Композиционные материалы в автомобилестроении реферат

Обновлено: 30.06.2024

С каждым годом наблюдается более широкое применение деталей из полимерных композиционных материалов (ПКМ) в самых разных отраслях производства. Все чаще можно увидеть композитные детали в изделиях не только авиационной или космической промышленностях, но и автомобилестроения.

Введение

Начиная с 1965 года, в Париже проходит международная выставка JEC, посвященная композиционным материалам.

С каждым годом наблюдается более широкое применение деталей из полимерных композиционных материалов (ПКМ) в самых разных отраслях производства. Все чаще можно увидеть композитные детали в изделиях не только авиационной или космической промышленностях, но и автомобилестроения.

В автомобильной промышленности ПКМ применяют уже много лет. Дебют состоялся в автоспорте, где особенно напряженно идет борьба за снижение массы при сохранении прочности и жесткости. При единичном производстве использование даже дорогостоящих материалов оправдано, если они позволяют добиться уникальных свойств, к тому же можно применять более бюджетную по сравнению с серийными технологиями оснастку.

Интерьерные детали автомобиля уже достаточно длительное время изготавливают из композиционных материалов и чаще всего из углепластика в качестве декора, но в связи с относительно высокой стоимостью, их можно встретить в основном в машинах премиального класса.

Однако применение композитов в массовом производстве — новый тренд, который открывает новые возможности.

Детали интерьера


Композитные детали в интерьере автомобиля Vuhl, изготовленные из углепрепрегов

Интерьерные детали из ПКМ сейчас применяются не только в качестве декоративных элементов, но и зачастую несут дополнительно конструкционную функцию. Это не дает существенного усложнения техпроцесса за счет использования термопластичных материалов, которые могут применяться совместно с классическими ненаполненными термопластами.

Экстерьер автомобиля

Применение углепластиков в экстерьере зачастую обуславливается не только их высокими физико-механическими характеристиками, возможностью изготовления более легких элементов, но и возможностью использования существенно более доступной производственной оснастки.



Прототип крыла выполненный из углепластика по инфузионной технологии и задний капот Pagani изготовленный из углепрепрега


Оперение мотоцикла Suzuki изготовлено из углепрепрега


Экстерьерные детали автомобиля Bentley изготовлены по препреговой технологии

Характерными деталями, изготавливаемыми из них, будут самые крупные элементы оперения: крыша, капот, передние крылья. За счет большой площади и не самой высокой нагруженности применение ПКМ помогает существенно снизить массу изделий и сроки их изготовления.

Усиление металлических деталей

При проектировании высоконагруженных деталей с комплексной геометрией целесообразно применять комбинированные решения, например, усиление несущей металлической конструкции композитными элементами.


Усиление алюминиевого подрамника материалами Hexcel

Так, усиление алюминиевого подрамника материалами Hexcel позволило достичь снижения массы на 50% по сравнению с равной по прочности металлической конструкцией. Помимо этого, испытания показали значительное снижение низкочастотных вибраций кузова при использовании такого способа усиления.


Поперечная балка Magneti Marelli, усиленная ПКМ

Magneti Marelli интегрировали композитный элемент в поперечную балку несущей конструкции кузова с целью оптимального распределения нагрузки и снижения массы на 30%.


Стальной кузов автомобиля, усиленный элементами из ПКМ

Когда необходимо добиться усиления кузова и увеличения жесткости на кручение, без увеличения массы, используют элементы из угленаполненного полиамида. Такое решение обкатано как на легковых автомобилях, так и на внедорожниках класса SUV.

Силовые детали кузова из композитов

Усиление изначально композитного кузова проводят с использованием композитных усилителей. Это могут быть как SMC-элементы, изготовленные из углепрепрега, так и созданные мультиаксиальным плетением профили сложной формы.


Усилители кузова Lamborghini Aventador, триаксиальное плетение


Фронтэнд Valeo для Daimler выполнен из углепластика на термопластичном связующем

Однако в случае усиления металлического кузова необходимо решить две задачи одновременно: обеспечить повышение жесткости и надежно соединить ПКМ и металл.

Для реализации предложенного институтом Fraunhofer ILT соединения металла с термопластичными композитами проводят микроструктурирование металлической детали лазером. На поверхности металла создают или специальную текстуру, или структуру с поднутрениями (если лазерный луч попадает на поверхность под углом). Такая подготовка поверхности обеспечивает надёжное соединение пары металл-полимер.

Подобные решения дают существенный выигрыш по массе и прочности, однако необходимо продумать зону соединения металла с композитом.


Усилитель крыши кузова для BMW 7 серии: микроструктурирование металла лазером и соединение с ПКМ на термопластичной матрице

Современные методы CAE позволяют моделировать поведение равномерно наполненных ПКМ с высокой степенью достоверности. Это дает возможность заменять сложные сварные нагруженные металлические конструкции, такие как фронтэнд, на единую деталь.

Проектирование, изготовление и отладка форм для формования равномерно наполненных ПКМ существенно проще, чем при работе с металлами. Это позволяет сократить сроки и затраты на освоение новых изделий.

Детали подвески

Переход от корпусных деталей к силовым — важный этап внедрения ПКМ. Он говорит о достаточном уровне компетенций в обеспечении повторяемых свойств деталей.


Задний маятник мотоцикла Ducati выполнен по автоклавной технологии из углепластика на эпоксидной смоле

В плане облегчения наиболее интересны самые массивные детали подвески, поскольку снижение неподрессоренных масс способствует улучшению плавности хода, лучшей управляемости и снижению вибраций.


Деталь подвески от Magnetti Marelli, изготовленная из SMC материалов на винилэфирной смоле с добавлением рубленых углеродных волокон

Силовые детали, выполненные из композита с применением металлических закладных, были представлены компанией Magneti Marelli. Детали изготовлены с добавлением стекло- и углеволокна как на термореактивных, так и на термопластичных связующих.

Интересны работы по переходу от использования металла к применению ПКМ при изготовлении самой крупной детали подвески — подрамника. Положительный эффект достигается как на термопластичных, так и на термореактивных матрицах..

Корпусные детали


Корпусные детали моторного отсека из углепластика на основе термореактивных смол

С развитием тренда на электромобили работы по облегчению корпусных деталей обретают все большую значимость. Батареи таких транспортных средств массивны, чтобы обеспечить достаточный запас хода, и вместе с тем требуют надежной защиты от повреждений. При использовании металлов есть риск перетяжелить и без того массивный батарейный блок. Использование ПКМ для корпусных деталей батарей и пр. позволяет не только объединить несколько деталей в одну, что положительно сказывается на герметрии, но и добиться приемлемой массы.

Колесные диски

Благодаря высоким физико-механическим характеристикам расширяется применение композитов в производстве автомобильных и мотоциклетных дисков, особенно используемых для автомотоспорта.


Композитный колесный диск, произведенный с помощью легковымываемой водой оснастки Aqua mandrel (слева) и комбинированный металлокомпозитный диск

В силу сложности производства (необходимо использовать сложную по геометрии оснастку, либо вымываемые стержни для формирования полостей) такие диски достаточно дороги для повсеместного использования, однако для решения узких специальных задач они как нельзя хороши.

Часто, чтобы удешевить и облегчить производство колесного диска комбинируют композитный обод с металлическими спицами.

Композитный монокок

Апофеозом облегчения и достижения максимальной жесткости является композитный монокок и кузов целиком.


Композитный монокок McLaren P1

Для создания таких изделий используют, как правило, автоклавную технологию и углепластики с последующей склейкой компонентов.

Так, компания Dallara специализируется на производстве с активным использованием композитов болидов класса LMP2 для большинства команд чемпионата.


Полностью композитный кузов спорткара

Настолько широкое применение ПКМ говорит о том, что данные материалы и технологии их переработки способны решать самые сложные производственные задачи и гарантировать изделиям соответствие самому высокому уровню предъявляемых к ним требований.

Серийное применение

Трансфер решений из специфических областей в массовое производство происходит всегда постепенно. Валидация компонента и прохождение сертификации занимают много времени, но являются обязательными процедурами, поскольку напрямую связаны с безопасностью эксплуатации. Но, несмотря на это, в серийном производстве мы видим достаточно примеров использования ПКМ как безальтернативной технологии производства для ряда ключевых компонентов.


BMW i8 — серийный автомобиль с полностью композитным кузовом

Так, композитные усилители в BMW 7-ой серии и стратегия Carbon Core уже стали привычным явлением. В последнем поколении BMW 4 серии крышка багажника серийно изготавливается как сборная композитная конструкция.

Компания Audi несколько лет назад объявила снижение массы автомобилей главным направлением своего развития. Следуя ему, металлические детали кузова постепенно заменяются композитными. В актуальном поколении машин Audi А8 перегородка багажного отделения выполнена из углепластика на эпоксидной матрице.

Активно ведет работу в использовании ПКМ и автогигант Ford: совместно с Magna были полностью переработаны под композиты передний подрамник, фронтэнд и несколько силовых элементов кузова автомобилей Mustang.


Внутренняя часть двери багажника (угленаполненный SMC)

Четко прослеживается тенденция использования ПКМ в ненагруженных деталях кузова, таких как крышка багажника, задние пассажирские двери, наружная панель крыши и пр. От европейских компаний Renault-Nissan и PSA этот подход переняли азиатские: Toyota, Acura, Hyundai Motor Company, а теперь и китайская Changan.

Часто в серийных решениях комбинируют детали из термопластичных и термореактивных полимеров с металлическими наружными панелями.

Вторичная переработка

Использование ПКМ в массовом автомобильном производстве остро ставит вопрос вторичной переработки изделий. Композиты должны утилизироваться и перерабатываться специальным образом, чтобы не наносить вред окружающей среде.


Детали кузова автомобиля из переработанного углеволокна

Одним из самых популярных методов переработки является пиролиз. В ходе этого процесса полимерная матрица разрушается, а синтетические волокна могут быть переработаны вторично, как правило, в ходе производства SMC-препрегов.


Корпусные детали мотоцикла Yamaha из биокомпозитов на основе натуральных волокон

Еще один тренд в массовом применении ПКМ — это использование натуральных волокон.

При вторичной переработке армированных такими материалами биокомпозитов существенно снижается количество оставшихся вредных веществ.

Аддитивные технологии и ПКМ

Все шире применяются аддитивные технологии в создании прототипов и мелкосерийных изделий. Производители композитных материалов активно включились в новое направление и предлагают актуальные решения, например, из наполненных углеволокном термопластов.


Деталь сложной формы, технология SLS, материал HexPekk от Hexcel (полиэфирэфиркетон + углеродное волокно)

Современные материалы влекут за собой как новые применения в высокопрочных конструкциях, так и новые способы переработки.

Компания производитель ЧПУ-станков CMS SPA совместно с Fraunhofer IWU готовит к выпуску систему формования армированного термопласта с последующей его фрезеровкой — CMS Kreator. Оборудование будет обеспечивать возможность создания как крупногабаритных упрочненных полимерных изделий, так и формообразующей оснастки. Разработчики заявляют о производительности на уровне 20 кг/час. При таком техпроцессе нет необходимости использовать заготовки и болваны, склеенные из модельных плит. Создание детали и её фрезерование проводят непосредственно в рабочей зоне станка.

Система строится на базе ЧПУ и оснащается экструдером, как в небольших ТПА (термопластавтоматах), модельный материал — гранулы термопласта.


Поверхность детали из термопласта, упрочненного рубленым углеволокном, технология FDM, CEAD


Общий вид системы от CEAD

Аналогичный модуль предлагает компания CEAD. Производительность данного решения порядка 10 кг/час. Устройство не привязано к производителю станка, и может быть дополнительно оснащено сушилкой материала.

Вывод

Можно заметить, что многие передовые решения и материалы в прямом смысле спускаются с небес на землю, то есть новаторская технология первой находит применение в авиации и космосе, и лишь потом осваивается автомобилестроением, транспортным машиностроением и т.п. Так было со сплавами на основе алюминия, так же происходит и с композитами.

Подобный трансфер говорит об экономической целесообразности и о безопасности применения. Отметим, что валидация компонентов наземного транспорта существенно проще, чем у летательных аппаратов.

На фоне восходящего тренда на экологичность, снижение выбросов и снижение массы транспортных средств можно прогнозировать еще более широкое использование ПКМ в массовом автомобильном производстве, появление новых материалов и средств контроля.

Однако в борьбе за минимальную массу и передовые материалы не следует забывать об экологии. Развитие вторичной переработки композитов — задача не менее важная, чем достижение исключительных показателей конструкций.

Применение композиционных материалов осуществляется во все более широких масштабах. В автомобилестроении композиционные материалы используются уже много лет, и с каждым годом объем их применения растет. Если раньше ПКМ использовались в основном в качестве отделки салона и в деталях, не несущих значительных нагрузок, то в настоящее время полимеры стали применяться в крупногабаритных корпусных деталях, а зарубежные компании, такие как BMW, Ford, Mercedes, Audi, и вовсе изготавливают автомобили, кузов которых полностью состоит из композитов.

Ключевые слова: полимерные композиционные материалы (ПКМ), препреги, углепластики, стеклопластики, автомобильная промышленность, автомобили, polymer composite materials (PCM), prepreg, carbon plastic, fiberglass, automotive industry, cars.

Введение

В последние годы функции полимерных материалов в любой отрасли промышленности несколько изменились. Еще в 60-х годах прошлого столетия, благодаря предложению начальника ВИАМ, члена-корреспондента Академии наук СССР Алексея Тихоновича Туманова, в Советском Союзе началось создание полноценного производства композиционных материалов [1]. Полимеры стали применять для все более и более ответственных деталей. Так, из них изготавливают все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, в то же время все чаще полимеры применяются для изготовления крупногабаритных корпусных деталей, несущих значительные нагрузки. В настоящее время полимерные композиционные материалы (ПКМ) стали одними из основных конструкционных материалов [2] – перечень деталей автомобиля, которые в тех или иных моделях изготавливают из полимеров, занял бы не одну страницу: кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей.

Материалы и методы в автомобилестроении

Композиционные материалы – это в первую очередь продукция из углеродного волокна, которая используется, например, в автомобилестроении уже много лет, и с каждым годом объем применения таких материалов растет. Наиболее важное преимущество углеволокна – небольшая плотность и высокая прочность. Углепластик в 5 раз легче стали и в 1,8 раза легче алюминия. Использование композитов в автомобилестроении позволяет снизить массу транспортного средства на 20–25%, за счет этого заметно повышается эффективность работы двигателя и снижается расход горючего.

Углеродные волокна производят из синтетических и природных волокон на основе полимеров. В зависимости от режима обработки и исходного сырья получают материалы разной структуры и с разными свойствами. В этом заключается главное преимущество композиционных материалов, которые можно создавать с изначально заданными свойствами под определенные цели [4–12].

Признанными лидерами в промышленном освоении композиционных материалов в автомобилестроении стали Япония и США.

Анализ и испытания армированных стекловолокном композиционных силовых элементов неожиданно показали, что в роли несущих элементов конструкции, призванных поглотить основную энергию удара, композиты значительно уступают металлу – как минимум в 2 раза. Можно было бы подвести итог – внедрение пластиков и пластмасс в конструкцию автомобиля не принесло желаемого эффекта и оставило основные доминирующие позиции за высококачественной сталью и легкими сплавами.

Изменились также технологии производства деталей из композитов. В настоящее время они изготавливаются (как и металлические узлы) на роботизированных линиях. Для упрощения монтажа в точках сопряжения с другими деталями при формовке узла запрессовываются металлические элементы крепежа. Такой способ позволяет применять сварку, болтовое и клепаное соединения. Любые колебания и знакопеременные нагрузки воспринимаются такими изделиями (так же как металлическими) без риска развития усталостных трещин и расслоения панелей [13].

Наблюдая технический прогресс в области развития и применения композиционных материалов, можно уверенно констатировать, что в ближайшем будущем появятся серийные автомобили с полностью композитным кузовом и многими узлами и агрегатами.

Рассмотрим каков прогноз развития применения ПКМ в автомобильной промышленности. Специалисты компании IHS (штат Колорадо, США) прогнозируют, что применение полимеров в автомобилестроении будет расти (рис. 1).


Рис. 1. Прогноз применения углеродных композитов до 2030 г.

В настоящее время в среднестатистическом автомобиле содержится ~200 кг того или иного вида пластических масс, но уже к 2020 г. этот показатель превысит отметку в 350 кг. Такие данные приводит аналитическая компания IHS. Но еще больший прогресс ожидается в сегменте углепластиков – их применение к 2030 г. вырастет в 3 раза – с 3,4 до 9,8 тыс. тонн.

Специалисты компании IHS также отмечают, что индустрия автомобилестроения является быстрорастущей и очень привлекательной отраслью для химической промышленности. Если в 2003 г. производство автомобилей составляло 56,9 млн автомобилей в год, то к 2020 г. этот показатель вырастет до 104,1 млн. Как и во многих других отраслях, рост данного рынка в основной своей массе будет обеспечен Китаем [14].

Применение в автомобилестроении деталей и узлов, производимых на основе полимерных и композиционных материалов, с каждым годом расширяется. В настоящее время в структуре сырья для автокомпонентов доля полимеров (в % от стоимости среднестатистического автомобиля) находится на третьем месте после металлов (рис. 2).

Применение пластиков при производстве технических изделий обеспечивает: снижение массы конструкции при ее высокой прочности; высокий уровень безопасности по электрической прочности – трекингостойкости и дугостойкости; высокий уровень стойкости к УФ излучению; возможность использования красителей для создания цветовой гаммы изделий.


Рис. 2. Материалы, используемые в автомобилестроении

Использование ПКМ в автомобиле позволяет снизить его массу на 15–30%, а снижение массы на 100 кг приводит к снижению расхода топлива на 0,5 л на каждые 100 км. Конечно, высокотехнологичные конструкционные полимеры не экономичнее стали или алюминиевого сплава и процесс формования деталей из полимеров длительнее, чем штамповка стального листа, однако им не требуется защита от коррозии.

По сравнению с американскими производителями автомобилей, у которых доля полимеров в общей массе среднего легкового автомобиля составляет 11–13%, в легковых автомобилях российского производства эта цифра всего 4–9% (рис. 3).


Рис. 3. Весовое содержание полимеров в различных моделях автомобилей

Как утверждают эксперты, это обстоятельство обусловлено двумя основными факторами. С одной стороны, низкую долю полимерных комплектующих в условно современных моделях отечественных марок (Lada Kalina, Lada Priora) можно объяснить достаточно консервативным подходом при разработке этих моделей. При разработке новых отечественных автомобилей дизайнеры и инженеры вынуждены учитывать как реальное состояние локального рынка автокомпонентов, так и технические возможности существующих автозаводов: не рекомендуется закладывать в проект нового крупносерийного автомобиля использование деталей и материалов, которые невозможно изготовить даже в будущем. Так, на небольшую долю полимеров в отечественных моделях косвенно влияет низкий технологический уровень развития индустрии пластиковых автокомпонентов. С другой стороны, производителям автокомпонентов невыгодно брать в серийное производство те или иные полимерные детали, если партия таких деталей будет ниже некоего экономически оправданного минимума, т. е. индустрия локальных автокомпонентов не получает должного стимула для развития в том числе и потому, что отечественный автопром не производит достаточно много автомобилей [15].

По сравнению с работниками отечественного автопрома зарубежные коллеги чувствуют себя более уверенно в этой области.

Компания BMW инвестировала 533 млн долл. в освоение промышленного производства модели электромобиля i3. Кузов нового электромобиля BMW i3 в значительной степени выполнен из углепластика, что дало возможность увеличить массу электрической батареи на 250–350 кг. Фактически кузов сделан из синтетического материала, усиленного углеволокном. Кузов из такого материала на 50% легче стального и на 30% – алюминиевого. Структурные элементы из нового материала могут легко комбинироваться с алюминиевыми кузовными панелями или металлизироваться (рис. 4) [16].


Рис. 4. Автомобиль марки BMW

В 2013 г. компания Ford представила легковую модель Fusion, которая оказалась на 25% легче своего серийного предшественника за счет применения углеволокна для силовых конструкций сидений, панели приборов и картера. В настоящее время концерн Ford совместно с химической компанией DowAksa и американским центром инноваций реализует крупный проект по созданию принципиально нового средства передвижения с улучшенными эксплуатационными характеристиками. Идея основана на широком использовании в автомобиле углеродных волоконных композитов.

Первые позитивные результаты уже нашли отражение в модели Ford GT. Эксперты отмечают улучшенную управляемость и быстрый разгон машины, чего трудно добиться без придания отдельным компонентам повышенной гибкости и жесткости. Из углепластика изготовлен кузов. Колесные диски представлены специальными алюминиевыми сплавами. Это дало возможность снизить массу болида на 12%. Всего же концерн предполагает уменьшить массу крупногабаритных кроссоверов на 300 кг. Наноматериалы использованы в автомобильной краске, что предотвращает порчу поверхности от царапин и мелких сколов.

Углеродное волокно также применяет концерн Mercedes, детали из которого внедряются для замены стальных компонентов. Из них изготавливают корпуса моторов и несущей системы балочной конструкции. В обновленной серии модели SL65 Black Series благодаря нововведениям масса кара снизилась на ~170 кг, что позволило повысить эффективность автомобиля в целом.


Рис. 5. Композиционные материалы в автомобилестроении

В России выпускаются многоосные колесные машины высокой проходимости, такие как ЗИЛ-БАЗ-135 с кабиной, мотоотсеком и облицовкой из композиционных материалов и плавающая колесная машина ЗИЛ-1Э5П с несущим (безрамным) корпусом из композитов. Опыт создания из ПКМ многочисленных деталей: корпусов, кузовов, рам, кабин, рессор, топливных баков, ободьев колес и т. д. – доказывает широкие возможности применения композитов в колесных машинах [19].

Доля ПКМ в отечественных автомобилях

Доля композитов в автомобилях, кг

Заключение

Композиционные материалы – самый интенсивно развивающийся сегмент на рынке материалов. Повышенная прочность, пластичность, термостойкость, малая плотность – эти преимущества позволяют композитам все больше и больше вытеснять классические материалы – дерево, металлы, камень. Композиты интенсивно входят в привычный мир каждого человека, их применение в автомобилестроении, авиастроении и других отраслях экономики с каждым годом увеличивается.

Таким образом, можно сделать вывод, что для продолжения дальнейшего успешного внедрения композиционных материалов в автомобилестроении необходимо решить несколько задач. Во-первых, сократить цикл изготовления деталей до нескольких минут, что позволит осуществлять их массовое производство и снизить количество необходимого оборудования. Во-вторых обеспечить их приемлемую рыночную стоимость, что связано как с решением первой задачи, так и со снижением стоимости исходных материалов. И наконец, необходимо создать современные автоматизированные производства, на которых будут работать специалисты по проектированию и разработке современных технологических процессов, а также по сопровождению конструкций из полимерных композитов на протяжении всего жизненного цикла – вплоть до утилизации.


Развитие автомобильной промышленности, повышение требований к качеству и безопасности используемых материалов требует создания и применения новых форм. Материалы из углеволокна наиболее полно отвечают современным требованиям, так как обладают рядом уникальных характеристик и демонстрируют наилучшее соотношение цены и качества.

Композитные материалы для автомобилей заметно потеснили на рынке привычный металл. Причём не только сталь, но и алюминиевые сплавы, которые до недавнего времени считались во всех отношениях лучшими. В настоящее время композиционные материалы используются при создании практически любого узла автомобиля. Выпускают даже концепт-кары, корпус которых целиком состоит из композитов.

Композиты в автомобилестроении

Композиционные материалы и изделия на основе непрерывных волокон и армирующих тканей широко используются для производства внешних деталей автомобиля. Чаще всего из них делают:

  • Силовые конструкции – силовые структуры дверей и сидений, защитные элементы днища.
  • Элементы крепления бамперов и радиаторов.
  • Декоративные элементы – декоративные панели салона, внешние декоративные панели.
  • Крышки багажников, кузовные панели, тормозные диски, элементы кузова, термо- и звукоизоляцию.

Всё чаще кузова многих типов машин (в том числе тяжёлых грузовиков) полностью создаются из лёгких, прочных и недорогих углепластиков.

Углепластик в автомобилестроении

Композитные материалы для автомобилестроения – это в первую очередь продукция из углеродного волокна. Она используется в автомобилестроении уже много лет, и с каждым годом объём его применения растёт. Наиболее важное преимущество углеволокна — небольшой вес и высокая прочность. Углепластик в 5 раз легче стали и в 1,8 раза легче алюминия. Использование композитов в автомобилестроении позволяет снизить массу транспортного средства на 20-25%. За счёт этого заметно повышается эффективность работы двигателя и снижается расход горючего.

Углеродные волокна производят из синтетических и природных волокон на основе полимеров. В зависимости от режима обработки и исходного сырья получают материалы разной структуры и с разными свойствами. В этом заключается главное преимущество композитных материалов. Их можно создавать с изначально заданными свойствами под определённую задачу.

Карбон в автомобилестроении

Углеродное волокно для автомобилей широко применяется в гоночной одежде. Это карбоновые шлемы, ботинки с карбоновыми вставками, перчатки, костюмы, защита спины и. т. д. Такая экипировка не только хорошо смотрится, но и повышает безопасность и снижает вес костюма (очень важно для шлема). Особой популярностью карбон пользуется у мотоциклистов. Самые продвинутые байкеры одевают себя в карбон с ног до головы.

Развитие технологии в автомобилестроении в первую очередь связано с развитием автоспорта. Наблюдая технический прогресс в области развития и применения композиционных материалов, можно уверенно сказать, что в ближайшем будущем появятся серийные автомобили с полностью композитным кузовом и многими узлами и агрегатами.

Search, View and Navigation

Проект Центра ДПО "АНЭКС" Адрес: Санкт-Петербург, Звенигородская ул., д. 28 литер А. Телефон: (812) 956-67-42

Свидетельство о регистрации журнала

СВИДЕТЕЛЬСТВО
о регистрации СМИ
Федеральной службы
по надзору в сфере связи,
информационных технологий
и массовых коммуникаций
(Роскомнадзор)
Эл. № ФС 77-52200
от 25 декабря 2012 г.

Новые материалы в автомобилестроении

Новые материалы в автомобилестроении

Государева Надежда Семеновна

Длительный период в своём развитии человеческое общество использовало для своих нужд ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо. Промышленный переворот 18 в. особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др.

Основой конструкционных материалов стали металлические сплавы на основе железа, меди, олова, свинца. Дальнейшее развитие техники, когда главным требованием, предъявляемым конструкционным материалам, стала высокая удельная прочность, предъявило новые требования. Широкое распространение получили малолегированные стали, алюминиевые, титановые и магниевые сплавы, жаропрочные сплавы на никелевой и кобальтовой основах.

В настоящее время в автомобилестроении основным направлением развития является создание легких, безопасных, комфортабельных и экологически чистых в эксплуатации моделей. Так в США средняя масса легкового автомобиля в 1975 году составила 1800 кг, в 1990 г – 1350 кг. Специальной программой PNGV намечено довести эту величину до 750 кг, создав модели с расходом топлива 3,5 литра на 100 км. Аналогичные программы разрабатываются и в Европе.

Для достижения этих целей должны широко использоваться легкие металлы (Al, Mg, Be) и их сплавы, металлические и неметаллические композиты, металлопены, керамика, интерметаллиды.

Широкое применение в автомобилестроении получили новые композиционные материалы на основе углеродных волокон.

Углепластик (карбон) имеет невероятные свойства. По прочности он превосходит сталь в 12,5 раз.

В настоящие время материалы из углеволокна используются при создании практически любого узла автомобиля. Композиционные материалы и изделия на основе непрерывных волокон и армирующих тканей широко используются для производства внешних деталей автомобиля. Чаще всего из них делают бамперы, обтекатели, спойлеры; элементов внутренней отделки салона автомобиля: торпеда, декоративные панели салона; элементов защиты корпуса автомобиля, днища автомобиля.

Наряду с углепластиком в автомобилестроении используется такой композитный материал как стеклопластик. Его широко применяют в производстве внешних панелей кузовов (передних и задних) автобусов, троллейбусов, элементов внутреннего интерьера, элементов аэродинамических обводов, подкрылок, бамперов автомобилей, багажников на крышу, приборных панелей. Популярность применения стеклопластиков обусловлена его более высокими физико-механическими свойствами по сравнению с другими типами термопластов и пластмасс. Это и более высокая прочность и стойкость к образованию царапин; постоянность структуры материала при низких и высоких температурах; относительно небольшой вес стеклопластиковых изделий; стойкость к вибрационным нагрузкам и ударам.

Керамические композиты (керамокомпозиты)–имеют керамическую матрицу и содержат металлическую или неметаллическую волокнистую арматуру.
Достоинства керамических композитов определяются, в первую очередь, свойствами матрицы. Керамические матрицы обеспечивают наиболее высокий уровень рабочих температур композиционных материалов. Керамика является химически и термически стойким материалом, имеет высокий уровень прочностных свойств на сжатие.
Недостатком абсолютного большинства керамических материалов является очень низкий уровень трещиностойкости. Попытки приблизить керамику к металлическим материалам привели к разработке керметов, т. е. материалов, имеющих комбинированную матрицу, полученную из порошков (более 50 % - керамика, а остальное - металл). Более эффективным является введение в керамическую матрицу металла в форме не порошка, а волокон. Наиболее часто для упрочнения керамики используются волок­на вольфрама, молибдена, ниобия, стали. Металлические волокна более пластичны по сравнению с керамикой. Они воспринимают значительную часть нагрузки, сдерживают развитие трещин в композите, выполняют функцию структурных элементов, повышающих трещиностойкость и термостойкость материалов.

Основным фактором, ограничивающим применение металлических волокон в керамических композитах, является их повышенная склонность к окислению при высоких температурах эксплуатации.
Поэтому в керамических композиционных материалов в качестве армирующих элементов часто используют керамические волокна. Достоинства волокон этого типа заключаются в следующем: малое различие модулей упругости и коэффициентов термического расширения материалов волокон и матрицы; химическое сродство компонентов композитов; жаростойкость керамических волокон. Эффективными армирующими элементами керамического типа в композиционных материалах являются волокна карбида кремния, углеродные волокна. Матрицами в углекерамических материалах могут служить боросиликатные, алюмосиликатные, литиевосиликатные стекла.

Армированные композиты с керамической матрицей применяются в качестве жаропрочных и жаростойких материалов, а также составляющих броневых элементов. Композиты, наполненные микро- и наночастицами специальных добавок, используются в режущих кромках инструментов, в качестве износостойких материалов, а также материалов пломб в стоматологии.

Интерметаллиды – новый класс материалов (химические соединения металлов), которые по своей структуре занимают промежуточное положение между металлами и керамикой. Они имеют сложную кристаллическую структуру с наличием в межатомных связях до 30% ковалентной связи, что и определяет их физико-механические свойства: высокую жаропрочность, низкую плотность и возгораемость в кислороде, высокую износостойкость. Интерметаллидные сплавы называют материалами следующего поколения, так как этим сплавам присущ эффект запоминания формы. Этот эффект проявляется в том, что после придания образцу определенной формы при повышенной температуре ему придают новую форму пластической деформацией при более низкой температуре, а после нагрева исходная форма образца (детали) восстанавливается.

К настоящему времени известно более 100 сплавов с эффектом памяти формы. Однако из этого общего числа только интерметаллид NiTi и сплавы с легирующими элементами на его основе нашли наибольшее практическое применение.

Интерметаллид NiTi хорошо деформируется в горячем и холодном состоянии. Из него можно получать всевозможные полуфабрикаты: листы, ленту и фольгу различных толщин, прутки, проволоку разных сечений, трубы. Эти полуфабрикаты можно получать с различными температурами восстановления формы: от -100; -180 С до +60, +120 С. Кроме этого, никелид титана обладает высокой демпфирующей способностью, хорошей износо- и коррозионной стойкостью.

Основное применение интерметаллиды NiTi и сплавов на его основе связано с приборо- и машиностроением, медициной, а интерметаллидных сплавов на основе соединений Ti3Al, TiAl и NiAl во вновь создаваемых образцах новой техники, в том числе ракетно-космической, авиационной, автомобильной и др.

Читайте также: