Кометы строение химический состав происхождение реферат

Обновлено: 14.05.2024

Кометы являются одними из самых эффектных тел в Солнечной системе. Это своеобразные космические айсберги, состоящие из замороженных газов сложного химического состава, водяного льда и тугоплавкого минерального вещества в виде пыли и более крупных фрагментов. Ежегодно открывают 5-7 новых комет, и довольно часто один раз в 2-3 года вблизи Земли и Солнца проходит яркая комета с большим хвостом.

Содержание

ВВЕДЕНИЕ……………………………………………………………………………..4
1. Ядро и хвост планеты………………….…………………………………………….5
2. Происхождение комет и их природа…………. ………………………………. 8 3. Кометные орбиты………………………………………………………………. 11 4. Причины свечения комет и их химический состав………………………….…..12 5. Строение и состав кометы………………………………..………………….…. 13 ЗАКЛЮЧЕНИЕ……………………………………………………………………. 19 БИБЛИОГРАФИЧЕСКИЙ СПИСОК………………………………………

Вложенные файлы: 1 файл

Кометы, их происхождение и состав3.docx

Кометы, их происхождение и состав

с оценкой (прописью, цифрой)

Цель реферата – отразить процесс происхождения комет и их состав.

Задачи реферата – изучить, обобщить, проанализировать кометы, их происхождение и состав и сделать выводы.

Рассмотрен процесс происхождения комет и их состав. Сделано заключение по предпочтительному варианту с точки зрения трудоемкости, эффективности и результативности.

2. Происхождение комет и их природа…………. ………………………………. 8 3. Кометные орбиты……………………………………………………………… . 11 4. Причины свечения комет и их химический состав………………………….…..12 5. Строение и состав кометы………………………………..………………….…. ..13 ЗАКЛЮЧЕНИЕ…………………………………………………… ………………. 19 БИБЛИОГРАФИЧЕСКИЙ СПИСОК…………………………………………….…21 ПРИЛОЖЕНИЯ…………………………………………………… ………………. 22

Кометы являются одними из самых эффектных тел в Солнечной системе. Это своеобразные космические айсберги, состоящие из замороженных газов сложного химического состава, водяного льда и тугоплавкого минерального вещества в виде пыли и более крупных фрагментов. Ежегодно открывают 5-7 новых комет, и довольно часто один раз в 2-3 года вблизи Земли и Солнца проходит яркая комета с большим хвостом. Кометы интересуют не только астрономов, но и многих других учёных: физиков, химиков, биологов, историков. Постоянно проводятся достаточно сложные и дорогостоящие исследования. Чем же вызван такой живой интерес к этому явлению? Его можно объяснить тем, что кометы - ёмкий и ещё далеко не полностью исследованный источник полезной науке информации. Например, кометы "подсказали" учёным о существовании солнечного ветра, имеется гипотеза о том, что кометы являются причиной возникновения жизни на земле, они могут дать ценную информацию о возникновении галактик.

1. ЯДРО И ХВОСТ ПЛАНЕТЫ

Слабые кометы, едва различимые глазом или практически невидимые, можно установить, анализируя их фотографии, полученные с помощью больших телескопов. Эти кометы также имеют едва заметные короткие хвостики. Однако все кометы, и яркие, и слабые, когда уходят очень далеко от Солнца, выглядят как едва заметные туманные пятнышки с размытыми краями. Хвосты на таких огромных расстояниях не удается различить даже на фотографиях.

Голова или, как еще называют, кома – самая яркая часть кометы. Внутри ее предполагается твердое ядро.

Предполагается, что на больших расстояниях от Солнца, кометы представляют собой голые ядра, т.е. глыбы твердого вещества, состоящего из обыкновенного водяного льда и льда из метана и аммиака. В лед вморожены каменные и металлические пылинки и песчинки. При приближении к Солнцу этот очень грязный лед начинает испаряться, создавая вокруг ядра огромную газопылевую оболочку. Под действием давления солнечного света часть газов оболочки отталкивается в сторону, противоположную Солнцу, образуя хвост. У некоторых комет эти процессы протекают настолько интенсивно, что оболочка и хвост достигают чудовищных размеров. Так, например, диаметр оболочки сверх гигантской кометы Холмса в 1882 году был равен 1,5 миллиона километров, а длина ее хвоста достигала 300 миллионов километров!

Форма и протяженность хвостов различны. Текущий рекорд длины хвоста кометы – это хвост Великой кометы 1843. Её хвост имел длину не менее 300 млн. км (диаметр головы ее несколько превышал диаметр Солнца). Это значит, что если мысленно поместить саму комету в центр Солнца, то хвост пересек бы орбиту Марса.

Классификацию кометных хвостов предложил в XIX в. замечательный русский астроном Ф.А. Бредихин:

I тип хвостов – прямые, направленные от Солнца. Они образованы ионизированными молекулами кометной атмосферы, которые солнечным ветром уносятся прочь от ядра;

II тип – это изогнутые хвосты и по отношению к орбите кометы отклоняются назад. Образуются они непрерывно истекающими из ядра частичками пыли;

Интерес ученых к кометам связан главным образом с желанием изучить их состав. Многие полагают, что это – своеобразный “строительный мусор”, оставшийся после образования планет Солнечной системы из первоначального газопылевого облака.

2. ПРОИСХОЖДЕНИЕ КОМЕТ И ИХ ПРИРОДА

За обозримое прошлое человечества было открыто много комет. Каждая из них имеет свои особенности. На первых порах серьезного изучения комет никому не приходила в голову мысль, что они принадлежат Солнечной системе.

Раньше предполагалось, что таинственные небесные странницы приходят к нам из далеких безвестных глубин межзвездного пространства. Они подходят к Солнцу на расстояние в несколько десятков или сотен миллионов километров и затем пускаются в обратный путь. При этом, чем дальше кометы уходили от Солнца, тем сильнее ослабевал их блеск, пока совсем не пропадал. Большинство астрономов предполагали в прошлые времена, что каждая комета приходит к Солнцу лишь один раз и затем навсегда покидает его окрестности.

Удивительно, что точка зрения Аристотеля господствовала около двух тысячелетий, и никакие попытки поколебать ее не давали положительного результата. Хотя некоторые ученые склонны были думать, что кометы все-таки приходят из каких-то далеких, неведомых нам глубин космического пространства. Только в конце XVI века идея Аристотеля была опровергнута.

В конце XVI века астрономы наблюдали яркую комету с двух наблюдательных пунктов, очень удаленных друг от друга. Если бы комета находилась в атмосфере, т.е. недалеко от наблюдателей, то должен был бы наблюдаться параллакс: с одного пункта комета должна быть видна на фоне одних звезд, а с другого – на фоне других. Однако наблюдения показали, что никакого параллакса не было, и, значит, комета находилась гораздо дальше, чем Луна. Земная природа комет была опровергнута, что сделало их еще более таинственными. Одна тайна сменилась другой, еще более заманчивой и недоступной.

У многих астрономов сложилось мнение, что кометы приходят к нам из межзвездных глубин, т.е. не являются членами Солнечной системы. В какой-то момент даже предполагалось, что кометы приходят к Солнцу по прямолинейным траекториям и по таким же прямолинейным траекториям уходят от него.

Трудно сказать, сколько времени продолжалось бы такое положение, если бы не одно важнейшее событие в истории человечества.

Гениальный естествоиспытатель, великий физик и математик Исаак Ньютон завершил выдающийся научный труд, связанный с анализом движения планет вокруг Солнца, и сформулировал закон всемирного тяготения: сила взаимного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна квадрату между ними. Согласно этому закону природы, все планеты движутся вокруг Солнца не произвольным образом, а строго по определенным орбитам. Орбиты эти представляют собой замкнутые линии.

Но даже сейчас обработка данных, полученных в результате космического эксперимента и наземных наблюдений, продолжаются. Кометы, которые нам удается наблюдать, приходят к нам с далеких окраин Солнечной системы. По сегодняшним представлениям более 100 миллиардов кометных ядер населяют эти окраины.

Существуют гипотезы захвата комет из межзвездного пространства и их вулканического происхождения. Однако в 1950 году они были сильно потеснены одной старой идеей в новом оформлении.

Сам Оорт полагал на первых порах, что кометы образовались в процессе взрыва Фаэтона. Взрыв, по его мнению, был настолько силен, что большая часть мелких осколков была заброшена так далеко, что попала под косвенное влияние соседних звезд, да так и осталась на окраинах Солнечной системы.

И хотя красивая гипотеза о Фаэтоне оказалась несостоятельной, идея забрасывания вещества из внутренних областей Солнечной системы во внешние в дальнейшем получила подтверждение.


5 Точность определения кометных орбит……………………………… 6 Причина свечения комет и их химический состав………………….

7 Методы оценки блеска комет …………………………………………..

9 Современные исследования комет…………………………………….

10 Защита Земли от кометной опасности………………………………

13 Использованная литература…………………………………………..

ВСТУПЛЕНИЕ.

Кометы - тела Солнечной системы, имеющие вид туманных объектов, обычно со светлым сгустком-ядром в центре и хвостом. Вдали от Солнца у комет нет никаких атмосфер и они ничем не отличаются от обычных астероидов. При сближении с Солнцем на расстояния примерно 11 а.е. у них сначала появляется газовая оболочка неправильной формы (кома). Кома вместе с ядром (телом) называется головой кометы. В телескоп такая комета наблюдается как туманное пятнышко и ее можно отличить по виду от какого-нибудь удаленного звездного скопления только по заметному собственному движению. Затем, на расстояниях 3-4 а.е. от Солнца у кометы, под действием солнечного ветра, начинает развиваться хвост, который становится хорошо заметным на расстоянии менее2а.е.

СТРОЕНИЕ, СОСТАВ КОМЕТЫ.

Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро - первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газопылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д. О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.

Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы - газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.

Ядро - самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы - твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра - конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению.

Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.

МЕТОДЫ ОЦЕНКИ БЛЕСКА КОМЕТ.

Существует несколько методов оценки блеска комет: В-Бобровникова, S-Сидгвика, М-Морриса, Е-Бейера, G-оценка невооруженным глазом, К-модифицированный метод Сидгвика.

Метод Бобровникова.

В чем суть этого метода?
Попытайтесь вывести окуляр из фокуса до тех пор, пока внефокальное изображение звезды и кометы не станут одинакового размера. При этом вы должны добиться схожести в яркости этих объектов. Конечно, вы понимаете, что достичь одинаковых пропорций не совсем удастся, так как комета объект диффузный и имеет менее отчетливые границы, или точнее сказать перепад яркости от центра к краю, чем звезда, которая выглядит однородным по яркости объектом. Нужно пытаться, чисто умозрительно, распределить яркость кометы равномерно по всей поверхности. Усреднить его! Конечно, при оценке блеска нужно использовать не менее 3 звезд сравнения. B = VBM (Van Biesbroeck-Bobrovnikoff-Meisel) or simple Out-Out method [formerly noted in the ICQ as the Bobrovnikoff method]Данный метод обозначается, как вы поняли, английской буквой B, а ставится она в графе метода оценки блеска(MM).

Метод Сидгвика.
Как работает данный способ оценки блеска кометы? Вы должны наблюдать фокальную комету и сравнивать ее с внефокальным изображением звезды того же размера, что и комета в фокусе.Как и в любом другом методе, здесь необходимо держать в памяти блеск кометы и звезд сравнения! Используйте не менее 3 звезд сравнения! S = VSS (Vsekhsvyatskii-Steavenson-Sidgwick) or In-Out method [formerly called the Sidgwick method in the ICQ]Данный метод обозначается, как вы поняли, английской буквой S. Ставится она в графе для указания метода оценки блеска(MM).

Метод Морриса.
Применяется этот метод для комет с различной степенью конденсации. Суть его заключается в следующем: вы создаете такое внефокальное изображение кометы, чтобы она имела однородную поверхностную яркость. Запоминаете ее. Тоже проделываете со звездой сравнения. При этом пытаетесь запомнить блеск кометы и подобрать соответствующую звезду сравнения. Стремитесь добиться того, чтобы расфокусированная звезда имела те же размеры и блеск, что и расфокусированная комета. M = Modified-Out method discussed by C. S. Morris (ICQ 2, 69)Данный метод обозначается как вы поняли английской буквой M и ставится она в графе для указания метода оценки блеска(MM).

Метод Бейера.
Этот метод очень прост и применим к кометам с любой степенью конденсации. Суть его сводится к следующему. Вы стоите перед телескопом, который уже наведен на бесконечность и готов к наблюдениям. На окулярном узле сделайте пометку 0. Найдите по каталогу звезду 4m. Выдвигайте окуляр до тех пор, пока звезда не растворится с общим фоном неба. Делаем отметку на окулярном узле, когда это произошло. Далее находим другую звезду, например 6m и повторяем туже процедуру. Делаем снова пометку на окулярном узле, когда звезда исчезнет на фоне неба. Так можно подобрать звезды вплоть до той величины, которую вы можете вытянуть на своем инструменте. Комету, которую вы наблюдаете надо также расфокусировать до того момента, пока та не сольется с общим фоном неба. Тогда сделайте пометку, когда это произойдет и обязательно получится так, что комета попадет в какой-то интервал, что и звезды сравнения или между ними. Тогда зная величину выдвижения окуляра в миллиметрах от отметки 0 до исчезновения звезд сравнения и кометы, используя миллиметровую бумагу, можно построить график зависимости: выдвижение (в мм) - звездная величина. Постройте на миллиметровке график с такой зависимостью. Блеск кометы у вас в кармане! Согласно моего опыта, этот метод хорош, но у него есть, как считаю я, один недостаток: он довольно чувствителен к фону неба, которое в момент наблюдений может быть подернуто едва уловимой дымкой, что в свою очередь может сказаться на оценке блеска кометы и т.д. E = Extrafocal-Extinction (or Beyer) method (cf. M. Beyer 1968, Astron.Nachr. 291, 257)Данный метод обозначается как вы поняли английской буквой E и ставится она в графе для указания метода оценки блеска(MM).

ИЗВЕСТНЫЕ КОМЕТЫ.

СОВРЕМЕННЫЕ ИССЛЕДОВАНИЯ КОМЕТ.

Другим нашумевшим событием стало падение в июле 1994 года короткопериодической кометы Шумахера-Леви 9 на Юпитер. Ядро кометы в июле 1992 года в результате сближения с Юпитером разделилось на фрагменты, которые впоследствии столкнулись с планетой-гигантом. В связи с тем, что столкновения происходили на ночной стороне Юпитера, земные исследователи могли наблюдать лишь вспышки, отражённые спутниками планеты. Анализ показал, что диаметр фрагментов от одного до нескольких километров. На Юпитер упали 20 кометных осколков.

Учёные утверждают, что распад кометы на части - редкое событие, захват кометы Юпитером - ещё более редкое происшествие, а столкновение большой кометы с планетой - экстраординарное космическое событие.
Недавно в американской лаборатории на одном из самых мощных компьютеров Intel Teraflop с производительностью 1 триллион операций в секунду была просчитана модель падения кометы радиусом 1 километр на Землю. Вычисления заняли 48 часов. Они показали, что такой катаклизм станет смертельным для человечества: в воздух поднимутся сотни тонн пыли, закрыв доступ солнечному свету и теплу, при падении в океан образуется гигантское цунами, произойдут разрушительные землетрясения. По одной из гипотез, динозавры вымерли в результате падения большой кометы или астероида. В штате Аризона существует кратер диаметром 1219 метров, образовавшийся после падения метеорита 60 метров в диаметре. Взрыв был эквивалентен взрыву 15 миллионов тонн тринитротолуола. Предполагается, что знаменитый Тунгусский метеорит 1908 года имел диаметр около 100 метров. Поэтому учёные работают сейчас над созданием системы раннего обнаружения, уничтожения или отклонения крупных космических тел, пролетающих недалеко от нашей планеты.

ЗАЩИТА ЗЕМЛИ ОТ КОМЕТНОЙ ОПАСНОСТИ.

Проблема кометной опасности детально проанализирована во множестве публикаций. Следует отметить, что наибольшую опасность представляют собой массивные долгопериодические кометы, их появление чаще всего бывает неожиданным из-за произвольной ориентации плоскостей орбит и больших или очень больших периодов обращения. Более того, многие из этих комет - апериодические, то есть движутся по незамкнутым траекториям (параболическим или гиперболическим) и поэтому действительно являются новыми. У этих комет возможна более высокая скорость столкновения с Землей - до 72 км/с (на встречных траекториях), что может привести к глобальным катастрофическим последствиям. Возможность подобных катастрофических событий подтверждается многими фактами. Во-первых, к настоящему времени на поверхности Земли обнаружено свыше 230 больших ударных кратеров

Конечно, большинство этих кратеров, скорее всего, были образованы при падении на земную поверхность каменистых тел, которые могут пронизывать земную атмосферу практически не разрушаясь. Вполне вероятно, что какая-то часть кратеров была образована и крупными кометными ядрами или телами промежуточного состава. Но столкновения с кометами могут приводить не только к катастрофическим последствиям. Ряд ученых считает, что сразу после своего формирования при высоких температурах и охлаждения земная поверхность была очень сухая (например, как сейчас лунная), и что практически вся вода и другие летучие соединения были доставлены потоком комет, обрушившимся в то время на Землю. Кстати, кометы могли доставить не только воду, но и сложные органические соединения, возникновение которых в земных условиях, как некоторые полагают, было маловероятным, и таким образом создали основу для зарождения простейших организмов. Хотя это пока и гипотезы, но кроме Тунгусского явления, есть и другие факты, подтверждающие падения ядер комет в прошлом на Землю. Например, одно из наиболее массовых вымираний флоры и фауны за последние 230 млн. лет произошло 65 млн. лет назад (между мезозойской и кайнозойской биологическими эрами или на рубеже мелового и третичного геологических периодов), когда исчезло около 2/3 всех живых организмов, включая динозавров. С этим же моментом в геологических отложениях земной поверхности связан слой с повышенным содержанием чрезвычайно редкого на Земле элемента иридия.

Кометы падали на землю

Комета 73P/Schwassmann-Wachmann 3 вновь обратила взоры даже несведущих в астрономии людей к небу. Но красивая хвостатая гостья таит в себе не только тайны зарождения Солнечной системы, но и представляет серьезную опасность для землян. Особенно это проявляется теперь, когда небесная странница разрушается прямо на глазах. Одна из таких разрушающихся комет (Шумейкеров-Леви, состоящая из 23 фрагментов) столкнулась с Юпитером более 10 лет назад, и вот новая катастрофа. Может ли комета врезаться в Землю? Изучение древних метеоритных кратеров не исключает такой возможности, хотя есть всего несколько примеров таких падений на Землю. К сожалению, природные и климатические влияния сгладили места падений, чтобы достоверно выявить кометную причину появления таких кратеров. Тем не менее, знаменитая Тунгусская катастрофа могла быть вызвана именно кометой.


Комета в инфакрасном свете

Исторические факты, начало исследования комет. Природа комет, их рождение, жизнь и смерть. Строение, состав кометы. Сущность понятия "кома". Ядро как самая главная часть кометы. Классификацию кометных голов по Орлову. Современные исследования комет.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 26.04.2009
Размер файла 32,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат по астрономии

Исторические факты, начало исследования комет

Природа комет, их рождение, жизнь и смерть

Строение, состав кометы

Современные исследования комет

Список литературных источников

Введение

1. Исторические факты, начало исследования комет

В эпоху Средневековья вновь появился научный интерес к явлению. Один из выдающихся астрономов той эпохи Региомонтан отнёсся к кометам, как к объектам научного исследования. Регулярно наблюдая все появлявшиеся светила, он первым описал траекторию движения и направления хвоста. В XVI веке астроном Апиан, проводя похожие наблюдения, пришёл к выводу, что хвост кометы всегда направлен в противоположную Солнцу сторону. Чуть позже стал наблюдать движение комет с наивысшей для того времени точностью датский астроном Тихо Браге. В результате своих исследований он доказал, что кометы - небесные тела, более далёкие, чем Луна, и тем самым опроверг учение Аристотеля об атмосферных испарениях.

Но, несмотря на исследования, избавление от предрассудков шло очень медленно: например, Людовик XIV очень опасался кометы 1680 года, так как считал её предвестницей своей гибели.

После каталога Галлея появилось ещё несколько каталогов, куда заносятся все появившиеся как в далёком прошлом, так и в настоящее время кометы. Из них наиболее известны: каталог Бальде и Обальдия, а также, впервые изданный в 1972 году, каталог Б. Марсдена, считающийся наиболее точным и надёжным.

2. Природа комет, их рождение, жизнь и смерть

В 50-е годы голландский астроном Я. Оорт предложил гипотезу о существовании кометного облака на расстоянии 150 000 а. е. от Солнца, образовавшегося в результате взрыва 10-й планеты Солнечной системы - Фаэтона, некогда существовавшей между орбитами Марса и Юпитера. По мнению академика В.Г. Фесенкова взрыв произошёл в результате слишком сильного сближения Фаэтона и Юпитера, так как при таком сближении, вследствие действия колоссальных приливных сил, возник сильный внутренний перегрев Фаэтона. Сила взрыва была огромна. В доказательство теории можно привести расчёты Ван Фландерна, изучившего распределение элементов 60 долгопериодических комет и пришедшего к выводу, что 5 миллионов лет назад между орбитами Юпитера и Марса взорвалась планета массой в 90 земных масс (сравнимая по массе с Сатурном). В результате такого взрыва бо'льшая часть вещества в виде ядер комет (обломков ледяной коры), астероидов и метеоритов покинула пределы Солнечной системы, часть задержалась на её периферии в виде облака Оорта, часть вещества осталась на прежней орбите Фаэтона, где она и сейчас циркулирует в виде астероидов, кометных ядер и метеоритов.

Некоторые кометные ядра сохранили реликтовый лёд под рыхлым теплоизоляционным слоем тугоплавкой компоненты, и ещё до сих пор в поясе астероидов иногда открывают короткопериодические кометы, движущиеся по почти круговым орбитам. Примером такой кометы может быть комета Смирновой - Чёрных, открытая в 1975 году.

В результате изучения элементов почти параболических кометных орбит, а также применения методов небесной механики было доказано, что облако Оорта реально существует и является достаточно устойчивым: период его полураспада составляет около одного миллиарда лет. При этом облако постоянно пополняется из разных источников, поэтому оно не перестаёт существовать.

Таким образом, за миллионы лет многие кометы, ранее принадлежавшие облаку Оорта, изменяют свои орбиты так, что их перигелии (ближайшее расстояние от Солнца) начинают концентрироваться вблизи наиболее удалённой от Солнца планеты-гиганта Нептуна, имеющего большую массу и протяжённую сферу действия. Поэтому, вполне возможно существование предсказываемого Уиплом кометного пояса за Нептуном.

В дальнейшем эволюция кометной орбиты из пояса Уипла протекает намного стремительнее, в зависимости от сближения с Нептуном. При сближении происходит сильная трансформация орбиты: Нептун своим магнитным полем действует так, что после выхода из сферы его действия, комета начинает двигаться по резко гиперболической орбите, что приводит либо к её выбросу из Солнечной системы, либо она продолжает двигаться внутрь планетной системы, где может снова подвергнуться воздействию планет-гигантов, либо будет двигаться к Солнцу по устойчивой эллиптической орбите, своим афелием (точкой наибольшего удаления от Солнца) показывая принадлежность к семейству Нептуна.

По мнению Е.И. Казимирчак-Полонской, диффузия приводит к накоплению круговых кометных орбит также между Ураном и Нептуном, Сатурном и Ураном, Юпитером и Сатурном, которые также являются источниками кометных ядер.

Ряд трудностей, имевших место в гипотезе захвата, особенно во времена Лапласа, при объяснении происхождения комет, побудил учёных искать другие источники комет. Так, например, французский учёный Лагранж, основываясь на отсутствии резких первоначальных гипербол, наличии только прямых движений в системе короткопериодических комет в семействе Юпитера, высказал гипотезу об эруптивном, то есть вулканическом, происхождении комет из различных планет. Лагранжа поддержал Проктор, который объяснял существование комет в Солнечной системе сильнейшей вулканической деятельностью на Юпитере. Но для того, чтобы фрагмент поверхности Юпитера мог преодолеть поле тяготения планеты, ему нужно было бы сообщить начальную скорость порядка 60 км/с. Появление таких скоростей при вулканических извержениях является нереальным, поэтому гипотеза эруптивного происхождения комет считается физически несостоятельной. Но в наше время её поддерживает ряд учёных, разрабатывая дополнения и уточнения к ней.

Существуют также и другие гипотезы о происхождении комет, не получившие столь широкого распространения, как гипотезы о межзвёздном происхождении комет, об облаке Оорта и эруптивном образовании комет.

3. Строение, состав кометы

Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро - первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газо-пылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д.О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.

Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы - газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.

Ядро - самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы - твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра - конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению.

Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.

Существуют также другие модели, отрицающие наличие монолитного ядра: одна представляет ядро как рой снежинок, другая - как скопление каменно-ледяных глыб, третья говорит о том, что ядро периодически конденсируется из частиц метеорного роя под действием гравитации планет. Всё же наиболее правдоподобной считается модель Уипла.

Массы ядер комет в настоящее время определяются крайне неуверенно, поэтому можно говорить о вероятном диапазоне масс: от нескольких тонн (микрокометы) до нескольких сотен, а возможно, и тысяч миллиардов тонн (от 10 до 10- 10 тонн).

Кома кометы окружает ядро в виде туманной атмосферы. У большинства комет кома состоит из трёх основных частей, заметно отличающихся своими физическими параметрами:

наиболее близкая, прилегающая к ядру область - внутренняя, молекулярная, химическая и фотохимическая кома,

видимая кома, или кома радикалов,

ультрафиолетовая, или атомная кома.

На расстоянии в 1 а. е. от Солнца средний диаметр внутренней комы D= 10км, видимой D= 10- 10км и ультрафиолетовой D= 10км.

Во внутренней коме происходят наиболее интенсивные физико-химические процессы: химические реакции, диссоциация и ионизация нейтральных молекул. В видимой коме, состоящей в основном из радикалов (химически активных молекул) (CN, OH, NH и др.), процесс диссоциации и возбуждения этих молекул под действием солнечной радиации продолжается, но уже менее интенсивно, чем во внутренней коме.

Л.М. Шульман на основании динамических свойств вещества предложил делить кометную атмосферу на следующие зоны:

пристеночный слой (область испарения и конденсации частиц на ледяной поверхности),

околоядерную область (область газодинамического движения вещества),

область свободно-молекулярного разлёта кометных частиц в межпланетное пространство.

Но не для всякой кометы должно быть обязательным наличие всех перечисленных атмосферных областей.

По мере приближения кометы к Солнцу диаметр видимой головы день ото дня растёт, после прохождения перигелия её орбиты голова снова увеличивается и достигает максимальных размеров между орбитами Земли и Марса. В целом для всей совокупности комет диаметры голов заключены в широких пределах: от 6000 км до 1 млн. км.

Головы комет при движении кометы по орбите принимают разнообразные формы. Вдали от Солнца они круглые, но по мере приближения к Солнцу, под воздействием солнечного давления, голова принимает вид параболы или цепной линии.

С.В. Орлов предложил следующую классификацию кометных голов, учитывающую их форму и внутреннюю структуру:

Тип E; - наблюдается у комет с яркими комами, обрамлёнными со стороны Солнца светящимися параболическими оболочками, фокус которых лежит в ядре кометы.

Тип C; - наблюдается у комет, головы которых в четыре раза слабее голов типа E и по внешнему виду напоминают луковицу.

Тип N; - наблюдается у комет, у которых отсутствует и кома и оболочки.

Тип Q; - наблюдается у комет, имеющих слабый выступ в сторону Солнца, то есть аномальный хвост.

Тип h; - наблюдается у комет, в голове которых генерируются равномерно расширяющиеся кольца - галосы с центром в ядре.

Наиболее впечатляющая часть кометы - её хвост. Хвосты почти всегда направлены в противоположную от Солнца сторону. Хвосты состоят из пыли, газа и ионизированных частиц. Поэтому в зависимости от состава частицы хвостов отталкиваются в противоположную от Солнца сторону силами, исходящими из Солнца.

Ф. Бессель, исследуя форму хвоста кометы Галлея, впервые объяснил её действием отталкивающих сил, исходящих из Солнца. Впоследствии Ф. А. Бредихин разработал более совершенную механическую теорию кометных хвостов и предложил разбить их на три обособленные группы, в зависимости от величины отталкивающего ускорения.

Анализ спектра головы и хвоста показал наличие следующих атомов, молекул и пылевых частиц:

Органические C, C, CCH, CN, CO, CS, HCN, CHCN.

Неорганические H, NH, NH, O, OH, HO.

Металлы - Na, Ca, Cr, Co, Mn, Fe, Ni, Cu, V, Si.

Ионы - CO, CO, CH, CN, N, OH, HO.

Пыль - силикаты (в инфракрасной области).

Механизм свечения кометных молекул был расшифрован в 1911 году К. Шварцшильдом и Е. Кроном, которые пришли к выводу, что это механизм флуоресценции, то есть переизлучения солнечного света.

Иногда в кометах наблюдаются достаточно необычные структуры: лучи, выходящие под различными углами из ядра и образующие в совокупности лучистый хвост; галосы - системы расширяющихся концентрических колец; сжимающиеся оболочки - появление нескольких оболочек, постоянно двигающихся к ядру; облачные образования; омегообразные изгибы хвостов, появляющиеся при неоднородностях солнечного ветра.

Также существуют и нестационарные процессы в головах комет: вспышки яркости, связанные с усилением коротковолновой радиации и корпускулярных потоков; разделение ядер на вторичные фрагменты.

4. Современные исследования комет

Самой важной задачей в проекте было исследование физических характеристик ядра кометы. Впервые ядро рассматривалось как пространственно разрешённый объект, были определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристик поверхностного слоя.

В то время ещё не представлялось технической возможности совершить посадку на ядро кометы, так как слишком велика была скорость встречи - в случае с кометой Галлея это 78 км/с. Опасно было даже пролетать на слишком близком расстоянии, так как кометная пыль могла разрушить космический аппарат. Расстояние пролёта было выбрано с учётом количественных характеристик кометы. Использовалось два подхода: дистанционные измерения с помощью оптических приборов и прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию движения аппарата.

Итоги оптических исследований можно сформулировать следующим образом: ядро - вытянутое монолитное тело неправильной формы, размеры большой оси - 14 километров, в поперечнике - около 7 километров. Каждые сутки его покидают несколько миллионов тонн водяного пара. Расчёты показывают, что такое испарение может идти от ледяного тела. Но вместе с тем приборы установили, что поверхность ядра чёрная (отражательная способность менее 5%) и горячая (примерно 100 тысяч градусов Цельсия).

Измерения химического состава пыли, газа и плазмы вдоль траектории полёта показали наличие водяного пара, атомных (водород, кислород, углерод) и молекулярных (угарный газ, диоксид углерода, гидроксил, циан и др.) компонентов, а также металлов с примесью силикатов.

Наиболее интересными событиями за последние несколько лет стали: появление кометы Хейла-Боппа и падение кометы Шумахера-Леви 9 на Юпитер.

Таким образом, комета Хейла-Боппа была не стандартным явлением, она дала учёным новый повод для размышлений.

Другим нашумевшим событием стало падение в июле 1994 года короткопериодической кометы Шумахера-Леви 9 на Юпитер. Ядро кометы в июле 1992 года в результате сближения с Юпитером разделилось на фрагменты, которые впоследствии столкнулись с планетой-гигантом. В связи с тем, что столкновения происходили на ночной стороне Юпитера, земные исследователи могли наблюдать лишь вспышки, отражённые спутниками планеты. Анализ показал, что диаметр фрагментов от одного до нескольких километров. На Юпитер упали 20 кометных осколков.

Учёные утверждают, что распад кометы на части - редкое событие, захват кометы Юпитером - ещё более редкое происшествие, а столкновение большой кометы с планетой - экстраординарное космическое событие.

Недавно в американской лаборатории на одном из самых мощных компьютеров Intel Teraflop с производительностью 1 триллион операций в секунду была просчитана модель падения кометы радиусом 1 километр на Землю. Вычисления заняли 48 часов. Они показали, что такой катаклизм станет смертельным для человечества: в воздух поднимутся сотни тонн пыли, закрыв доступ солнечному свету и теплу, при падении в океан образуется гигантское цунами, произойдут разрушительные землетрясения. По одной из гипотез, динозавры вымерли в результате падения большой кометы или астероида. В штате Аризона существует кратер диаметром 1219 метров, образовавшийся после падения метеорита 60 метров в диаметре. Взрыв был эквивалентен взрыву 15 миллионов тонн тринитротолуола. Предполагается, что знаменитый Тунгусский метеорит 1908 года имел диаметр около 100 метров. Поэтому учёные работают сейчас над созданием системы раннего обнаружения, уничтожения или отклонения крупных космических тел, пролетающих недалеко от нашей планеты.

Заключение

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

План

I Введение

1. Ядро и хвост кометы

2. Природа комет и их происхождение.

3. Кометные орбиты

4. Причина свечения комет и их химический состав

5. Столкновение земли с кометой

II Заключение

III Литература

Люди замечали их с незапамятных времен – летописи, исторические хроники, устные сказания донесли до нас сведения об их появлении на небе в самых разных странах света. Яркие кометы – это редкое событие – они появляются три-четыре раза в столетие.

Древние летописцы передают лишь состояние ужаса, которое охватывало наших далеких пращуров перед непонятным явлением. Более спокойные и детальные описания комет, даже некоторые измерения их дошли до нас в записях древних и средневековых астрономов. Но там нет никаких объяснений природы этого явления. Предполагалось, что кометы появлялись неспроста, они предшествовали различным бедствиям, которые обрушивались на людей: войнам, голоду, наводнениям, засухе и т. п. Поскольку в человеческой истории такие испытания не были редкостью, то зачастую, действительно в год, когда появлялась какая-нибудь комета, происходили памятные события. Это еще больше укрепляло в людях убеждение, что кометы проходят достаточно близко от места бедствия.

Современные астрономы и даже любители астрономии, занимающиеся исследованием этих небесных тел, могут рассказать о природе и поведении комет уже довольно много: откуда появляются кометы, чем объясняется их необычный облик и даже предскажут, когда и где можно будет наблюдать какую-нибудь из них.

1. Ядро и хвост кометы.

Слабые кометы, едва различимые глазом или практически невидимые, можно установить, анализируя их фотографии, полученные с помощью больших телескопов. Эти кометы также имеют едва заметные короткие хвостики. Однако все кометы, и яркие, и слабые, когда уходят очень далеко от Солнца, выглядят как едва заметные туманные пятнышки с размытыми краями. Хвосты на таких огромных расстояниях не удается различить даже на фотографиях.

Голова или, как еще называют, кома – самая яркая часть кометы. Внутри ее предполагается твердое ядро.

Предполагается, что на больших расстояниях от Солнца, кометы представляют собой голые ядра, т.е. глыбы твердого вещества, состоящего из обыкновенного водяного льда и льда из метана и аммиака. В лед вморожены каменные и металлические пылинки и песчинки. При приближении к Солнцу этот очень грязный лед начинает испаряться, создавая вокруг ядра огромную газопылевую оболочку. Под действием давления солнечного света часть газов оболочки отталкивается в сторону, противоположную Солнцу, образуя хвост. У некоторых комет эти процессы протекают настолько интенсивно, что оболочка и хвост достигают чудовищных размеров. Так, например, диаметр оболочки сверх гигантской кометы Холмса в 1882 году был равен 1,5 миллиона километров, а длина ее хвоста достигала 300 миллионов километров!

Форма и протяженность хвостов различны. Текущий рекорд длины хвоста кометы – это хвост Великой кометы 1843. Её хвост имел длину не менее 300 млн. км. (диаметр головы ее несколько превышал диаметр Солнца). Это значит, что если мысленно поместить саму комету в центр Солнца, то хвост пересек бы орбиту Марса.

Классификацию кометных хвостов предложил в XIX в. замечательный русский астроном Ф.А. Бредихин:

I тип хвостов – прямые, направленные от Солнца. Они образованы ионизированными молекулами кометной атмосферы, которые солнечным ветром уносятся прочь от ядра;

II тип - это изогнутые хвосты и по отношению к орбите кометы отклоняются назад. Образуются они непрерывно истекающими из ядра частичками пыли;

Интерес ученых к кометам связан главным образом с желанием изучить их состав. Многие полагают, что это – своеобразный “строительный мусор”, оставшийся после образования планет Солнечной системы из первоначального газопылевого облака.

2. Происхождение комет и их природа.

За обозримое прошлое человечества было открыто много комет. Каждая из них имеет свои особенности. На первых порах серьезного изучения комет никому не приходила в голову мысль, что они принадлежат Солнечной системе.

Раньше предполагалось, что таинственные небесные странницы приходят к нам из далеких безвестных глубин межзвездного пространства. Они подходят к Солнцу на расстояние в несколько десятков или сотен миллионов километров и затем пускаются в обратный путь. При этом, чем дальше кометы уходили от Солнца, тем сильнее ослабевал их блеск, пока совсем не пропадал. Большинство астрономов предполагали в прошлые времена, что каждая комета приходит к Солнцу лишь один раз и затем навсегда покидает его окрестности.

Удивительно, что точка зрения Аристотеля господствовала около двух тысячелетий, и никакие попытки поколебать ее не давали положительного результата. Хотя некоторые ученые склонны были думать, что кометы все-таки приходят из каких-то далеких, неведомых нам глубин космического пространства. Только в конце XVI века идея Аристотеля была опровергнута.

В конце XVI века астрономы наблюдали яркую комету с двух наблюдательных пунктов, очень удаленных друг от друга. Если бы комета находилась в атмосфере, т.е. недалеко от наблюдателей, то должен был бы наблюдаться параллакс: с одного пункта комета должна быть видна на фоне одних звезд, а с другого - на фоне других. Однако наблюдения показали, что никакого параллакса не было, и, значит, комета находилась гораздо дальше, чем Луна. Земная природа комет была опровергнута, что сделало их еще более таинственными. Одна тайна сменилась другой, еще более заманчивой и недоступной.

У многих астрономов сложилось мнение, что кометы приходят к нам из межзвездных глубин, т.е. не являются членами Солнечной системы. В какой-то момент даже предполагалось, что кометы приходят к Солнцу по прямолинейным траекториям и по таким же прямолинейным траекториям уходят от него.

Трудно сказать, сколько времени продолжалось бы такое положение, если бы не одно важнейшее событие в истории человечества.

Гениальный естествоиспытатель, великий физик и математик Исаак Ньютон завершил выдающийся научный труд, связанный с анализом движения планет вокруг Солнца, и сформулировал закон всемирного тяготения: сила взаимного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна квадрату между ними.

Согласно этому закону природы все планеты движутся вокруг Солнца не произвольным образом, а строго по определенным орбитам. Орбиты эти представляют собой замкнутые линии.

Но даже сейчас обработка данных, полученных в результате космического эксперимента и наземных наблюдений, продолжается.

Кометы, которые нам удается наблюдать, приходят к нам с далеких окраин Солнечной системы. По сегодняшним представлениям более 100 миллиардов кометных ядер населяют эти окраины.

Существуют гипотезы захвата комет из межзвездного пространства и их вулканического происхождения. Однако в 1950 году они были сильно потеснены одной старой идеей в новом оформлении.

Сам Оорт полагал на первых порах, что кометы образовались в процессе взрыва Фаэтона. Взрыв, по его мнению, был настолько силен, что большая часть мелких осколков была заброшена так далеко, что попала под косвенное влияние соседних звезд, да так и осталась на окраинах Солнечной системы.

И хотя красивая гипотеза о Фаэтоне оказалась несостоятельной, идея забрасывания вещества из внутренних областей Солнечной системы во внешние, в дальнейшем получила подтверждение.

3. Кометные орбиты.

Согласно результатам исследований Ньютона, кометы движутся либо по эллиптическим, либо по параболическим, либо по гиперболическим орбитам, причем в фокусе каждой орбиты находится Солнце.

Как полагают многие ученые, ядра комет, имеющих параболическую или гиперболическую орбиту, удаляясь от Солнца с все уменьшающейся скоростью, на расстоянии порядка 150 тысяч астрономических единиц от него почти останавливаются. Постепенно там образовался огромный рой, миллиарды кометных ядер – так называемое облако Оорта (по имени голландского ученого А.Оорта, который выдвинул эту гипотезу). Поскольку тяготение Солнца на столь больших расстояниях ничтожно, ядра могут оставаться там почти без движения бесконечно долго. Лишь изредка, испытав гравитационное возмущение, к примеру, от проходящей недалеко звезды, часть ядер в облаке начинает перемещаться, некоторые из них, возможно, в сторону Солнца.

Совсем другое дело, если орбита окажется эллиптической. Поскольку эллипс – линия замкнутая, комета должна обязательно вернуться в ту точку пространства, в которой ее уже наблюдали с Земли.

Сколько же времени нужно комете, движущейся по эллипсу, чтобы сделать один оборот? Это зависит от различных параметров эллипса, в частности от расстояния между его фокусами. Чем меньше это расстояние, тем быстрее комета совершит оборот вокруг Солнца.

Для некоторых комет период обращения вокруг Солнца может составлять миллионы и десятки миллионов лет.

4. Причина свечения комет и их химический состав

Во времена Ломоносова еще ничего не было известно о законе изменения блеска комет и тем более об их спектрах. Михаил Васильевич Ломоносов

Комета светится отраженным светом. Это подтверждается характером спектра ядра. Но когда ядро кометы приближается к Солнцу, то в его спектре появляются яркие линии излучения натрия. В спектре ядра кометы 1882 г., подошедшей чрезвычайно близко к Солнцу, были обнаружены даже яркие линии железа и никеля, пропавшие, когда комета от него удалилась. Потом исчезли и линии натрия. Все это нужно объяснить тем, что твердое ядро кометы, когда оно подходит очень близко к Солнцу, нагревается настолько, что начи­нает испаряться, превращаясь в раскаленный, све­тящийся пар.

Блеск головы кометы меняется с приближением к Солнцу очень быстро. Поведение блеска комет меняется не только от кометы к комете, но и у одной кометы на ее пути вокруг Солнца. Это го­ворит, безусловно, о неустойчивости кометного ядра, о возможности быстрых изменений на его поверх­ности.

Некоторые молекулы кометного газа поглощают солнечный свет, и затем снова его же излучают в той же длине волны. Такое излучение физики называют резонансным. Другие молекулы поглощают энергию Солнца в виде ультрафиолетовых лучей, но излучают их в виде лучей с другой длиной волны, видимых глазу. Такое свечение физики называют флуоресцен­цией.

Спектр головы кометы показывает, что она состо­ит из молекул, т. е. химических соединений, излу­чающих широкие полосы. Химический состав этих газов удалось выяснить подробнее лишь в течение последних лет. Оказалось, что голова кометы состоит из молекул углерода (Сз), циана (СК), углеводорода (СН). Недавно были об­наружены гидрид азота, гидроксил (ОН).

В спектре головы кометы, кроме ярких полос, присутствует и непрерывный спектр, который, воз­можно, также принадлежит молекулам газа и не является спектром света, отраженного от Солнца. Однако большинство ученых полагает, что пыль в голове кометы все же должна быть и что из нее же состоят изогнутые хвосты, так как у них тоже наблюдается не­прерывный спектр. Если бы в этом спектре удалось обнаружить и темные линии, имеющиеся в спектре Солнца, наличие пыли в хвостах комет было бы до­казанным.

Хвост кометы, когда он широкий и яркий, иногда обнаруживает непрерывный спектр, свидетельству­ющий о наличии в нем пыли. По большей части, од­нако, спектр хвоста кометы газовый, обнаруживаю­щий наличие ионизованных углекислоты СО2, окиси углерода СО, молекул азота N2. Как известно, окись углерода (СО) образуется в печах при неполном сгорании топлива и тоже ядовита, хотя и не так, как циан. Ее называют угарным газом.

5. СТОЛКНОВЕНИЕ ЗЕМЛИ С КОМЕТОЙ

Столкновения Земли с кометой — вот чего стали бояться люди, перестав видеть в кометах предвест­ниц войн. Если говорить о столкновении Земли с твердым ядром кометы, то одно такое ядро, приблизившись к Солнцу на расстояние Земли от Солнца, имеет один шанс из 400 000 000 столкнуться с Землей.

Поскольку в год на этом расстоянии от Солнца проходит около пяти комет в среднем, то ядро какой-либо кометы может столкнуться с Землей в среднем один раз за 80 000 000 лет. Ни сдвинуть Землю с ее пути, ни даже изуродовать ее кометный хвост не сможет. Но не можем ли мы отравиться ядовитыми газами — циа­ном или окисью углерода, имеющимися в ко­мете?

Зная ничтожно малую, почти неосуществимую ис­кусственно в лаборатории плотность комет, что примесь кометных газов к возду­ху Земли будет совершенно неощутима. Вероятно, ее даже не удастся обнаружить современными методами хи­мии. В голове или в хвосте кометы при большой скорости движения небесных тел Земля может про­быть не дольше нескольких часов. Кометные газы ничтожной плотности примешиваются только к наи­более высоким слоям земной атмосферы. Лишь немногие молекулы сумеют за долгий срок, быть может, за годы, добраться до нижних слоев воз­духа. К тому же еще неизвестно, уцелеют ли они на таком пути, испытывая множество столкновений и химиче­ских соединений с молекулами воздуха?

Насколько можно судить по вычислениям, Земля в свое время пересекла хвост кометы 1861 II. Комета Галлея 19 мая 1910 г. была на расстоянии 24 миллионов км от Земли, между нами и Солнцем. Хвост же кометы в эти дни тянулся на 30 миллионов км и, по-видимому, коснулся Земли 19 мая. В этот период не только не произошло ничего особенного, но даже точнейшие химические анализы, как и в 1861 г., не обнаружили никакой примеси посторонних газов в воздухе.

Большинство же таких кусочков, составляющих ядро кометы, должно быть еще мельче, иначе поверх­ность ядра была бы недостаточна, чтобы выделять газы с той скоростью, как это наблюдается. Для Земли дробное строение каменных ядер предпочтительнее при встрече с ними. К тому же сопротивление атмо­сферы сильнее затормозит движение мелких твердых кусков, чем крупных, и ослабит их ударную силу. Куски эти при падении на Землю рассредоточатся и выпадут на расстоянии десятков километров или даже сотен километров друг от друга, а не кучей.

Что же может произойти в результате? В худшем случае легкие местные землетрясения и разрушения на отдельных площадях размером в несколько кило­метров.

Вероятность попадания осколков кометного ядра в какой-либо город очень мала.

Заключение.

В 1892 году американский ученый Э. Барнард впервые открыл комету на фотопластинке. Это был важный шаг в техническом раз­витии астрономии, после чего очень скоро фотография окончательно отучила астрономов-профессионалов от визуальных наблюдений. Появившиеся затем новые светосильные фотографические теле­скопы-фотокамеры оказались очень удобными для поиска слабых небесных объектов. Таким образом, произошло разграничение сфер деятельности между профессионалами и любителями: ученые пере­ключились на фотографический поиск и при этом стали открывать слабые, ранее недоступные для наблюдений объекты. А любители продолжали обшаривать небо с помощью своих скромных телеско­пов.

Читайте также: