Классификация приборного оборудования воздушных судов реферат

Обновлено: 07.07.2024

Цель раздела - изучение назначения, принципов действия, устройства, ос­новных технических характеристик и условий эксплуатации авиационного при­борного оборудования.

В комплекс приборного оборудования современного летательного аппара­та входят приборы контроля работы авиационных силовых установок, пилотажно-навигационные приборы, системы автоматического пилотирования и высотное оборудование. При безотказной работе приборного оборудования возможны безопасные и регулярные полеты в любых метеорологических усло­виях, в строгом соответствии с правилами и наставлениями по летной эксплуа­тации.

Создание первоклассного приборного оборудования - одно из условий по­вышения технических данных самолета. С введением в эксплуатацию новых самолетов и вертолетов, новой измерительной техники и средств автоматиза­ции возрастают требования и задачи, стоящие перед авиаспециалистами в об­ласти глубокого и всестороннего освоения измерительной техники, без которой невозможна грамотная эксплуатация и творческая работа инженерно-технических работников, безаварийность и рентабельность авиационных перевозок.

2.1. Классификация приборного оборудования

Роль авиационных приборов в повышении уровня безопасности, регуляр­ности и экономичности полетов ГА. Классификация авиационных приборов. Стандартизация и унификация авиационного приборного оборудования.

Необходимо составить таблицы всех важных параметров полета, режимов работы силовых установок, систем высотного оборудования и жизнеобеспече­ния членов экипажа и пассажиров. При этом выписать в конспект нормальных значений перечисленных параметров соответственно основным режимам.

Классификация авиационных приборов по назначению.

Основные параметры, характеризующие режим работы авиационных сило­вых установок.

Основные параметры, характеризующие режим полета летальных аппаратов.

Классификация авиационных приборов по способу воспроизведения показа­ний.

Классификация авиационных приборов по принципу действия.

Классификация авиационных приборов по дистанционности действия.

Основные сведения о форме и размерах Земли.

Что называется долготой и широтой данного места?

Основные сведения о земной атмосфере.

Что называется стандартной атмосферой?

Основные условия, характеризующие эксплуатацию авиационных приборов.

2.2. Элементы теории авиационных приборов

Общие сведения. Классификация погрешностей. Понятие о классе точно­сти прибора. Электродистанционные передачи (ЭДП) и их классификация. Гальванометрическая, логометрические и компенсационные ЭДП на постоян­ном токе. Сельсинные и магнесинные ЭДП на переменном токе. Цифровые и частотные датчики. Устройства отображения информации.

При изучении теории авиационных приборов необходимо освоить сущ­ность процесса измерения, хорошо знать причины возникновения погрешно­стей и основные методы борьбы с ними. Овладеть символическим методом изображения приборов в виде взаимосвязанных звеньев.

Обратить внимание на изучение цифровых и частотных датчиков, исполь­зуемых для связи с цифровыми вычислительными машинами (ЦВМ), коллима-торных приборов (индикация на стекле) и индикаторов на электронно-лучевых трубках, находящих все более широкое применение на современных летатель­ных аппаратах.

Что называется измерительным прибором?

Звено и структурная схема измерительного прибора.

Логометр и его основные схемы включения.

Режим работы сельсинов, используемых в ЭДП.

Что такое телегон?

Основные отличия магнесина от сельсина?

Устройство датчика с время-импульсным кодом.

Устройство датчика с единичным кодом.

Устройство датчика с двойным кодом.

Основные разновидности частотных датчиков.

Основные требования по расположению авиационных приборов.

Устройство паравизуального индикатора.

Основные виды отображения информации на индикаторах разных типов.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

АВИАЦИОННЫЕ БОРТОВЫЕ ПРИБОРЫ, приборное оборудование, помогающее летчику вести самолет. В зависимости от назначения авиационные бортовые приборы делятся на пилотажно-навигационные, приборы контроля работы авиадвигателей и сигнализационные устройства. Навигационные системы и автоматы освобождают пилота от необходимости непрерывно следить за показаниями приборов. В группу пилотажно-навигационных приборов входят указатели скорости, высотомеры, вариометры, авиагоризонты, компасы и указатели положений самолета. К приборам, контролирующим работу авиадвигателей, относятся тахометры, манометры, термометры, топливомеры и т.п.

В современных бортовых приборах все больше информации выносится на общий индикатор. Комбинированный (многофункциональный) индикатор дает возможность пилоту одним взглядом охватывать все объединенные в нем индикаторы. Успехи электроники и компьютерной техники позволили достичь большей интеграции в конструкции приборной доски кабины экипажа и в авиационной электронике. Полностью интегрированные цифровые системы управления полетом и ЭЛТ-индикаторы дают пилоту лучшее представление о пространственном положении и местоположении самолета, чем это было возможно ранее.

Новый тип комбинированной индикации – проекционный – дает пилоту возможность проецировать показания приборов на лобовое стекло самолета, тем самым совмещая их с панорамой внешнего вида. Такая система индикации применяется не только на военных, но и на некоторых гражданских самолетах.

ПИЛОТАЖНО-НАВИГАЦИОННЫЕ ПРИБОРЫ

Совокупность пилотажно-навигационных приборов дает характеристику состояния самолета и необходимых воздействий на управляющие органы. К таким приборам относятся указатели высоты, горизонтального положения, воздушной скорости, вертикальной скорости и высотомер. Для большей простоты пользования приборы сгруппированы Т-образно. Ниже мы кратко остановимся на каждом из основных приборов.

Указатель пространственного положения.

Плановый навигационный прибор.

Плановый навигационный прибор (ПНП) показывает курс, отклонение от заданного курса, пеленг радионавигационной станции и расстояние до этой станции. ПНП представляет собой комбинированный индикатор, в котором объединены функции четырех индикаторов – курсоуказателя, радиомагнитного индикатора, индикаторов пеленга и дальности. Электронный ПНП с встроенным индикатором карты дает цветное изображение карты с индикацией истинного местоположения самолета относительно аэропортов и наземных радионавигационных средств. Индикация направления полета, вычисления поворота и желательного пути полета предоставляют возможность судить о соотношении между истинным местоположением самолета и желаемым. Это позволяет пилоту быстро и точно корректировать путь полета. Пилот может также выводить на карту данные о преобладающих погодных условиях.

Указатель воздушной скорости.

При движении самолета в атмосфере встречный поток воздуха создает скоростной напор в трубке Пито, закрепленной на фюзеляже или на крыле. Воздушная скорость измеряется путем сравнения скоростного (динамического) напора со статическим давлением. Под действием разности динамического и статического давлений прогибается упругая мембрана, с которой связана стрелка, показывающая по шкале воздушную скорость в километрах в час. Указатель воздушной скорости показывает также эволютивную скорость, число Маха и максимальную эксплуатационную скорость. На центральной панели расположен резервный пневмоуказатель воздушной скорости.

Вариометр.

Вариометр необходим для поддержания постоянной скорости подъема или снижения. Как и высотомер, вариометр представляет собой, в сущности, барометр. Он указывает скорость изменения высоты, измеряя статическое давление. Имеются также электронные вариометры. Вертикальная скорость указывается в метрах в минуту.

Высотомер.

Высотомер определяет высоту над уровнем моря по зависимости атмосферного давления от высоты. Это, в сущности, барометр, проградуированный не в единицах давления, а в метрах. Данные высотомера могут представляться разными способами – с помощью стрелок, комбинаций счетчиков, барабанов и стрелок, посредством электронных приборов, получающих сигналы датчиков давления воздуха. См. также БАРОМЕТР.

НАВИГАЦИОННЫЕ СИСТЕМЫ И АВТОМАТЫ

На самолетах устанавливаются различные навигационные автоматы и системы, помогающие пилоту вести самолет по заданному маршруту и выполнять предпосадочное маневрирование. Некоторые такие системы полностью автономны; другие требуют радиосвязи с наземными средствами навигации.

Электронные навигационные системы.

Существует ряд различных электронных систем воздушной навигации. Всенаправленные радиомаяки – это наземные радиопередатчики с радиусом действия до 150 км. Они обычно определяют воздушные трассы, обеспечивают наведение при заходе на посадку и служат ориентирами при заходе на посадку по приборам. Направление на всенаправленный радиомаяк определяет автоматический бортовой радиопеленгатор, выходная информация которого отображается стрелкой указателя пеленга.

Основным международным средством радионавигации являются всенаправленные азимутальные радиомаяки УКВ-диапазона VOR; их радиус действия достигает 250 км. Такие радиомаяки используются для определения воздушной трассы и для предпосадочного маневрирования. Информация VOR отображается на ПНП и на индикаторах с вращающейся стрелкой.

Дальномерное оборудование (DME) определяет дальность прямой видимости в пределах около 370 км от наземного радиомаяка. Информация представляется в цифровой форме.

Для совместной работы с маяками VOR вместо ответчика DME обычно устанавливают наземное оборудование системы TACAN. Составная система VORTAC обеспечивает возможность определения азимута с помощью всенаправленного маяка VOR и дальности с помощью дальномерного канала TACAN.

Система посадки по приборам – это система радиомаяков, обеспечивающая точное наведение самолета при окончательном заходе на посадочную полосу. Курсовые посадочные радиомаяки (радиус действия около 2 км) выводят самолет на среднюю линию посадочной полосы; глиссадные радиомаяки дают радиолуч, направленный под углом около 3° к посадочной полосе. Посадочный курс и угол глиссады представляются на командном авиагоризонте и ПНП. Индексы, расположенные сбоку и внизу на командном авиагоризонте, показывают отклонения от угла глиссады и средней линии посадочной полосы. Система управления полетом представляет информацию системы посадки по приборам посредством перекрестья на командном авиагоризонте.

Инерциальные системы.

Инерциальная навигационная система и инерциальная система отсчета являются полностью автономными. Но обе системы могут использовать внешние средства навигации для коррекции местоположения. Первая из них определяет и регистрирует изменения направления и скорости с помощью гироскопов и акселерометров. С момента взлета самолета датчики реагируют на его движения, и их сигналы преобразуются в информацию о местоположении. Во второй вместо механических гироскопов используются кольцевые лазерные. Кольцевой лазерный гироскоп представляет собой треугольный кольцевой лазерный резонатор с лазерным лучом, разделенным на два луча, которые распространяются по замкнутой траектории в противоположных направлениях. Угловое смещение приводит к возникновению разности их частот, которая измеряется и регистрируется. (Система реагирует на изменения ускорения силы тяжести и на вращение Земли.) Навигационные данные поступают на ПНП, а данные положения в пространстве – на командный авиагоризонт. Кроме того, данные передаются на систему FMS (см. ниже). См. также ГИРОСКОП; ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ.

Система обработки и индикации пилотажных данных (FMS).

Система FMS обеспечивает непрерывное представление траектории полета. Она вычисляет воздушные скорости, высоту, точки подъема и снижения, соответствующие наиболее экономному потреблению топлива. При этом система использует планы полета, хранящиеся в ее памяти, но позволяет также пилоту изменять их и вводить новые посредством компьютерного дисплея (FMC/CDU). Система FMS вырабатывает и выводит на дисплей летные, навигационные и режимные данные; она выдает также команды для автопилота и командного пилотажного прибора. В дополнение ко всему она обеспечивает непрерывную автоматическую навигацию с момента взлета до момента приземления. Данные системы FMS представляются на ПНП, командном авиагоризонте и компьютерном дисплее FMC/CDU.

ПРИБОРЫ КОНТРОЛЯ РАБОТЫ АВИАДВИГАТЕЛЕЙ

Индикаторы работы авиадвигателей сгруппированы в центре приборной доски. С их помощью пилот контролирует работу двигателей, а также (в режиме ручного управления полетом) изменяет их рабочие параметры.

Для контроля и управления гидравлической, электрической, топливной системами и системой поддержания нормальных рабочих условий необходимы многочисленные индикаторы и органы управления. Индикаторы и органы управления, размещаемые либо на панели бортинженера, либо на навесной панели, часто располагают на мнемосхеме, соответствующей расположению исполнительных органов. Индикаторы мнемосхем показывают положение шасси, закрылков и предкрылков. Может указываться также положение элеронов, стабилизаторов и интерцепторов.

СИГНАЛИЗАЦИОННЫЕ УСТРОЙСТВА

ОСНОВНЫЕ ТЕНДЕНЦИИ

Монитор состояния (статуса) полета (FSM) – усовершенствованная комбинация существующих систем уведомления и предупреждения –помогает экипажу в нештатных летных ситуациях и при отказах систем. Монитор FSM собирает данные всех бортовых систем и выдает экипажу текстовые предписания для выполнения в аварийных ситуациях. Кроме того, он контролирует и оценивает эффективность принятых мер коррекции.

Духон Ю.И. и др. Справочник по связи и радиотехническому обеспечению полетов. М., 1979
Боднер В.А. Приборы первичной информации. М., 1981
Воробьев В.Г. Авиационные приборы и измерительные системы. М., 1981

Все летательные аппараты в настоящее время имеют комплекс необходимого приборного оборудования, обеспечивающего экипажу выполнение полета, контроль за работой силовых установок и других систем. Приборы позволяют летчику производить контроль взлета и посадки, снижения и набора высоты, различных эволюций при выполнении полета. Даже самые первые самолеты имели на борту указатели скорости, высотомеры и компасы. Без приборов фактически невозможен полет любого летательного аппарата.

Авиационные приборы, устанавливаемые на борту самолета, классифицируются по назначению и принципу действия.

В зависимости от назначения они подразделяются на следующие группы:

пилотажно-навигационные (включая пилотажно-навигационные системы);

приборы контроля работы авиадвигателей; впомогательные приборы.

Первая группа приборов включает в себя указатели скорости, вариометры, авиагоризонты, компасы, указатели поворота и скольжения, автопилоты и др.

К приборам контроля работы двигателей относятся: тахометры, манометры, термометры, топливомеры, масломеры, расходомеры.

Вспомогательная группа приборов включает в себя те приборы, которые не вошли в основные группы (амперметры, вольтметры, манометры гидросистем, кабинные термометры и т. д.).

Указатель скорости предназначен для определения скорости полета и основан на принципе измерения скоростного напора воздушного потока. Действительно, зная величину скоростного напора


и плотность воздуха ρ, можно определить скорость самолета относительно воздуха. Схема указателя скорости показана на рис. 122.

Датчиком указателя скорости является приемник воздушных давлений (ПВД), устанавливаемый по направлению полета самолета. Приемник воздушных давлений имеет статическую камеру (С), сообщаемую с атмосферой через ряд отверстий, и камеру полного давления (П). Давление в статической камере всегда равно атмосферному. Благодаря осевому направлению отверстия в носке ПВД камера полного давления воспринимает не только атмосферное давление, но и скоростной напор. Полное давление будет зависеть от скорости движения самолетов относительно воздуха.


Давление из обеих камер через трубопроводы подается к указателю скорости, чувствительным элементом которого является манометрическая коробка. В герметичную внутреннюю полость корпуса указателя скорости подводится давление из статической камеры ПВД. В полость манометрической коробки поступает полное давление из камеры Я приемника воздушных давлений. Таким образом, манометрическая коробка оказывается под действием перепада полного и статического давлений, т. е. под действием скоростного напора.

Вследствие перепада давлений манометрическая коробка расширится и перемещение ее жесткого центра через передаточный механизм передается на стрелку прибора. Степень расширения манометрической коробки зависит от скорости полета.

При малых скоростях полета чувствительность манометрической коробки незначительная и, следовательно, перемещения жесткого центра небольшие. Для более точного определения воздушной скорости при полете на малых скоростях, что особенно важно при полете на критических и посадочных скоростях, в указателях скорости применяют трехмембранные манометрические коробки. Средняя и нижняя мембраны при этом составляют герметичную полость, сообщаемую с камерой полного давления, а через верхнюю мембрану свободно передается перемещение жесткого центра средней мембраны. Благодаря такому устройству на малых скоростях скоростной напор воспринимается средней и нижней мембранами. Вследствие малой жесткости средней мембраны перемещения жесткого центра будут большими даже при наличии незначительного скоростного напора. Поэтому деления шкалы указателя скорости выполняются редкими и позволяют с достаточной точностью определить воздушную скорость. С увеличением скорости полета средняя мембрана прижимается к верхней, в результате чего суммарная их жесткость возрастет, и скоростному напору необходимо преодолеть гораздо большее сопротивление.

При определении воздушной скорости по величине скоростного напора указатель скорости тарируется с учетом постоянной плотности воздуха. Однако плотность в большой мере зависит от температуры и давления (высоты полета). Следовательно, данному прибору всегда присущи погрешности, связанные с несовершенством методики замера скорости. Данные погрешности учитываются при подсчете истинной воздушной скорости на навигационной линейке.

На большинстве современных самолетов, помимо обычного указателя скорости, устанавливается указатель числа М (маметр) с контактным устройством системы световой сигнализации, замыкающим электрическую цепь в момент достижения самолетом скорости соответствующей установленному предельному значению числа М. Принцип действия прибора основан также на замере разности между полным и статическим давлением в полете.

Вариометр (рис. 123) устанавливается на самолете для определения вертикальной скорости его движения, что позволяет пилоту строго выдерживать заданную высоту полета.


Измерение вертикальной скорости движения самолета вариометром основано на принципе замера перепада между атмосферным давлением и давлением внутри замкнутого объема корпуса прибора, сообщающегося с атмосферой через капилляр.

В качестве чувствительного элемента в вариометре используется манометрическая коробка, непосредственно сообщаемая с атмосферой. Такая связь с атмосферой чувствительного элемента и корпуса прибора при изменении атмосферного давления (высоты полета) приводит к тому, что внутри манометрической коробки давление меняется сразу, а в полости корпуса — постепенно. В peзультате этого образуется перепад между давлением внутри и вне мембранной коробки. Если, например, самолет будет идти с набором высоты (атмосферное давление будет понижаться), то в полости манометрической коробки давление сразу же уменьшится, а в полости корпуса прибора оно будет падать постепенно. Вследствие образовавшегося перепада давления манометрическая коробка сожмется и движение ее центра передастся передаточному механизму, который переместит стрелку указателя вверх, что будет свидетельствовать о подъеме самолета. Шкала указателя градуируется в метрах в секунду. При снижении самолета стрелка указателя отклоняется вниз, а в горизонтальном полете стрелка находится на нуле.

На лицевой части вариометра имеется юстировочный винт, с помощью которого стрелку прибора при случайном ее смещении можно всегда установить на нуль.

Барометрический высотомер служит для определения высоты полета самолета по величине абсолютного давления окружающего воздуха, изменяющегося с высотой.

Чувствительным элементом высотомера (рис. 124) являются анероидные коробки, жестко скрепленные друг с другом. С увеличением высоты полета окружающее атмосферное давление воздуха падает и анероидные коробки расширяются. Перемещение центра коробок при этом через передаточный механизм передается на стрелки, которые отклоняются, показывая увеличение высоты полета. Шкала прибора градуируется в метрах. Обычно высотомеры имеют две стрелки, одна из которых (большая) делает полный оборот при подъеме на каждые 1 000 м высоты, а другая (малая) — на каждые 10 000 м. Такое устройство позволяет более точно определять высоту полета.

В приборе предусматривается специальный компенсатор (биметаллический) температурных ошибок и пружинный противовес для компенсации возможных ошибок из-за действия инерционных сил. В связи с тем что фактическое состояние атмосферы на аэродроме может отличаться от расчетного (по международной стандартной атмосфере), высотомеры при стоянке самолетов в разное время будут показывать различную высоту. Для устранения сопутствующих этому явлению ошибок на лицевой стороне прибора имеется барометрическая шкала, связанная со стрелками и кремальерой. Поворотом кремальеры стрелки высотомера можно установить в нулевое положение.

Компасы, устанавливаемые на самолетах, служат для определения его курса. В качестве указателя курса широкое распространение получили магнитные компасы, использующие в своей основе явление земного магнетизма. Магнитным компасам всегда присущи ошибки, связанные, например, с инерционностью вращающихся масс, девиацией магнитной стрелки. Девиация, т. е. отклонение магнитной стрелки на некоторый угол от истинного направления магнитных силовых линий земли, является результатом воздействия на стрелку компаса посторонних магнитных полей. На самолете девиация вызывается стальными деталями самолета, электромагнитными полями генераторов, электрических приборов и т. д.

Для устранения девиации магнитную систему компаса обычно относят в такое место самолета, где посторонние магнитные поля незначительны. Такие компасы получили название дистанционных.






Однако указанные ошибки магнитных компасов делают их непригодными при разворотах самолета на заданный угол и для строгого выдерживания курса. В этом отношении наибольшую точность показаний имеют гирополукомпасы (рис. 125), использующие в своей работе свойство гироскопа с тремя степенями свободы сохранять неизменным положение оси ротора в пространстве. Для определения курса самолета к внешней рамке гироскопа, расположенного внутри корпуса прибора, крепится картушка с оцифровкой от 0 до 360°. Ось ротора гироскопа устанавливается параллельно продольной оси самолета (рис. 125, б). Если самолет повернется на некоторый угол, то точно на такой же угол повернется продольная ось самолета и корпус прибора с окошечком и курсовой чертой (рис. 125, в). Ось же ротора гироскопа благодаря своим свойствам сохранит прежнее направление. Картушка, прикрепленная к рамке гироскопа, также сохранит свое первоначальное положение. Следовательно, курсовая черта относительно картушки повернется на угол, равный углу поворота самолета, что и будет видно в смотровом окошечке гирополукомпаса. На лицевой стороне прибора имеется арретирующее устройство, позволяющее поворачивать весь гироскоп относительно вертикальной оси и тем самым согласовывать показания гирополукомпаса с магнитным компасом.

Авиагоризонт предназначен для определения положения самолета относительно плоскости горизонта.

Принцип работы авиагоризонта также основам на использовании свойства гироскопа с тремя степенями свободы сохранять неизменным положение оси ротора в пространстве. В авиагоризонте (рис. 126) в отличие от гирополукомпаса гироскоп устанавливается таким образом, что ось ротора при любых положениях самолета в пространстве остается вертикальной.


С внешней рамкой гироскопа через передачу из двух маленьких с одинаковым числом зубьев шестеренок связан индекс прибора (силуэт самолета). На смотровом окошечке лицевой стороны прибора нанесены горизонтальные черточки-индексы.

В горизонтальном полете силуэт самолетика находится на одной линии с горизонтальными индексами.

Если самолет начнет снижаться, то при этом корпус прибора повернется вокруг оси II—II гироскопа, который сохранит свое первоначальное положение. Горизонтальные индексы относительно силуэта самолетика сместятся вверх, и у пилота создастся иллюзия снижения самолета. При наборе высоты получается обратная картина.

При помощи авиагоризонта определяют и крен самолета. При крене на определенный угол наружная рамка гироскопа поворачивается вместе с корпусом прибора относительно оси I — I , оставаясь на одном уровне с горизонтальными индексами. Подвижная шестеренка, сидящая на одной оси с силуэтом самолетика, повернется относительно жестко закрепленной с внешней рамкой гироскопа шестеренки на угол, вдвое превышающий угол крена самолета, т. е. относительно горизонтальных индексов силуэт самолетика накренится на угол, равный поперечному крену самолета.

Указатель поворота (рис. 127) в своей работе использует свойство гироскопа с двумя степенями свободы, который в случае пово-


рота самолета с какой-то угловой скоростью стремится повернуться относительно оси вращения рамки X—X таким образом, чтобы вектор угловой скорости собственного вращения ротора был бы параллелен вектору угловой скорости самолета. Угол поворота фиксируется стрелкой, выведенной на лицевую часть прибора. По окончании разворота гироскопический момент будет равен нулю и стрелка под действием пружины возвратится в нейтральное положение. Для устранения колебаний стрелки при резких изменениях угловой скорости в приборе имеется демпфер (успокоитель).

Обычно указатель поворота совмещают в одном приборе с указателем скольжения (крена), состоящем из плавно изогнутой стеклянной трубки, заполненной толуолом, внутри которой свободно перемещается шарик из черного стекла. При правильном развороте шарик под действием центробежной силы и силы веса будет находиться в середине трубки. Смещение шарика от нейтрального положения будет свидетельствовать о том, что вираж происходит со скольжением.

Автопилот предназначен для облегчения пилотирования самолета. При включении автопилота пилот освобождается от физической нагрузки по управлению самолетом, но он не освобождается от необходимости наблюдать и анализировать показания пилотажных приборов.

Автопилот осуществляет стабилизацию самолета относительно вертикальной, продольной, поперечной осей и позволяет также производить спуск, подъем и вираж.

Автопилот состоит из чувствительных элементов, промежуточного механизма (усилитель), рулевых машин (исполнительные механизмы), источников питания, пульта управления.

Чувствительными элементами автопилотов являются гироскопические приборы, внешняя рамка которых или гировертикаль имеют связь с электрическими, пневматическими, гидравлическими или другими датчиками.

Стабилизация самолета по трем осям координат осуществляется курсовым и продольно-поперечным стабилизаторами. Первый выдает сигналы отклонения от заданного положения по курсу и сигналы координации крена в зависимости от отклонения по курсу, второй — сигналы отклонения от продольной и поперечной осей и сигналы координации в зависимости от крена по курсу и углу тангажа.

Промежуточный механизм (усилитель) служит для усиления сигналов отклонения от заданного положения по осям стабилизации и определения направления этих отклонений.

Рулевые машины являются исполнительными механизмами, которые перекладывают и удерживают рули в положениях, соответствующих величинам и направлениям сигналов, поступающих от усилителя. В качестве исполнительных механизмов в автопилотах применяются гидравлические, пневматические и электрические устройства.


Пульт управления состоит из органов управления автопилотом и сигнальных лампочек.

В прямолинейном горизонтальном полете щетки потенциометра продольно-поперечного стабилизатора (гировертикали) и рулевой машины руля высоты находятся в равнопотенциальных точках (положение I). В этом случае ток в цепи отсутствует и сигнал в усилитель не поступает. При отклонении самолета от заданного режима вследствие внешнего возмущения корпус гировертикали и связанный с ним потенциометр повернется вместе с самолетом. Щетка, связанная с осью карданного подвеса гироскопа, останется на месте, так как ось ротора гироско

па при отклонении самолета от первоначального режима сохраняет свое положение в пространстве. Потенциометр перемещается относительно щетки (положение II). Электрическое равенство цепи нарушается.

В результате этого в усилителе появляется сигнал определенного знака, что в свою очередь приводит к срабатыванию реле усилителя, посылающего сигнал в рулевую машину, отклоняющую руль для парирования действующего возмущения (положение III).

Руль отклоняется до тех пор, пока щетка тросового барабана Рулевой машины не дойдет до точки, имеющей равный потенциал с точкой на потенциометре гировертикали.

Отклоненный руль, противодействуя возмущающему моменту, начинает приводить самолет к исходному положению.

В некотором промежуточном положении щеток потенциометра гировертикали и потенциометра рулевой машины электрическая Цепь оказывается сбалансированной. Движение тросового барабана рулевой машины прекращается. Это происходит при вполне определенном соотношении между отклонением руля высоты и величиной сохранившегося еще возмущения (положение IV).

Под действием отклоненного руля самолет продолжает возвращаться в исходное положение, а вместе с ним и потенциометр гировертикали (положение V). Это вызывает новое нарушение балансировки электрической цепи моста и появление сигнала на усилителе и рулевой машине, но в обратном направлении. Результатом этого явится движение руля также к исходному положению, т. е. к нейтрали (положение VI).

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

На главную
Поиск на сайте

ОБЩИЕ СВЕДЕНИЯ ОБ АВИАЦИОННЫХ ПРИБОРАХ

§ 4. Классификация авиационных приборов

В зависимости от назначения все авиационные приборы могут быть разделены на две основные группы: 1) приборы контроля работы авиационного двигателя (моторные приборы) и 2) пилотажно-навигационмые приборы.

В первую группу входят манометры бензина и масла, термометры масла и воды, термометры цилиндров, термометры карбюратора, тахометры, мановакуумметры, бензиномеры, счетчики расхода горючего, газоанализаторы.

Во вторую группу входят указатели скорости, высотомеры, вариометры, магнитные компасы, указатели поворота, указатели скольжения, авиагоризонты, гирополукомпасы, гиромагнитные компасы, радиокомпасы, секстанты, визиры, часы, автопилоты и автоштурманы.

Работа современных авиационных приборов основана на различных законах механики, аэродинамики, гидравлики, электротехники и магнетизма.

Существуют приборы одного назначения, работа которых основана на совершенно различных физических принципах, например, тахометры центробежныо и электрические, бензиномеры электрические и гидростатические и т. д. Параллельное существование этих приборов объясняется тем, что каждый из примененных принципов имеет свои преимущества и свои недостатки; на некоторых типах самолетов выгоднее применять электрический бензиномер, на других — механический и т. д.

За последние годы заметно расширилось применение электрических приборов, вытесняющих на многих самолетах гидравлические и механические приборы. Преимуществами электрических приборов являются их дистанционность, удобство монтажа и питания.

По принципу действия существующие авиационные приборы можно разделить на следующие группы:

1) манометрические приборы, в основу работы которых положен принцип измерения давления; сюда относятся манометры, жидкостные термометры, мановакуумметры, указатели скорости, высотомеры, вариометры, гидростатический бензиномер;

2) электрические приборы, основанные на измерении одной из электрических величин (напряжение, сила тока, частота); сюда относятся электрические термометры, тахометры, бензиномеры и т. д.;

3) магнитные компасы, использующие свойство магнитной стрелки располагаться по направлению магнитного меридиана;

4) механические приборы, работающие на основе различных законов статики, кинематики и динамики; сюда относятся указатели скольжения, механические бензиномеры, часы, центробежные тахометры и т. д.;

5) гироскопические приборы, использующие свойства гироскопа с двумя или тремя степенями свободы; сюда относятся указатели поворота, авиагоризонты, гирополукомпасы, гиромагнитные компасы;

6) оптические приборы, использующие законы оптики; сюда относятся навигационные визиры и секстанты;

7) приборы, состоящие из элементов, работа которых основана на различных физических принципах; сюда относятся автопилоты, автоштурманы и другие сложные автоматы.

Для удобства наблюдения за работой двигателей и других агрегатов самолета указатели всех приборов должны быть сосредоточены в кабинах пилота, штурмана и бортмеханика. Двигатели и части самолета, в которых должно производиться то или иное измерение, обычно удалены от кабины самолета. На самолетах с многими двигателями приборная доска может быть помещена на расстоянии 10 м и более от двигателей.

Приборы, показания которых передаются на расстояние, называются приборами с дистанционной передачей показаний, или просто дистанционными приборами. Дистанционными приборами могут быть не только приборы, контролирующие работу двигателя, но и пилотажно-навигационные приборы.

§ 6. Общие требования к авиационным приборам

Надежность и точность в работе являются основными требованиями, предъявляемыми к авиационным приборам, так как от исправной работы приборов зависит выполнение любого полетного задания.

Под надежностью прибора следует понимать не только безотказную работу его в течение положенного времени, но и точность его показаний при любых условиях полета. От точности приборов зависит степень использования летных качеств самолета и мощности двигателя.

Надежность и точность работы приборов проверяют до их установки на самолет лабораторными испытаниями соответственно специальным техническим условиям. В лаборатории приборы проверяются в различных условиях, воспроизводящих условия работы прибора ка самолете. Приборы испытываются при различных температурах, при разрежении воздуха, при воздействии вибрации, при наклонах. Во всех этих случаях приборы должны безотказно работать и показания их должны соответствовать допускам, установленным для данного прибора техническими условиями.

Удобство эксплоатации прибора заключается в простоте наблюдения и отсчета по шкале прибора, несложности обращения с прибором до полета и в полете, в минимальном уходе за прибором при его эксплоатации и в простоте его ремонта.

Габариты и вес прибора должны быть минимальными. Небольшие габариты прибора облегчают размещение его в кабине самолета. Снижение веса приборного оборудования дает возможность увеличить полезный груз самолета.

§ 7. Размещение авиационных приборов на самолете

Приборные доски. На легких и средних самолетах все авиационные приборы (за исключением компаса А-4) устанавливают на приборную доску летчика. На тяжелых самолетах большинство приборов, контролирующих работу двигателя, выносят на отдельную доску бортмеханика.

На приборкой доске летчика приборы размещают так, чтобы летчик легко мог видеть показания, характеризующие положение самолета или работу двигателя.

Группа пилотажно-навигационных приборов наиболее важна для летчика, так как показания этих приборов быстро меняются с изменением положения самолета. Поэтому эту группу приборов помещают в наиболее видном месте приборной доски — в ее центральной или левой части. Пилотажно-навигационные приборы не должны ничем загораживаться как при нормальном полете, так и при посадке (ни штурвалом, ни рычагами управления).

Группу приборов — указатель скорости, указатель поворота и вариометр — всегда устанавливают на одной горизонтали (фиг. 17).

Группу курсовых приборов — компас, указатель поворота, индикатор РПК (радиополукомпас)—располагают на одной вертикали, чтобы можно было одним взглядом определить правильность курса самолета.

Рекомендуемое расположение пилотажных приборов на приборной доске показано на фиг. 18.

При наличии на самолете автопилота пилотажные приборы располагаются на доске, как показано на фиг. 19.


При размещении моторных приборов может быть гораздо больше вариантов, чем при размещении пилотажных приборов, так как положение моторных приборов часто определяется конфигурацией приборной доски, наличием вспомогательных агрегатов и т. д.


Фиг. 17. Расположение вариометра, указателя поворота и указателя скорости на приборной доске самолета.

Фиг. 18. Схема рекомендуемого расположения пилотажных приборов на приборной доске самолета:


1-высотомер, 2-магнитный компас, 3-авиагоризонт, 4-указатель скорости, 5-указатель поворота, 6-вариометр, 7- индикатор РПК.
Фиг. 19. Расположение пилотажных приборов на приборной доске самолета при наличии автопилота:


1—индикатор РПК, 2—указатель скорости, 3—указатель поворота, 4—вариометр, 5—высотомер, б —курсовой гироскоп автопилота, 7—продольно-поперечный гироскоп автопилота
Фиг. 20. Вариант расположения моторных приборов на четырехмоторном самолете:

1—тахометры, 2—мановакуумметры, 3— газоанализаторы, 4—четырехстрелочные индикаторы давления и температуры.


На многомоторных самолетах приооры, выполняющие наковые функции, помещают рядом на одной горизонтали: например, все тахометры —в одном ряду, манометры — в другом и т. д. (фиг. 20). В таком случае каждый вертикальный ряд приборов дает сумму показаний, характеризующих режим работы соответствующего двигателя.

Фиг. 21. Приборная доска штурмана:

1-указатель скорости. 2-часы, 3-высотомер, 4-термометр наружного воздуха, 5 и 6 -графики поправок

На приборной доске штурмана помещают высотомер, указатель скорости, часы и термометр наружного воздуха. Обычно доска штурмана имеет вид, изображенный на фиг. 21, и помещается сбоку кабины штурмана.

Читайте также: