Классификация покрытия поверхности деталей реферат

Обновлено: 18.05.2024

Нанесение покрытий позволяет решить две технологические задачи. Первая состоит в направленном изменении физико-химических свойств исходных поверхностей изделий, обеспечивающих заданные условия эксплуатации, вторая – в восстановлении свойств поверхностей изделий, нарушенных условиями эксплуатации, включая потерю размеров и массы. Использование покрытий позволяет значительно повысить эксплуатационные характеристики изделий: износостойкость, коррозионостойкость, жаропрочность, жаростойкость и др.

В настоящее время продолжается совершенствование и поиск новых методов нанесения покрытий.

Изучение методов нанесения покрытий, их разновидностей; термодинамики процессов при создании покрытий различного типа на металлических и неметаллических поверхностях; строения, структуры и эксплуатационных свойств покрытий; основного оборудования для газотермического и электротермического нанесения покрытий на металлопродукцию.

Изучение методов повышения качества изделий формированием многослойных и армированных покрытий; метрологического контроля технологических параметров формирования и их свойств.

Роль и место покрытий в современном производстве

Покрытия – это одно или многослойная структура нанесенное на поверхность для защиты от внешних воздействий (температуры, давления, коррозии, эрозии и так далее).

Различают внешние и внутренние покрытия.

Внешние покрытия имеют границу между покрытием и поверхностью изделия. Соответственно размер изделия увеличивается на толщину покрытия, при этом взрастает масса изделия.

Во внутренних покрытиях отсутствует граница раздела и размеры и масса изделия остаются неизменными, при этом изменяются свойства изделия. Внутренние покрытия еще называют модифицирующими покрытиями.

Различают две основные задачи, разрешаемые при нанесении покрытия

1. Изменение исходных физико-химических свойств поверхности изделий, обеспечивающих заданные условия эксплуатации;

2. Восстановление свойств, размеров, массы поверхности изделия, нарушенных условиями эксплуатации.

Назначение и области применения покрытий

Основной причиной появления и развития технологии нанесения защитных покрытий явилось стремление повысить долговечность деталей и узлов различных механизмов и машин. Оптимизация системы покрытия предполагаетсоответствующий выбор состава покрытия, его структуры, пористости и адгезии с учетом, как температуры нанесения покрытия, так и рабочей температуры, совместимости материалов подложки и покрытия, доступности и стоимости материала покрытия, а также возможности его возобновления, ремонта и надлежащего ухода во время эксплуатации

Применение недостаточно прочного покрытия, толщина которого за время работы заметно уменьшается, может привести к снижению прочности всей детали вследствие уменьшения эффективной площади ее полного поперечного сечения. Взаимная диффузия компонентов из подложки в покрытие и наоборот может привести к обеднению или обогащению сплавов одним из элементов. Термическое воздействие может изменить микроструктуру подложки и вызвать появление в покрытии остаточных напряжений. С учетом всего перечисленного оптимальный выбор системы должен обеспечивать ее стабильность, т. е. сохранение таких свойств, как прочность (в ее различных аспектах), пластичность, ударная вязкость, сопротивление усталости и ползучести после любого воздействия. Наиболее сильное влияние на механические свойства оказывает эксплуатация в условиях быстрого термоциклирования, а наиболее важным параметром является температура и время ее воздействия на материал; взаимодействие с окружающей рабочей средой определяет характер и интенсивность химического воздействия.

Механические способы соединения покрытия с подложкой часто не обеспечивают нужное качество сцепления. Гораздо лучшие результаты обычно дают диффузионные методы соединения. Хорошим примером удачного диффузионного покрытия является алитирование черных и цветных металлов.

Классификация покрытий и методов их получения

В настоящее время существуют много разнообразных покрытия и методы их получения.

Во многих публикациях предлагаются различные схемы классификации неорганических покрытий по различным признакам.

Можно классифицировать покрытия по следующим основным принципам:

1. По назначению (антикоррозионные или защитные, жаростойкие, износостойкие, антифрикционные, светоотражающие, декоративные и другие);

2. По физическим или химическим свойствам (металлические, неметаллические, тугоплавкие, химостойкие, светоотражающие и т.д.);

3. По природе элементов (хромовое, хромоалюминиевое, хромокремниевое и другие);

4. По природе фаз, образующихся в поверхностном слое (алюминидные, силицидные, боридные, карбидные и другие)

Рассмотрим наиболее важные покрытия, классифицированные по назначению.

Защитные покрытия – основное назначение связано с их разнообразными защитными функциями. Большое распространение получили коррозионностойкие, жаростойкие и износостойкие покрытия. Широко применяются также теплозащитные, электроизоляционные и отражающие покрытия.

Конструкционные покрытия и пленки – выполняют роль конструктивных элементов в изделиях. Особенно широко также используются при производстве изделий в приборостроении, радиоэлектронной аппаратуры, интегральных схем, в турбореактивных двигателях - в виде срабатываемых уплотнений в турбине и компрессоре и др.

Технологические покрытия – предназначаются для облегчения технологических процессов при производстве изделий. Например, нанесение припоев при пайке сложных конструкций; производстве полуфабрикатов в процессе высокотемпературного деформирования; сварке разнородных материалов и т.д.

Декоративные покрытия – исключительно широко применяются при производстве бытовых изделий, украшений, повышении эстетичности промышленных установок и приборов, протезировании в медицинской технике и др.

Восстановительные покрытия – дают огромный экономический эффект при восстановлении изношенных поверхностей изделий, например гребных валов в судостроении; шеек коленчатых валов двигателей внутреннего сгорания; лопаток в турбинных двигателях; различного режущего и прессового инструмента.

Оптические покрытия – уменьшают отражательную способность по сравнению с массивными материалами, в основном, благодаря геометрии поверхности. Профилеметрирование показывает, что поверхность некоторых покрытий представляет собой совокупность шероховатостей, высота которых колеблется от 8 до 15 мкм. На отдельных макронеровностях формируются микронеровности, высота которых колеблется от 0,1 до 2 мкм. Таким образом, высота неровностей соизмерима с длиной волны падающего излучения.

Отражение света от такой поверхности происходит в соответствии с законом Френкеля.

В литературных источниках встречаются различные принципы классификации методов нанесения покрытий. Хотя следует отметить, что единой системы классификации методов нанесения покрытий нет.

Хокинг и ряд других исследователей предложили три классификации методов нанесения покрытий:

1. По фазовому состоянию среды, из которой происходит осаждение материала покрытия;

2. По состоянию наносимого материала;

3. По состоянию процессов, которые определяют одну группу методов нанесения покрытий.

Изменение физико-химических свойств поверхностей при нанесении покрытий

Поверхностный слой (покрытие) играет определяющую роль в формировании эксплуатационных и других свойств изделий, создание его на поверхности твердого тела практически всегда изменяет физико-химические свойства в нужном направлении. Нанесение покрытий позволяет восстановить ранее утраченные свойства в процессе эксплуатации изделий. Однако чаще всего изменяют свойства исходных поверхностей изделий, полученные в процессе их производства. В этом случае свойства материала поверхностного слоя существенно отличаются от свойств исходной поверхности. В подавляющем большинстве меняется химический и фазовый состав вновь созданной поверхности, в результате получают изделия с требуемыми эксплуатационными характеристиками, например высокой коррозионной стойкостью, жаростойкостью, износостойкостью и многими другими показателями.

Изменение физико-химических свойств исходных поверхностей изделий может быть осуществлено созданием как внутренних, так и внешних покрытий. Возможны и комбинированные варианты.

При нанесении внутренних покрытий сохраняются неизменными размеры изделий (Lи = const). Некоторые методы обеспечивают и постоянство массы изделия, в других методах - приращение массы ничтожно мало и им можно пренебречь. Как правило, отсутствует четкая граница модифицированного поверхностного слоя (δм ≠ const).

При нанесении внешних покрытий размер изделия увеличивается (Lи ≠ const) на толщину покрытия (δпк). Возрастает и масса изделия.

На практике встречаются и комбинированные покрытия. Например,при нанесении теплозащитных покрытий, отличающихся повышенным количеством несплошностей во внешнем слое, жаростойкость обеспечивается за счет внутреннего беспористого покрытия.

Внутренние покрытия создаются различными способами воздействия на поверхность исходного материала (модифицирование исходных поверхностей). На практике широко используются следующие методы воздействия: механические, термические, термодиффузионные и высокоэнергетические с проникающими потоками частиц и излучений.

Встречаются и комбинированные методы воздействия, например термомеханические и др. В поверхностном слое происходят процессы, приводящие к структурному изменению исходного материала на глубину от нанометрового диапазона до десятых долей миллиметра и более. В зависимости от метода воздействияпротекают следующие процессы:

– изменение зеренного строения материала;

– искажение кристаллической решетки, изменение ее параметров и типа;

– разрушение кристаллической решетки (аморфизация);

– изменение химического состава и синтезирование новых фаз.

Практическое значение внешних покрытий очень велико. Нанесение внешних покрытий позволяет не только решать задачи по изменению физико–химических свойств исходных поверхностей, но также восстанавливать их после эксплуатации.

Внешние покрытия часто выполняют роль конструкционного элемента, например покрытия – пленки при производстве интегральных схем. К настоящему времени разработано большое количество методов нанесения покрытий различного назначения из многих неорганических материалов.

Для анализа физико-химических процессов, связанных с нанесением покрытий, их целесообразно систематизировать по условиям формирования. представляется возможным выделить следующие группы покрытий, формирующихся на твердой поверхности: твердофазные, жидкофазные, порошковые и атомарные.

1. Дайте определение термина покрытие.

2. Какие две основные задачи решаются при нанесении покрытий.

3. Назовите основное назначение и области применения покрытий.

4. Назовите основные критерии, по которым классифицируют покрытия.

5. Какие покрытия называют защитными?

6. Назовите основные критерии классификации способов нанесения покрытий.

7. Назовите основные группы методов классифицированных по состоянию наносимого материала.

8. Как изменяются физико-химические свойства поверхности при нанесении покрытий?

9. Назовите основные отличия внутренних и внешних покрытий.

10. Приведите пример комбинированных покрытий.

Основные понятия о химических и электрохимических способах нанесения покрытий

Получение покрытий из растворов химические и электрохимическими методами является классическим примером процессов, позволяющих проследить в относительно, чистом формирование наносимых слоев путем последовательного присоединения атомов к поверхности покрываемого изделия при ее взаимодействии с ионно-реакционной средой.

Электрохимический способ получения покрытия – это получение металлического или неметаллического неорганического покрытия в электролите под действием электрического тока от внешнего источника.

Катодное восстановление металла – это электрохимический способ получения металлического покрытия на металле, являющемся катодом.

Анодное Окисление – это электрохимический способ получения неметаллического неорганического покрытия на металле, являющемся анодом.

Контактный Способ Получения Покрытия – это получение покрытия из раствора солей наносимого металла погружением покрываемого, металла, находящегося в контакте с более электроотрицательным металлом.

Химические и электрохимические покрытия можно классифицировать исходя из следующих основных принципов:

1. По способу получения (химическое, электрохимическое, гальваническое, катодное, анодно–окисное и контактное);

2. По виду наносимого материала (металлическое, неметаллическое и композиционное);

3. По предъявляемым к покрытию требованиям (защитное, защитнодекоративное, декоративное, специальное);

4. По отношению к внешней химически активной среде (катодное, анодное, нейтральное);

5. По конструкции покрытия (однослойное, многослойное).

Процесс нанесения металлических покрытий химическим способом включает в себя следующие технологические операции:

1. Предварительная подготовка поверхности изделий;

2. Приготовление рабочих растворов электролитов;

3. Нанесение покрытий на изделие;

4. Термическая и механическая обработка поверхности.

3.Сущность метода химического нанесения покрытий

Впервые металлическое покрытие методом химического восстановления было получено Ю. Либихом в 1836 году. Он осуществил химическое серебрение стекла и впоследствии разработал технологию процесса серебрения, которая получила промышленное применение.

Применение в технике различных деталей сложного профиля с глубокими внутренним полостями и узкими каналами заставило исследователей искать новые пути нанесения металлических покрытий. Широко применяемый гальванический способ не обеспечивал в этом случае необходимого качества.

Одним из таких путей явилось нанесение покрытий химическим способом – без применения электрического тока.

Покрытия, полученные химическим способом, отличаются меньшей пористостью, чем нанесенные гальваническим способом при одинаковой толщине, и высокой равномерностью.

В случае химического осаждения необходимые электроны образуются в результате химического процесса, происходящего в растворе, применяемом для получения покрытия. При гальваническом осаждении необходимые для 64 восстановления ионов металла электроны поставляются внешним источником тока.

В зависимости от химического процесса, происходящего при осаждении покрытия, различают следующие методы.

Контактный метод (погружения), при котором покрываемый металл погружается в раствор, содержащий соль более электроположительного металла, и покрытие в этом случае осаждается за счет разности потенциалов, возникающей между покрываемым металлом и ионами, находящимися в растворе.

Контактно-химический метод (внутреннего электролиза), при котором осаждение производится за счет разности потенциалов, возникающей при контактировании покрываемого металла с более электроотрицательным металлом в процессе погружения в раствор соли металла, которым осуществляют покрытие.

Метод химического восстановления, при котором покрываемый металл погружают в раствор, содержащий соль осаждаемого металла, буферирующие и комплексообразующие добавки и восстановитель, при этом ионы осаждаемого металла восстанавливаются в результате взаимодействия с восстановителем и осаждаются на покрываемом металле, причем данная реакция протекает лишь на металлической поверхности, являющейся каталитической для данного процесса.

В первых двух методах осаждение покрытия основано на принципе обмена электронами между двумя металлами.

В случае метода химического восстановления необходимые для восстановления металла электроны получаются за счет применяемого восстановителя.

Восстановитель Rz, окисляясь, отдает свои электроны, а находящиеся в

растворе ионы металла, приобретая эти электроны, превращаются в атомы и осаждаются в виде металлической пленки.

В процессе осаждения металлов химическим способом в соответствующих участках протекают микротоки, образующиеся в результате отдельных химических реакций. Эти токи чрезвычайно малы и равномерны, что обеспечивает равномерность осаждения покрытия.

Растворы для осаждения металлических покрытий химическим способом обычно содержат: соль осаждаемого металла, комплексообразующие и

буферирующие добавки, соответствующий восстановитель и ряд специальных добавок (ускорители, стабилизаторы и др.).

Комплексообразующие и буферирующие добавки стабилизируют раствор за счет образования комплексных соединений и поддерживают постоянной его кислотность. Восстановитель, как указывалось выше, является поставщиком электронов, необходимых для процесса осаждения покрытия.

Покрытия, получаемые методом погружения, очень тонкие, обычно их

толщина составляет доли мкм и поэтому защитными свойствами не обладают.

Такие покрытия используются в качестве подслоя при гальванической металлизации, для обеспечения процесса пайки и т. д.

Методом химического восстановления и контактно-химическим получают покрытия значительной толщины 5 – 30 мкм и более, пригодные для

защиты от коррозии.

Из химических способов нанесения покрытия нашли широкое промышленное применение никелирование, меднение и серебрение. Лужение, палладирование и хромирование еще не нашли широкого применения.

Виды покрытий и их классификация……………………………………………………………..

Общая характеристика покрытий и способов их нанесения……………………….

Оловянные и хромосодержащие покрытия………………………………………….

Осаждение в вакууме или из газовой фазы………………………………………….

Неорганические покрытия и способы их нанесения…………………………………………….

Органические полимерные покрытия…………………………………………………

Методы подготовки поверхности для нанесения покрытий…………………………………….

Общие сведения о подготовке поверхности………………………………………….

Механические способы обработки……………………………………………………

Химические способы обработки………………………………………………………

Установки для вакуумного напыления………………………………………………………….

Вакуумное оборудование для нанесения защитно-декоративных и коррозионностойких покрытий………………………………………………………..

Вакуумное оборудование для нанесения покрытий на полимерную пленку………..

Вакуумные технологические линии…………………………………………………….

Виды покрытий и их классификация

Общая характеристика покрытий и способов их нанесения.

В зависимости от требований, предъявляемых к эксплуатационным характеристикам деталей, различают три вида покрытий:

защитные покрытия, назначением которых является защита от коррозии деталей в различных агрессивных средах, в том числе при высоких температурах;

защитно-декоративные покрытия, служащие для декоративной отделки деталей с одновременной защитой их от коррозии;

специальные покрытия, применяемые с целью придания поверхности специальных свойств (износостойкости, твердости, электроизоляционных, магнитных свойств и др.), а также восстановления изношенных деталей.

Для оценки сопротивления покрытия коррозии обычно применяют испытания, при которых коррозионная нагрузка на деталь близка к условиям ее эксплуатации. Эффективность сопротивления коррозии определяется по растворению покрытия и взвешиванию.

Классификация процессов нанесения металлических покрытий приведена на рисунке 1.


Горячее погружение в расплав – один из самых старых методов нанесения покрытий. Металлы ванны имеют низкую температуру плавления – это цинк, олово, алюминий. Они обеспечивают защиту основного металла от коррозии.

Напыление осуществляется мелкими частицами материала, образующимися при пропускании проволоки или порошка через кислородно-ацетиленовое пламя, с последующим осаждением на холодную основу. Для нагрева можно использовать электродуговую или плазменную металлизацию. Это способствует улучшению адгезии и снижению пористости покрытия.

Наплавка осуществляется сплавлением осаждаемого материала с поверхностным слоем основы. Наплавка широко применяется для ремонта отдельных деталей, поврежденных или износившихся в процессе эксплуатации. Для нанесения покрытий методом наплавки могут использоваться все основные сварочные процессы: газопламенный, электродуговой, плазменный, электроннолучевой и др.

Электрохимическое осаждение металлов из растворов солей обычно применяется для получения гальванических покрытий из хрома и никеля толщиной 0,12 – 0,60 мм.

Электролитическое нанесение покрытий из сплавов Ni – P и Ni – B осуществляется вследствие химического взаимодействия. В этом случае покрытия формируются по всей поверхности деталей с одинаковой скоростью толщиной до 0,12 мм, тогда как гальванические покрытия прежде всего формируются на выступающих местах – кромках, ребрах, гранях.

Химико-паровое осаждение, или процесс CVD (chemical vapour deposition), является процессом, при котором устойчивые продукты реакции зарождаются и растут на подложке в среде с протекающими в ней химическими реакциями (диссоциация, восстановление и др.). Благодаря высокой температуре на поверхности образуются очень тонкие слои, например, карбида или нитрида титана. CVD-процесс используется для нанесения покрытий на инструмент и штампы.

Физическое осаждение из паровой фазы (physical vapour deposition, PVD) протекает в несколько стадий:

нагрев материала в вакууме до испарения;

перенос паров от источника к подложке;

конденсация паров на основе – подложке.

Метод PVD обладает высокой гибкостью, и с его помощью можно наносить любые металлы, сплавы, оксиды, карбиды и нитриды. Например, его с успехом применяют для нанесения износостойкой пленки TiN на стальной инструмент. Достоинством метода PVD является высокая чистота поверхности и превосходная связь с основой.

Механическое нанесение покрытий используют для получения цинковых, кадмиевых и оловокадмиевых покрытий. Детали перемешивают в сосудах с соответствующими тонкими металлическими порошками, активаторами и стеклянными шариками.

Ионная имплантация (рисунок 2) предусматривает ионизацию атомов с последующим ускорением ионов в электрическом поле в вакууме.


Ионы тормозятся при соударении с мишенью и распределяются по глубине мишени. Хотя глубина проникновения ионов обычно не превышает 0,1 – 0,2 мкм, свойства металла могут меняться существенно.

Механическое нанесение покрытий используют для получения цинковых, кадмиевых и оловокадмиевых покрытий. Детали перемешивают в сосудах с соответствующими тонкими металлическими порошками, активаторами и стеклянными шариками.

Физико-химические свойства поверхности оказывают влияние на усталостную прочность материалов, их коррозионную стойкость, способность к изнашиванию при трении и др. Стремление повысить эксплуатационные свойства изделий (повысить срок службы, улучшить качество работы и т. п.) приводят к необходимости повысить те или иные свойства поверхности, не меняя внутреннюю структуру материала. Иногда необходимо придавать исходным поверхностям совершенно иные свойства, отличные от свойств, присущих данному материалу. Например, резко повысить твердость поверхности материала, имеющего высокую пластичность, или создать коррозионно-жаростойкие поверхности на изделиях, изготовленных из материалов, не обладающих этими свойствами, но удовлетворяющих другим требованиям, предъявляемым к этим изделиям. Современные технологии позволяют изменять физико-химические свойства исходных поверхностей изделий в широких пределах путём создания на их поверхности различных покрытий.

Технология покрытий, наряду с другими наукоемкими и энергосберегающими отраслями промышленности, является одним из основных направлений развития современного производства передовых стран мирового сообщества.

Покрытия – это одно или многослойная структура, нанесенная на поверхность для защиты от внешних воздействий (температуры, давления, коррозии, эрозии и так далее).

Нанесение покрытий позволяет решить две технологические задачи:

- первая состоит в направленном изменении физико-химических свойств исходных поверхностей изделий, обеспечивающих заданные условия эксплуатации,

- вторая – в восстановлении свойств поверхностей изделий, нарушенных условиями эксплуатации, включая потерю размеров и массы.

Использование покрытий позволяет значительно повысить эксплуатационные характеристики изделий: износостойкость, коррозионостойкость, жаропрочность, жаростойкость и др.

Различают внешние и внутренние покрытия.

Внешние покрытия имеют границу между покрытием и поверхностью изделия. Соответственно размер изделия увеличивается на толщину покрытия, при этом возрастает масса изделия.

Во внутренних покрытиях отсутствует граница раздела. Размеры и масса изделия остаются неизменными, при этом изменяются свойства изделия. Внутренние покрытия еще называют модифицирующими покрытиями.

Различают две основные задачи, разрешаемые при нанесении покрытия

1. Изменение исходных физико-химических свойств поверхности изделий, обеспечивающих заданные условия эксплуатации.

2. Восстановление свойств, размеров, массы поверхности изделия, нарушенных условиями эксплуатации.

Классификация покрытий и методов их получения

Классификация покрытий

Покрытия классифицируются по следующим основным принципам:

1. По назначению (антикоррозионные или защитные, жаростойкие, износостойкие, антифрикционные, светоотражающие, декоративные и другие).

2. По физическим или химическим свойствам (металлические, неметаллические, тугоплавкие, химостойкие, светоотражающие и т.д.).

3. По природе элементов (хромовое, хромоалюминиевое, хромокремниевое и другие).

4. По природе фаз, образующихся в поверхностном слое (алюминидные, силицидные, боридные, карбидные и другие).

Классификация по назначению:

Защитные покрытия– основное назначение связано с их разнообразными защитными функциями. Большое распространение получили коррозионностойкие, жаростойкие и износостойкие покрытия. Широко применяются также теплозащитные, электроизоляционные и отражающие покрытия.

Конструкционные покрытия и пленки– выполняют роль конструктивных элементов в изделиях. Особенно широко также используются при производстве изделий в приборостроении, радиоэлектронной аппаратуре, интегральных схем, в турбореактивных двигателях – в виде срабатываемых уплотнений в турбине и компрессоре и др.

Технологические покрытия– предназначаются для облегчения технологических процессов при производстве изделий. Например, нанесение припоев при пайке сложных конструкций; производстве полуфабрикатов в процессе высокотемпературного деформирования; сварке разнородных материалов и т.д.

Декоративные покрытия– исключительно широко применяются при производстве бытовых изделий, украшений, повышении эстетичности промышленных установок и приборов, протезировании в медицинской технике и др.

Восстановительные покрытия– дают огромный экономический эффект при восстановлении изношенных поверхностей изделий, например гребных валов в судостроении; шеек коленчатых валов двигателей внутреннего сгорания; лопаток в турбинных двигателях; различного режущего и прессового инструмента.

Оптические покрытия– уменьшают отражательную способность по сравнению с массивными материалами, в основном, благодаря геометрии поверхности. Профилеметрирование показывает, что поверхность некоторых покрытий представляет собой совокупность шероховатостей, высота которых колеблется от 8 до 15 мкм. На отдельных макронеровностях формируются микронеровности, высота которых колеблется от 0,1 до 2 мкм. Таким образом, высота неровностей соизмерима с длиной волны падающего излучения. Отражение света от такой поверхности происходит в соответствии с законом Френкеля.

По методам нанесения покрытий их можно классифицировать:

1. По фазовому состоянию среды, из которой происходит осаждение материала покрытия.

2. По состоянию наносимого материала.

3. По состоянию процессов, которые определяют одну группу методов нанесения покрытий.

По фазовому состоянию наносимого материала методы делятся на:

1. Твёрдое состояние (механическое соединение, плакирование, спекание).

2. Жидкое состояние (горячее окунание, напыление, наплавка).

3. Полужидкое и пастообразное состояние (золь-гель процесс, шликерный, напайка).

4. Газовая среда (атомное, ионное или электронное взаимодействие; физическое осаждение из паровой фазы, химическое осаждение из паровой фазы).

5. Раствор (химический, гальванический, электрогальванический).

Классификация методов нанесения покрытий по состоянию процессов определяющих одну группу методов

1. Физические (физическое осаждение из газовой фазы, вакуумные покрытия, термическое испарение, распыление, ионное осаждение).

2. Химическое (химическое осаждение из газовой фазы, осаждение из электролита из наложения электрического поля).

3. Электрохимические (в водных растворах, в расплавах солей).

4. Напыление (детонационной пушкой, электрической дугой, металлизация, плазменное, газопламенное с использованием проволоки).

5. Сварка, наплавка (лазерная, ручная электродуговая, сварка в защитной атмосфере, кислородно-ацетиленовая сварка, плазменная сварка, сплавлением при напылении, дуговая под слоем флюса, дуговая неплавящимся электродом, сварка взрывом, прокатка).

Свободные поверхности - это поверхности которые служат для формирования контура детали.

С целью выявления поверхностей, имеющих определяющее значение для качественного выполнения деталью своего служебного назначения, систематизируем поверхности детали (рис. 1.2, табл. 1.3).

Систематизация поверхностей детали

Фрагмент3.jpg

Рисунок 1.2 – Технологический эскиз детали

Таблица 1.3- Систематизация поверхностей детали

Наименование поверхностей Номера поверхностей
Исполнительные 2, 8
Основные конструкторские базы 6, 7, 10
Вспомогательные конструкторские базы 13, 2, 8
Свободные остальные

1.3 Анализ технологичности детали

Деталь должна изготовляться с минимальными трудовыми и материальными затратами. Эти затраты можно сократить в значительной степени правильным выбором варианта технологического процесса, его оснащения, механизации и автоматизации, применением оптимальных режимов обработки. На трудоемкость изготовления детали оказывают особое влияние ее конструкция и технические требования на изготовление.

1.3.1 Качественные показатели технологичности конструкции детали

По конструктивной форме

Большинство конструктивных элементов детали унифицировано и стандартизировано. Канавки обеспечивают благоприятные условия работы режущих инструментов. Деталь имеет достаточную жесткость для обработки на повышенных режимах.

По размерам детали

Поверхности детали имеют квалитеты, степени точности и шероховатости, соответствующие их служебному назначению.Следовательно, хотя точность и шероховатость поверхностей детали и заданы достаточно жесткими, тем не менее, позволяют обеспечить их на станках нормальной точности. Число обрабатываемых поверхностей сокращено до минимума. Размеры на чертеже учитывают особенности настройки технологического оборудования на размер т.к основная привязка размеров идет от правого торца. Учтены требования по взаимному расположению поверхностей и обеспечивают функциональное назначение детали.

По процессу изготовления деталей

Деталь имеет центровые отверстия, что обеспечивает удобство установки заготовки. Центровые отверстия позволяет обеспечить автоматизацию установки заготовки. Возможна обработка нескольких поверхностей одновременно. Обработка напроход возможна только у нескольких поверхностей. На большинстве операций возможна обработка поверхностей детали за один установ. Возможно применение стандартной и нормализованной технологической оснастки.

По материалу детали

Обрабатываемость резанием хорошая. Обеспечение требуемой шероховатости обрабатываемой поверхности достигается без особых затруднений. Материал детали прокаливается и склонен к отпускной хрупкости.

1.3.2 Количественный анализ технологичности конструкции детали

Коэффициент обрабатываемости детали резанием


,(1.1)


где – скорость резания при стой кости инструмента Т=60мин и определенных условиях резания[3];


– от же для эталонного материала [3].

В качестве эталонного материала выбрана сталь 45 (σв=650Мпа, НВ≤179).



Коэффициент обрабатываемости детали резанием =1,2, следовательно обрабатываемость материала хорошая, возможно получение требуемой шероховатости без особых затруднений

Коэффициент точности размеров детали


,(1.2)


где -средний квалитет точности размеров.


, (1.3)


где - номер квалитета;


- число размеров выполняемых по i-тому номеру квалитета.


,


.

Средняя точность поверхностей выполнена по 12 квалитету, значит, данную деталь можно изготовить на станках нормальной точности. Коэффициент точности Kт=0,92>0,8, следовательно, деталь технологична.


, (1.4)


где - средняя величина шероховатости поверхностей детали по критерию Ra, мкм.

, (1.5)

где j – величина параметра Raв мкм;


- число поверхностей, имеющих j-тую шероховатость;

k – число всех поверхностей детали.


,


.

Средняя шероховатость поверхностей Ra=9,43мкм, значит, данную деталь можно изготовить на станках нормальной точности. Минимальная шероховатость Ra=1,25 мкм, что можно получить на шлифовальном станке нормальной точности.

Раздел: Промышленность, производство
Количество знаков с пробелами: 28049
Количество таблиц: 10
Количество изображений: 7

Читайте также: