых материалов. В настоящее время арсенал аэрокосмической информации велик по количеству и разнообразен по составу.

Возможна систематизация данных ДЗ по нескольким основаниям: - по высоте‚ с которой выполнена съемка‚ различают аэроснимки‚ полученные с высоты преимущественно от 500 до 10 000 м‚ но не более 30 000 м; космические снимки - с высоты более 150 км; - по масштабу и пространственному разрешению; по диапазону регистрируемого излучения; по технологическим способам получения снимков. Аэросъемка выполняется в основном с самолетов.

Для съемки с малых высот (100 - 1000 м)‚ предназначенной только для дешифрирования‚ иногда используют вертолеты‚ а также радиоуправляемые модели. Последние годы предпочтение отдается легким самолетам. Основной объем аэросъемочных работ в нашей стране выполняется с самолета-аэросъемщика АН-30 в интервале высот 3000 - 6000 м.

Для съемки с высот около 10 000 м используют переоборудованные пассажирские самолеты. Космические снимки получают с автоматических спутников‚ космических кораблей и пилотируемых орбитальных станций с высот 180 - 400 км.

1. Аэрокосмические съемки

1.2 Приборы аэрокосмической съемки

Съемка больших территорий в настоящее время осуществляется методами фотограмметрии, изучающей способы и технологию определения форм, размеров, положения в пространстве, количественные и качественные характеристики объектов по их изображениям.

Изображения местности получают с помощью специальной аппаратуры, устанавливаемой на авиационных или космических носителях. Для аэросъемки используют самолеты (например, АН-30, ТУ-134, ИЛ-18), сверхлегкие летательные аппараты (малые самолеты, мотодельтапланы) и вертолеты. Космическая съемка выполняется с искусственных спутников Земли, пилотируемых космических кораблей и орбитальных станций.

Среди аэрокосмических различают съемки фотографические, сканерные, тепловые инфракрасные, радиолокационные и др.

Основным видом аэрокосмической съемки является аэрофотосъемка, которую выполняют с помощью аэрофотоаппаратов (рис. 1, а). Аэрофотоаппаратом изображение местности фиксируется на фотопленке - черно-белой, цветной или спектрозональной. Наиболее распространены форматы снимков: в нашей стране - 18Ч18 см и 30Ч30 см, за рубежом -18Ч18 см и 23Ч23 см.

В аэрофотоаппаратах применяют сфокусированные на бесконечность линзовые объективы с фокусным расстоянием от 35 до 1000 мм (наиболее часто используются объективы с фокусным расстоянием 70, 100, 200 мм). Формат кадра и фокусное расстояние определяют угол поля зрения аэрофотоаппарата 2b (рис. 1, б). У узкоугольных аэрофотоаппаратов 2b 1:5 000

1:100 000-1:200 000

В противоположность аэроснимкам большинство космических снимков дешифрируется не в масштабе съемки‚ а со значительным увеличением: оригинальный масштаб космического снимка может быть в 3 - 5 и даже 10 раз мельче масштаба составляемой по нему карты. При космической съемке кроме традиционного фотографического широкое развитие получили оптико-электронные способы. По отношению к снимкам‚ полученным такого рода съемочными системами‚ понятие масштаба весьма условно‚ так как преобразование электронного сигнала в изображение на экране монитора или в оптическую плотность негатива (фотоотпечатка) в принципе возможно в разных масштабах. Вследствие этого для космических снимков важен не столько масштаб‚ сколько пространственное разрешение. Для характеристики детальности аэрокосмических материалов широко используется величина пространственного разрешения‚ т.е. размер на местности самой малой детали‚ воспроизведенной на снимке. Разрешение аэроснимков очень высокое и практически никогда не лимитирует распознавание географических объектов.

По отношению же к космическим снимкам эта характеристика является очень важной‚ т.к. их разрешение варьирует от нескольких дециметров до нескольких километров (таблица 2) и объясняется различием требований‚ предъявляемых к снимкам при решении разных задач. Пространственное разрешение фотографических снимков зависит от высоты съемки‚ свойств объектива съемочной камеры‚ разрешающей способности негативной пленки и фотобумаги. Разрешение снимков‚ полученных оптико-электронными съемочными системами (сканерами)‚ определяется размером элемента изображения‚ пиксела.

Очень высокого разрешения

Осень низкого разрешения

3 Кадровая, щелевая, панорамная фотосъемка, сканерная, лазерная, радиолокационная аэрокосмосъемки и методы формирования аэрокосмоснимков

Сканеры: оптико-механические (сканирующее устройство - быстрокачающееся зеркало, которое, просматривая местность поперек движения носителя, посылает лучистый поток в объектив и далее на точечный фотоприемник) и оптико-электронные (для регистрации излучения используется ПЗС-линейка, располагаемая перпендикулярно к направлению движения носителя аппаратуры. Периодически ПЗС-линейкой фиксируется строка изображения местности. Последовательное соединение строк формирует изображение полосы местности). Разрешающую способность цифровых снимков принято характеризовать числом точек на дюйм (dpi) и размером пикселя на местности (размер пикселя в системе на ИСЗ Landsat= 30 м, а =Ресурс-О - 45м). Сканерный метод позволяет выполнять съемки местности в течение длит времени, передавая инф по радиоканалам на Землю. аэрокосмический съемка радиолокационный пространство

Лазерный сканер - сканирующий лазерный дальномер. Местность и расположенные на ней объекты отображаются множеством точек, для каждой из которых получают пространственные координаты и которые при визуализации на мониторе образуют объемное изображение объекта. Съемка местности сопровождается определением координат аэросъёмочной аппаратуры с пом спутникового приемника GPS/ГЛОНАСС, а также измерением высоты съемки радиовысотомером.

Радиолокационные снимки - получаются в результате зондирования земной пов радиосигналом. На борту носителя (самолета/спутника) устанавливается радиолокатор -активный микроволновый датчик, способный передавать и принимать поляризованные радиоволны в заданном диапазоне частот. Снимкиполучают в радиодиапазоне, регистрируя отраженные земной пов радиосигналы, посылаемые бортовым радиолокатором. На снимках отображаются шероховатость и влажность пов, рельеф, особенности структуры и состав пород, слагающих пов, характер растит покрова. При опр длинах волн снимках отображаются неоднородности грунта, гр воды. Пространственное разрешение определяется размером антенны. У снимков радиолокатора бокового обзора с реальной антенной= 1 -2 км, но в большинстве случаев при исп радиолокаторов с синтезированной длиной антенны разрешение 10-30 м при ширине обзора 100 км. В последние годы начали получать снимки с переменным режимом работы(разрешение 2 - 100 м при охвате 45-500 км). Специфика снимка - мелкая пятнистость изображения -- технические спекл-шумы и своеобразное отображение горного рельефа.

Кадровые и линейные цифровые фотографические системы.

Концептуальные различия на техническом уровне вылились в существенные расхождения рыночных концепций, стратегий продвижения и поддержки своих продуктов, реализуемых компаниями - производителями. Существует мнение даже о возникновении рыночных войн, например, между LeicaиIntergraph.

Для того чтобы приди к объективному заключению представим наиболее распространенные доводы в пользу линейных фотографических сканеров:

Линейные и кадровые системы различаются в принципах формирования изображений:

При линейном сканировании изображения точек и других объектов получены в разные моменты времени, т.е. с различным положением главной точки и ориентацией системы координат (СК) аппарата.

В состав бортового информационного комплекса входят бортовая измерительная аппаратура (БИА) и бортовая информационная система (БИС). В свою очередь, БИА включает:

моноблок из двух многозональных сканирующих устройств высокого разрешенияМСУ-Э, установленных на общей поворотной платформе;

два комплекта многозонального сканирующего устройства среднего разрешенияс конической разверткой МСУ-СК.

4. Аэрокосмосъемочное оборудование

Говоря о современных цифровых топографических аэрофотоаппаратах можно предложить базовый набор критериев оценки их производительности и качества.

Набор пользовательских критериев оценки производительности и качества цифровых АФА

динамический диапазон, интенсивность шумов, качество цветопередачи

стабильность параметров внутреннего ориентирования, достижимая точность выполнения фоториангуляции

по кол-ву инф - в мегабайтах/ сек; по площади территории - в км /час

возможность адаптации традиционных технология процессов, наличие квалифицированного персонала

1. Способ формирования кадра.

2. Общие и частные фотографические и фотограмметрические свойства.

3. Весогабаритные характеристики.

В основном все имеющиеся сегодня (особенно широкоформатные) цифровые аэрофотоаппараты характеризуются некоторым набором общих свойств:

1. Использование CCD(ПЗС в русской транскрипции) приемников излучения, матричного или линейного типа.

2. Синтезированный кадр (для широкоформатных аэрофотоаппаратов). Т.е. результирующий кадр системы формируется из набора субкадров, соответствующих отдельным CCDматрицам (линейкам) приемников.

3. GPS/INSподдержка. Т.е. пространственные линейные и угловые координаты системы координат аэрофотоаппарата (элементы внешнего ориентирования) определяются с использованием средств инерциальной навигации и систем спутникового геопозиционированияGPSи (или) ГЛОНАСС.

4. Широкий динамический диапазон 12-14 бит.

6. Использование гиростабилизации для подержания планового положения аппарата в процессе съемки.

Вместе с тем современные цифровые аэрофотоаппараты различаются по целому ряду параметров. Укажем главные:

1. Геометрия приемника - матрица CCDили линейкаCCD.

2. Метод синтеза кадра.

В таблице представлен один из возможных подходов к классификации цифровых аэрофотоаппаратов, когда в качестве основного критерия используется размер выходного кадра (аэрофотоснимка):

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Реферат по дисциплине

Введение (с.3)

Виды съёмок (c .6)

Космическая картография (с.8)

Контроль из космоса за окружающей средой (с.12)

Список литературы (с.16)

Цель работы: рассмотрение сути космической фотосъёмки.

Космическая фотосъемка - технологический процесс фотографирования земной поверхности с летательного аппарата с целью получения фотографических изображений местности (фотоснимков) с заданными параметрами и характеристиками. К основным задачам космических съемок относятся: исследования планет Солнечной системы; изучение и рациональное использование природных ресурсов Земли; изучение антропогенных изменений земной поверхности; исследование Мирового океана; исследование загрязнения атмосферы и океана; мониторинг окружающей среды; исследование акваторий шельфов и прибрежных частей суши .

Основным отличием фотографирования из космоса является: большая высота, скорость полета и их периодическое изменение при движении КЛА по орбите; вращение Земли, а следовательно, и объектов съемки относительно плоскости орбиты;быстрое изменение освещенности Земли по трассе полета КЛА; фотографирование через весь слой атмосферы; фотографическая аппаратура полностью автоматизирована. Большая высота съемки вызывает уменьшение масштаба снимка. Выбор высоты орбиты осуществляется исходя из задач, которые решаются при съемке, и необходимости получения фотографических снимков определенного масштаба. В связи с этим повышаются требованияк оптической системе фотоаппаратов с точки зрения качества изображения, которое должно быть хорошим по всему полю. Особенно высоки требования к геометрическим искажениям.

Мы являемся свидетелями того, как человек постепенно осваивает околоземное пространство и автоматами, засылаемыми с Земли, успешно изучают другие планеты солнечной системы. Созданные людьми и запущенные в космос искусственные спутники Земли передают на Землю фотографии нашей планеты, сделанные с больших высот.

Таким образом, сегодня можно говорить о космической геодезии , или, как ее еще называют спутниковой геодезии. Мы являемся свидетелями зарождения нового раздела картографии, который модно было бы назвать космической картографией.

Уже в настоящее время снимки, сделанные из космоса, используются для внесения изменения в содержании карт, являясь наиболее оперативным средством для выявления этих изменений. Дальнейшее развитие космической картографии приведет еще к более значительным результатам.

Значимость, преимущество снимков Земли из Космоса по сравнению с обычными аэрофотоснимками, бесспорны. Прежде всего, их обзорность – снимки с высоты в сотни и тысячи километров позволяют получать и изображения с охватом аэросъемки, и изображения территории протяженностью в сотни и тысячи км. Кроме того, они обладают свойствами спектральной и пространственной генирализации, т. е. отсеиванием второстепенного, случайного и выделением существенного, главного. Космическая съемка дает возможность получать изображение через регулярные промежутки времени, что в свою очередь, позволяют исследовать динамику любого процесса.

По характеру покрытия земной поверхности космическими снимками можно выделить следующие съемки:

hello_html_m23f43bc7.jpg

Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Ширина полосы съемки зависит от высоты полета и угла обзора съемочной системы.

Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы.

Глобальную съемку производят с геостационарных и полярно- орбитальных спутников. спутников. Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

Аэрокосмический снимок – это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Космический снимок по своим геометрическим свойствам принципиально не отличается от аэрофотоснимка, но имеет особенности, связанные с:

• фотографированием с больших высот,

• и большой скоростью движения.

Так как спутник по сравнению с самолетом движется значительно быстрее, то требует коротких выдержек при съемке.

Космическая съемка различается по:

Эти параметры определяют возможности дешифрирования на космических снимках различных объектов и решения тех геологических задач, которые целесообразно решать с их помощью.

Космическая картография

Особенно широкое применение снимки из космоса нашли в картографии. И это понятно, потому что космический фотоснимок точно и с достаточной подробностью запечатлевает поверхность Земли и специалисты могут легко перенести изображение на карту.

Чтение (дешифрирование) космических снимков, так же как и аэрофотоснимков, основано на опознавательных (дешифровочных) признаках. Основными из них служат форма объектов, их размеры и тон. Реки, озера и другие водоемы изображаются на снимках темными тонами (черным цветом) с четким выделением береговых линий. Для лесной растительности характерны менее темные тона мелкозернистой структуры. Подробности горного рельефа хорошо выделяются резкими контрастными тонами, которые получаются на фотографии в результате различной освещенности противоположных склонов. Населенные пункты и дороги также можно опознать по своим дешифровочным признакам, но только под большим увеличением. На типографских оттисках этого сделать нельзя.

Использование космических снимков в картографических целях начинают с определения их масштаба и привязки к карте. Эту работу обычно выполняют по карте более мелкого масштаба, чем масштаб снимка, так как на нее приходится наносить границы не одного, а целого ряда снимков.

Сличая снимок с картой, можно узнать, что и как изображено на снимке, как это показано на карте и какие дополнительные сведения о местности дает фотоизображение земной поверхности из космоса. И даже в том случае, если карта будет того же масштаба, что и фотоснимок, все равно по снимку можно получить более обширную и главное - свежую информацию о местности по сравнению с картой.

Составление карт по космическим снимкам выполняют так же как и по аэрофотоснимкам. В зависимости от точности и назначения карт применяют различные методы их составления с использованием соответствующих фотограмметрических приборов. Наиболее легко изготовить карту в масштабе снимка. Именно такие карты и помещают обычно рядом со снимками в альбомах и книгах. Для их составления достаточно скопировать на кальку со снимка изображения местных предметов, а затем с кальки перенести их на бумагу.

Такие картографические чертежи называют картосхемами. Они отображают только контуры местности (без рельефа), имеют произвольный масштаб и не привязаны к картографической сетке.

В картографии космические снимки используют прежде всего для создания мелкомасштабных карт. Достоинство космического фотографирования в этих целях заключается в том, что масштабы снимков сходны с масштабами создаваемых карт, а это исключает ряд довольно трудоемких процессов составления. Кроме того, космические снимки как бы прошли путь первичной генерализации. Это происходит в результате того, что фотографирование выполняется в мелком масштабе.

В настоящее время по космическим снимкам созданы разнообразные тематические карты. В ряде случаев характеристики некоторых явлений можно определить только по космическим снимкам, а получить их другими методами невозможно. По результатам космического фотографирования обновлены и детализированы многие тематические карты, созданы новые типы геологических ландшафтных и других карт. При составлении тематических карт особенно полезными являются снимки, полученные в различных зонах спектра, так как они содержат богатую и разностороннюю информацию.

Космические снимки нашли широкое применение при изготовлении промежуточных картографических документов - фотокарт. Их составляют так же, как и фотопланы, путем мозаичного склеивания отдельных снимков на общей основе. Фотокарты могут быть двух видов: на одних показано только фотографическое изображение, а другие дополнены отдельными элементами обычных карт. Фотокарты, как и отдельные снимки, служат ценными источниками изучения земной поверхности. Вместе с тем они являются дополнительным материалом к обычной карте и в полной мере заменить ее не могут.

Облик Земли постоянно меняется, и любая карта постепенно стареет. Космические снимки содержат самые свежие и достоверные сведения о местности и успешно используются для обновления карт не только мелкого, но и крупного масштаба. Они позволяют исправлять карты больших территорий земного шара. Особенно эффективно космическое фотографирование в труднодоступных районах, где полевые работы связаны с большой затратой сил и средств.

Карта Марса, составленная по космическим снимкам, менее подробна по сравнению с картой Луны, но все же она наглядно и достаточно точно отображает поверхность планеты (рис. 55). Карта сделана на тридцати листах в масштабе 1:5000000 (в 1 см 50 км). Два околополюсных листа составлены в азимутальной проекции, 16 околоэкваториальных листов - в цилиндрической, а остальные 12 листов - в конической проекции. Если все листы склеить друг с другом, то получится почти правильный шар, т. е. глобус Марса.

hello_html_3634ca42.jpg


Рис. 55. Фрагмент фотокарты Марса

Основой для карты Марса, как и для карты Луны, послужили сами фотоснимки, на которых поверхность планеты изображена при боковом освещении, направленном под определенным углом. Получилась фотокарта, на которой рельеф изображен комбинированным способом - горизонталями и естественной теневой окраской. На такой фотокарте хорошо читается не только общий характер рельефа, но и его детали, особенно кратеры, которые нельзя отобразить горизонталями, так как высота сечения рельефа составляет 1 км.

Значительно сложнее обстоит дело со съемкой Венеры. Ее нельзя сфотографировать обычным путем, потому что она укрыта от средств оптического наблюдения плотными облаками. Тогда появилась мысль сделать ее портрет не в световых, а в радиолучах. Для этого разработали чувствительный радиолокатор, который мог как бы прощупывать поверхность планеты.

Сущность радиолокационной съемки заключается в следующем. Установленный на станции радиолокатор посылает отраженные от Венеры радиосигналы на Землю в центр обработки радиолокационной информации, где специальное электронно-вычислительное устройство преобразует полученные сигналы в радиоизображение.

Контроль из космоса за окружающей средой

В настоящее время проблема охраны окружающей среды носит глобальный характер. Вот почему все большее значение приобретают космические методы контроля, позволяющие увеличить объем исследований и ускорить получение и переработку данных. Основное средство осуществления контроля - это система космических съемок, опирающаяся на сеть наземных пунктов. Эта система включает фотографирование с искусственных спутников Земли, пилотируемых космических кораблей и орбитальных станций. Полученные фотоизображения поступают в наземные приемные центры, где ведется переработка информации.

Что же видно на космических снимках? Прежде всего - почти все формы и виды загрязнений окружающей среды. Промышленность - главный источник загрязнения природы. Деятельность большинства производств сопровождается выбросами отходов в атмосферу. На снимках отчетливо фиксируются шлейфы таких выбросов и простирающиеся на многие километры дымовые завесы. При большой концентрации загрязнений сквозь них не просматривается даже земная поверхность. Известны случаи, когда вблизи некоторых североамериканских металлургических предприятий погибала растительность на площади несколько квадратных километров. Здесь уже сказывается не только воздействие вредных выбросов, но и загрязнение почвы и грунтовых вод. Эти районы представляются на снимках блеклой сухой безжизненной полупустыней среди лесов и степей.

На фотоснимках хорошо заметны выносимые реками взвешенные частицы. Обильные загрязнения особенно характерны для дельтовых участков рек. К этому приводят эрозия берегов, сели, гидротехнические работы. Интенсивность механического загрязнения можно установить по плотности изображения водной поверхности: чем светлее поверхность, тем больше загрязненность. Мелководные участки также выделяются на снимках светлыми пятнами, но в отличие от загрязнений носят постоянный характер, в то время как последние меняются в зависимости от метеорологических и гидрологических условий. Космическая съемка позволила установить, что механическое загрязнение водоемов возрастает в конце весны, начале лета, реже - осенью.

Химическое загрязнение акваторий может быть изучено с помощью многозональных снимков, которые фиксируют, насколько угнетена водная и окаймляющая побережье растительность. По снимкам можно установить и биологическое загрязнение водоемов. Оно выдает себя чрезмерным развитием особой растительности, различимой на снимках в зеленой области спектра.

Выбросы промышленными и энергетическими предприятиями теплой воды в реки хорошо выделяются на инфракрасных снимках. Границы распространения теплой воды позволяют прогнозировать изменения в природной среде. Так, например, тепловые загрязнения нарушают становление ледяного покрова, что хорошо заметно даже в видимом диапазоне спектра.

Большой ущерб народному хозяйству наносят лесные пожары. Из космоса они заметны прежде всего благодаря дымовому шлейфу, простирающемуся иногда на несколько километров. Космическая съемка позволяет быстро определить масштабы распространения пожара. Кроме того, космические снимки помогают обнаружить поблизости облачность, из которой вызывают обильный дождь при помощи специальных распыленных в воздухе реактивов.

Большой интерес представляют космические снимки пылевых бурь. Впервые стало возможно наблюдать их зарождение и развитие, следить за перемещением масс пыли. Фронт распространения пылевой бури может достигать тысячи квадратных километров. Чаще всего пылевые бури проносятся над пустынями. Пустыня - это не безжизненная земля, а важный элемент биосферы и поэтому нуждается в постоянном контроле.

А теперь перенесемся на север нашей страны. Часто спрашивают, почему так много говорят о необходимости охраны природы Сибири и Дальнего Востока? Ведь интенсивность воздействия на нее пока во много раз меньше, чем в центральных районах.

Дело в том, что природа Севера значительно ранимее. Кто был там, тот знает, что после проехавшего по тундре вездехода почвенный покров не восстанавливается и развивается эрозия поверхности. Очищение водных бассейнов происходит в десятки раз медленнее, чем обычно, и даже небольшая вновь проложенная дорога может быть причиной труднообратимого изменения природной обстановки.

Северные территории нашей страны простираются на 11 млн. км 2 . Это - тайга, лесотундра, тундра. Несмотря на тяжелые жизненные условия и материально-технические трудности на Севере появляется все больше городов, увеличивается население. В связи с интенсивным освоением территории Севера особенно остро ощущается нехватка исходных данных для проектирования населенных пунктов и промышленных объектов. Вот почему космическое изучение этих районов так актуально сегодня.

В настоящее время два родственных метода - картографический и аэрокосмический - тесно взаимодействуют при изучении природы, хозяйства и населения. Предпосылки такого взаимодействия заложены в свойствах карт, аэроснимков и космических снимков как моделей земной поверхности.

Космические съемки, решают разные задачи, связанные с дистанционным зондированием земли, и свидетельствуют об их широких возможностях. Поэтому космические методы и средства уже сегодня играют значительную роль в изучении Земли и около земного пространства. Технологии идут вперед, в ближайшем будущем их значение для решения этих задач будут существенно возрастать.

Список литературы

Богомолов Л. А., Применение аэросъёмки и космической съёмки в географических исследованиях, в кн.: Картография, т. 5, М., 1972 (Итоги науки и техники).

Виноградов Б. В., Кондратьев К. Я., Космические методы землеведения, Л., 1971;

Цель работы: рассмотрение сути космической фотосъёмки.

Космическая фотосъемка - технологический процесс фотографирования земной поверхности с летательного аппарата с целью получения фотографических изображений местности (фотоснимков) с заданными параметрами и характеристиками. К основным задачам космических съемок относятся: исследования планет Солнечной системы; изучение и рациональное использование природных ресурсов Земли; изучение антропогенных изменений земной поверхности; исследование Мирового океана; исследование загрязнения атмосферы и океана; мониторинг окружающей среды; исследование акваторий шельфов и прибрежных частей суши .

Основным отличием фотографирования из космоса является: большая высота, скорость полета и их периодическое изменение при движении КЛА по орбите; вращение Земли, а следовательно, и объектов съемки относительно плоскости орбиты;быстрое изменение освещенности Земли по трассе полета КЛА; фотографирование через весь слой атмосферы; фотографическая аппаратура полностью автоматизирована. Большая высота съемки вызывает уменьшение масштаба снимка. Выбор высоты орбиты осуществляется исходя из задач, которые решаются при съемке, и необходимости получения фотографических снимков определенного масштаба. В связи с этим повышаются требованияк оптической системе фотоаппаратов с точки зрения качества изображения, которое должно быть хорошим по всему полю. Особенно высоки требования к геометрическим искажениям.

Мы являемся свидетелями того, как человек постепенно осваивает околоземное пространство и автоматами, засылаемыми с Земли, успешно изучают другие планеты солнечной системы. Созданные людьми и запущенные в космос искусственные спутники Земли передают на Землю фотографии нашей планеты, сделанные с больших высот.

Таким образом, сегодня можно говорить о космической геодезии, или, как ее еще называют спутниковой геодезии. Мы являемся свидетелями зарождения нового раздела картографии, который модно было бы назвать космической картографией.

Уже в настоящее время снимки, сделанные из космоса, используются для внесения изменения в содержании карт, являясь наиболее оперативным средством для выявления этих изменений. Дальнейшее развитие космической картографии приведет еще к более значительным результатам.

Значимость, преимущество снимков Земли из Космоса по сравнению с обычными аэрофотоснимками, бесспорны. Прежде всего, их обзорность – снимки с высоты в сотни и тысячи километров позволяют получать и изображения с охватом аэросъемки, и изображения территории протяженностью в сотни и тысячи км. Кроме того, они обладают свойствами спектральной и пространственной генирализации, т. е. отсеиванием второстепенного, случайного и выделением существенного, главного. Космическая съемка дает возможность получать изображение через регулярные промежутки времени, что в свою очередь, позволяют исследовать динамику любого процесса.

По характеру покрытия земной поверхности космическими снимками можно выделить следующие съемки:


Одиночное(выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутнаясъемка земной поверхности производится вдоль трассы полета спутника. Ширина полосы съемки зависит от высоты полета и угла обзора съемочной системы.

Прицельная(выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы.

Глобальнуюсъемку производят с геостационарных и полярно- орбитальных спутников. спутников. Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

Аэрокосмический снимок – это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Космический снимок по своим геометрическим свойствам принципиально не отличается от аэрофотоснимка, но имеет особенности, связанные с:

• фотографированием с больших высот,

• и большой скоростью движения.

Так как спутник по сравнению с самолетом движется значительно быстрее, то требует коротких выдержек при съемке.

Космическая съемка различается по:

Эти параметры определяют возможности дешифрирования на космических снимках различных объектов и решения тех геологических задач, которые целесообразно решать с их помощью.

Космическая картография

Особенно широкое применение снимки из космоса нашли в картографии. И это понятно, потому что космический фотоснимок точно и с достаточной подробностью запечатлевает поверхность Земли и специалисты могут легко перенести изображение на карту.

Чтение (дешифрирование) космических снимков, так же как и аэрофотоснимков, основано на опознавательных (дешифровочных) признаках. Основными из них служат форма объектов, их размеры и тон. Реки, озера и другие водоемы изображаются на снимках темными тонами (черным цветом) с четким выделением береговых линий. Для лесной растительности характерны менее темные тона мелкозернистой структуры. Подробности горного рельефа хорошо выделяются резкими контрастными тонами, которые получаются на фотографии в результате различной освещенности противоположных склонов. Населенные пункты и дороги также можно опознать по своим дешифровочным признакам, но только под большим увеличением. На типографских оттисках этого сделать нельзя.

Использование космических снимков в картографических целях начинают с определения их масштаба и привязки к карте. Эту работу обычно выполняют по карте более мелкого масштаба, чем масштаб снимка, так как на нее приходится наносить границы не одного, а целого ряда снимков.

Сличая снимок с картой, можно узнать, что и как изображено на снимке, как это показано на карте и какие дополнительные сведения о местности дает фотоизображение земной поверхности из космоса. И даже в том случае, если карта будет того же масштаба, что и фотоснимок, все равно по снимку можно получить более обширную и главное - свежую информацию о местности по сравнению с картой.

Составление карт по космическим снимкам выполняют так же как и по аэрофотоснимкам. В зависимости от точности и назначения карт применяют различные методы их составления с использованием соответствующих фотограмметрических приборов. Наиболее легко изготовить карту в масштабе снимка. Именно такие карты и помещают обычно рядом со снимками в альбомах и книгах. Для их составления достаточно скопировать на кальку со снимка изображения местных предметов, а затем с кальки перенести их на бумагу.

Такие картографические чертежи называют картосхемами. Они отображают только контуры местности (без рельефа), имеют произвольный масштаб и не привязаны к картографической сетке.

В картографии космические снимки используют прежде всего для создания мелкомасштабных карт. Достоинство космического фотографирования в этих целях заключается в том, что масштабы снимков сходны с масштабами создаваемых карт, а это исключает ряд довольно трудоемких процессов составления. Кроме того, космические снимки как бы прошли путь первичной генерализации. Это происходит в результате того, что фотографирование выполняется в мелком масштабе.

В настоящее время по космическим снимкам созданы разнообразные тематические карты. В ряде случаев характеристики некоторых явлений можно определить только по космическим снимкам, а получить их другими методами невозможно. По результатам космического фотографирования обновлены и детализированы многие тематические карты, созданы новые типы геологических ландшафтных и других карт. При составлении тематических карт особенно полезными являются снимки, полученные в различных зонах спектра, так как они содержат богатую и разностороннюю информацию.

Космические снимки нашли широкое применение при изготовлении промежуточных картографических документов - фотокарт. Их составляют так же, как и фотопланы, путем мозаичного склеивания отдельных снимков на общей основе. Фотокарты могут быть двух видов: на одних показано только фотографическое изображение, а другие дополнены отдельными элементами обычных карт. Фотокарты, как и отдельные снимки, служат ценными источниками изучения земной поверхности. Вместе с тем они являются дополнительным материалом к обычной карте и в полной мере заменить ее не могут.

Облик Земли постоянно меняется, и любая карта постепенно стареет. Космические снимки содержат самые свежие и достоверные сведения о местности и успешно используются для обновления карт не только мелкого, но и крупного масштаба. Они позволяют исправлять карты больших территорий земного шара. Особенно эффективно космическое фотографирование в труднодоступных районах, где полевые работы связаны с большой затратой сил и средств.

Карта Марса, составленная по космическим снимкам, менее подробна по сравнению с картой Луны, но все же она наглядно и достаточно точно отображает поверхность планеты (рис. 55). Карта сделана на тридцати листах в масштабе 1:5000000 (в 1 см 50 км). Два околополюсных листа составлены в азимутальной проекции, 16 околоэкваториальных листов - в цилиндрической, а остальные 12 листов - в конической проекции. Если все листы склеить друг с другом, то получится почти правильный шар, т. е. глобус Марса.



Рис. 55. Фрагмент фотокарты Марса

Основой для карты Марса, как и для карты Луны, послужили сами фотоснимки, на которых поверхность планеты изображена при боковом освещении, направленном под определенным углом. Получилась фотокарта, на которой рельеф изображен комбинированным способом - горизонталями и естественной теневой окраской. На такой фотокарте хорошо читается не только общий характер рельефа, но и его детали, особенно кратеры, которые нельзя отобразить горизонталями, так как высота сечения рельефа составляет 1 км.

Значительно сложнее обстоит дело со съемкой Венеры. Ее нельзя сфотографировать обычным путем, потому что она укрыта от средств оптического наблюдения плотными облаками. Тогда появилась мысль сделать ее портрет не в световых, а в радиолучах. Для этого разработали чувствительный радиолокатор, который мог как бы прощупывать поверхность планеты.

Сущность радиолокационной съемки заключается в следующем. Установленный на станции радиолокатор посылает отраженные от Венеры радиосигналы на Землю в центр обработки радиолокационной информации, где специальное электронно-вычислительное устройство преобразует полученные сигналы в радиоизображение.

Контроль из космоса за окружающей средой

В настоящее время проблема охраны окружающей среды носит глобальный характер. Вот почему все большее значение приобретают космические методы контроля, позволяющие увеличить объем исследований и ускорить получение и переработку данных. Основное средство осуществления контроля - это система космических съемок, опирающаяся на сеть наземных пунктов. Эта система включает фотографирование с искусственных спутников Земли, пилотируемых космических кораблей и орбитальных станций. Полученные фотоизображения поступают в наземные приемные центры, где ведется переработка информации.

Что же видно на космических снимках? Прежде всего - почти все формы и виды загрязнений окружающей среды. Промышленность - главный источник загрязнения природы. Деятельность большинства производств сопровождается выбросами отходов в атмосферу. На снимках отчетливо фиксируются шлейфы таких выбросов и простирающиеся на многие километры дымовые завесы. При большой концентрации загрязнений сквозь них не просматривается даже земная поверхность. Известны случаи, когда вблизи некоторых североамериканских металлургических предприятий погибала растительность на площади несколько квадратных километров. Здесь уже сказывается не только воздействие вредных выбросов, но и загрязнение почвы и грунтовых вод. Эти районы представляются на снимках блеклой сухой безжизненной полупустыней среди лесов и степей.

На фотоснимках хорошо заметны выносимые реками взвешенные частицы. Обильные загрязнения особенно характерны для дельтовых участков рек. К этому приводят эрозия берегов, сели, гидротехнические работы. Интенсивность механического загрязнения можно установить по плотности изображения водной поверхности: чем светлее поверхность, тем больше загрязненность. Мелководные участки также выделяются на снимках светлыми пятнами, но в отличие от загрязнений носят постоянный характер, в то время как последние меняются в зависимости от метеорологических и гидрологических условий. Космическая съемка позволила установить, что механическое загрязнение водоемов возрастает в конце весны, начале лета, реже - осенью.

Химическое загрязнение акваторий может быть изучено с помощью многозональных снимков, которые фиксируют, насколько угнетена водная и окаймляющая побережье растительность. По снимкам можно установить и биологическое загрязнение водоемов. Оно выдает себя чрезмерным развитием особой растительности, различимой на снимках в зеленой области спектра.

Выбросы промышленными и энергетическими предприятиями теплой воды в реки хорошо выделяются на инфракрасных снимках. Границы распространения теплой воды позволяют прогнозировать изменения в природной среде. Так, например, тепловые загрязнения нарушают становление ледяного покрова, что хорошо заметно даже в видимом диапазоне спектра.

Большой ущерб народному хозяйству наносят лесные пожары. Из космоса они заметны прежде всего благодаря дымовому шлейфу, простирающемуся иногда на несколько километров. Космическая съемка позволяет быстро определить масштабы распространения пожара. Кроме того, космические снимки помогают обнаружить поблизости облачность, из которой вызывают обильный дождь при помощи специальных распыленных в воздухе реактивов.

Большой интерес представляют космические снимки пылевых бурь. Впервые стало возможно наблюдать их зарождение и развитие, следить за перемещением масс пыли. Фронт распространения пылевой бури может достигать тысячи квадратных километров. Чаще всего пылевые бури проносятся над пустынями. Пустыня - это не безжизненная земля, а важный элемент биосферы и поэтому нуждается в постоянном контроле.

А теперь перенесемся на север нашей страны. Часто спрашивают, почему так много говорят о необходимости охраны природы Сибири и Дальнего Востока? Ведь интенсивность воздействия на нее пока во много раз меньше, чем в центральных районах.

Дело в том, что природа Севера значительно ранимее. Кто был там, тот знает, что после проехавшего по тундре вездехода почвенный покров не восстанавливается и развивается эрозия поверхности. Очищение водных бассейнов происходит в десятки раз медленнее, чем обычно, и даже небольшая вновь проложенная дорога может быть причиной труднообратимого изменения природной обстановки.

Северные территории нашей страны простираются на 11 млн. км 2 . Это - тайга, лесотундра, тундра. Несмотря на тяжелые жизненные условия и материально-технические трудности на Севере появляется все больше городов, увеличивается население. В связи с интенсивным освоением территории Севера особенно остро ощущается нехватка исходных данных для проектирования населенных пунктов и промышленных объектов. Вот почему космическое изучение этих районов так актуально сегодня.

В настоящее время два родственных метода - картографический и аэрокосмический - тесно взаимодействуют при изучении природы, хозяйства и населения. Предпосылки такого взаимодействия заложены в свойствах карт, аэроснимков и космических снимков как моделей земной поверхности.

Космические съемки, решают разные задачи, связанные с дистанционным зондированием земли, и свидетельствуют об их широких возможностях. Поэтому космические методы и средства уже сегодня играют значительную роль в изучении Земли и около земного пространства. Технологии идут вперед, в ближайшем будущем их значение для решения этих задач будут существенно возрастать.

Читайте также: