Классификация флюсов для пайки реферат

Обновлено: 03.07.2024

Пайка - процесс соединения металлов или неметаллических материалов посредством расплавленного присадочного металла, называемого припоем и имеющего температуру плавления ниже температуры плавления основного металла (или неметаллического материала). Процесс пайки применяется либо для получения отдельных деталей, либо для сборки узлов или окончательной сборки приборов. В процессе пайки происходят взаимное растворение и диффузия припоя и основного металла, чем и обеспечиваются прочность, герметичность, электропроводность и теплопроводность паяного соединения.

Содержание

Пайка
Припои
Пайка мягкими припоями
Пайка твердыми припоями
Флюсы
Кислотные флюсы
Антикоррозийные флюсы
Флюс ВТС
Бескислотные флюсы
Активированные флюсы
Подготовка деталей к пайке, лужение
Способы пайки
Газовая пайка
Пайка погружением в металлические ванны
Пайка погружением в соляные ванны
Дуговая пайка
Индукционная пайка
Контактная пайка
Пайка в печах
Ступенчатая пайка
Пайка соединений металлов с неметаллическими материалами
Способ вжигания
Обработка деталей после пайки
Особенности конструирования узлов с паянными соединениями

Прикрепленные файлы: 1 файл

ПАЙКА МЕТАЛОВ.docx

Федеральное агентство рыболовству по ФГОУ СРО ВЛАДИВОСТОКСКИЙ МОРСКОЙ

На тему: ,,Пайки металлов и сплавов .Припой, флюсы ,,

Выполнил 13-ЭСЭ-16 Дубов В.В

Проверил Черкасов В.А

  1. Пайка
  2. Припои
    1. Пайка мягкими припоями
    2. Пайка твердыми припоями
    1. Кислотные флюсы
    2. Антикоррозийные флюсы
    3. Флюс ВТС
    4. Бескислотные флюсы
    5. Активированные флюсы
    1. Газовая пайка
    2. Пайка погружением в металлические ванны
    3. Пайка погружением в соляные ванны
    4. Дуговая пайка
    5. Индукционная пайка
    6. Контактная пайка
    7. Пайка в печах
    8. Ступенчатая пайка
    9. Пайка соединений металлов с неметаллическими материалами
    10. Способ вжигания

    Пайка - процесс соединения металлов или неметаллических материалов посредством расплавленного присадочного металла, называемого припоем и имеющего температуру плавления ниже температуры плавления основного металла (или неметаллического материала). Процесс пайки применяется либо для получения отдельных деталей, либо для сборки узлов или окончательной сборки приборов. В процессе пайки происходят взаимное растворение и диффузия припоя и основного металла, чем и обеспечиваются прочность, герметичность, электропроводность и теплопроводность паяного соединения. При пайке не происходит расплавления металла спаиваемых деталей, благодаря чему резко снижается степень коробления и окисления металла.

    Для получения качественного соединения температура нагрева спаиваемых деталей в зоне шва должна быть на 50-100° С выше температуры плавления припоя. Спаиваемые детали нагревают в печах, в пламени газовой горелки, токами высокой частоты, паяльниками. Прочное соединение припоя (сплавление припоя) с основным металлом можно образовать лишь в том случае, если поверхности спаиваемых деталей свободны от окислов и загрязнений. Для запиты поверхностей спаиваемых деталей от интенсивного окисления в результате нагрева место пайки покрывают флюсом, который образует жидкую и газообразную преграды между поверхностями спаиваемых деталей и окружающим воздухом.

    Процесс пайки заключается в следующем: при нагревании припой расплавляется и, соприкасаясь с нагретым, но свободным от окисной пленки основным металлом, смачивает его, и растекается по его поверхности. Способность припоя заполнять швы зависит от степени смачивания припоем основного металла, его капиллярных свойств и шероховатости поверхности спаиваемых деталей.

    Припои для пайки

    К припоям предъявляются следующие требования: высокая механическая прочность припоев в условиях нормальных, высоких и низких температур, хорошие электропроводность и теплопроводность, герметичность, стойкость против коррозии, жидкотекучесть при температуре пайки, хорошее смачивание основного металла, определенные для данного припоя температура плавления и величина температурного интервала кристаллизации. В зависимости от температуры плавления и прочности применяемых припоев различают пайку мягкими припоями (мягкую) и пайку твердыми припоями (твердую).

    Пайка мягкими припоями

    При пайке мягкими припоями используют припои с температурами плавления ниже 400˚ С, обеспечивающие получение паяных швов с пределами прочности до 10 кГ/мм 2 .

    Применяют следующие мягкие припои: оловянно-свинцовые, малооловянистые, легкоплавкие и специальные.

    Припои оловянно-свинцовые (ПОС), имеющие температуру плавления = 183 ÷ 265˚С, представляют собой сплавы олова и свинца с добавкой 1,5-2,5% сурьмы и обозначаются (ГОСТ 1499-54) ПОС-18, ПОС-30, ПОС-40, ПОС-50, ПОС-61, ПОС-90 (цифра показывает процент содержания олова).

    Малооловянистые и безоловянистые мягкие припои: свинцовые (tпл = 327° С), свинцово-серебряные (2,5% серебра, tпл = 304° С) и др.

    Специальные припои используют для пайки материалов, не поддающихся качественной пайке стандартными припоями, причем чаще всего их используют Для пайки алюминия. Для пайки алюминия и его сплавов применяют специальные припои на оловянной основе, которые содержат цинк, кадмий и иногда алюминий, а также чистое олово (содержание олова 99,92%), причем лучшими являются оловянно-цинковые, оловянно-кадмиевые и кадмиево-цинковые сплавы (tпл = 197 ÷ 310° С), так как цинк и кадмий (особенно цинк) хорошо диффундируют в алюминии. Мягкие припои поставляются в виде чушек, прутков, проволоки, ленты, а также трубок из оловянно-свинцового сплава, заполненных канифолевым флюсом. Применение трубчатых припоев значительно упрощает процесс паяльных работ и способствует его механизации. При пайке мягкими припоями флюсы, как правило, необходимы.

    Пайка твердыми припоями

    При пайке твердыми припоями применяют припои с температурами плавления выше 400° С: медные (tпл= 1083° С), медно-цинковые (tпл, = 845 ÷ 900° С), меднофосфористые (tпл = 700 ÷ 830° С), серебряные (tпл = 635 ÷ 870° С) и др.

    Твердые припои подразделяются на тугоплавкие с температурой плавления выше 875° С и легкоплавкие с температурой плавления ниже 875° С.

    Чистая электролитическая медь (марки М1 и М2) применяется в основном при пайке сталей в печах с защитной средой.

    Медноцинковые припои мало распространены вследствие низких механических свойств. В качестве медноцинковых припоев используются также латуни марок Л62 и Л68.

    Меднофосфористые припои применяются как заменители серебряных припоев и мягких припоев. Их можно использовать только для пайки медных и латунных деталей, не работающих на изгиб, вибрацию и удар. Пайка меди меднофосфористыми припоями осуществляется без флюса; при пайке сплавов на основе меди флюс необходим.

    Меднофосфористые припои нельзя применять для пайки черных металлов, так как они плохо смачивают эти металлы и в пограничных диффузионных слоях образуются хрупкие фосфиды железа.

    Наиболее высокое качество получается при твердой пайке с серебряными припоями, которые можно применять для пайки черных и цветных металлов при условии, если температура плавления припоя ниже температуры плавления паяемого металла. При твердой пайке алюминия и его сплавов применяют припои на основе алюминия (tпл = 525 ÷ 580° С).

    Флюсы применяемые для пайки

    Для пайки мягкими припоями применяют кислотные или активные, антикоррозийные, бескислотные, активизированные флюсы. Кислотные или активные флюсы - на основе хлористых соединений - интенсивно растворяют окисные пленки на поверхности основного металла и тем самым обеспечивают хорошую адгезию и, следовательно, высокую механическую прочность соединения.

    Остаток флюса после пайки вызывает интенсивную коррозию соединения и основного металла, а потому после пайки место пайки нужно тщательно промывать. Для пайки проводников при монтаже электрорадиоприборов применять кислотные флюсы категорически запрещается.

    Антикоррозийными флюсами являются флюсы на основе фосфорной кислоты с добавлением различных органических соединений и растворителей, а также флюсы на основе органических кислот. Флюсы этой группы не вызывают коррозии черных металлов и поэтому после пайки не нужно удалять остатки флюса.

    Флюс ВТС (смесь технического вазелина с салициловой кислотой, триэтаноламином и этиловым спиртом) применяется для пайки меди, латуни, бронзы, константана, серебра, платины и сплавов платиновой группы. Этот флюс особенно удобен для пайки электромонтажных соединений, так как он обеспечивает' чистоту и надежность пайки и не вызывает коррозии, даже если остается в местах пайки.

    Пайка соединений при монтаже электрорадиоприборов производится, как правило, бескислотными флюсами на основе канифоли.

    Сосновая канифоль представляет собой в основном смесь смоляных кислот. При хранении на воздухе канифоль поглощает кислород, причем поглощение тем больше, чем выше температура. Измельченная канифоль в смеси с воздухом способна взрываться. Температура плавления (размягчения) канифоли колеблется в пределах от 52˚ до 83° С; при 125˚ С канифоль переходит в жидкое состояние. Основное достоинство канифоли состоит в том, что в расплавленном состоянии (при температуре 150° С) она способна растворять окислы, а после затвердевания на паяном соединении остаток флюса не вызывает коррозии. Остаток канифоли не гигроскопичен и является хорошим изолятором, что также относится к числу достоинств канифоли как флюса для пайки монтажных соединений. Являясь поверхностно-активным веществом, канифоль существенно улучшает растекание припоя.

    Канифоль относится к флюсам химически мало активным и может применяться при условии, если детали тщательно подготовлены к пайке, т. е. зачищены или залужены.

    В качестве флюсов для пайки монтажных соединений применяют натуральную канифоль (ГОСТ 797-64), а также растворы , канифоли в спирте (флюс КЭ и глицерино-канифолевый).

    готовок без их расплавления посредством введения между ними расплавленного промежуточного металла-припоя. Припой имеет температуру плавления более низкую, чем температура соединяемых металлов, и заполняет зазор между соединяемыми поверхностями за счет действия капиллярных сил. При охлаждении припой кристаллизуется и образует прочную связь между заготовками. В процессе пайки наряду с нагревом необходимо удаление окисных пленок с поверхности паяемых металлов.

    Образование соединения без расплавления кромок обеспечивает возможность распая, т. е. разъединения паяемых заготовок без нарушения исходных размеров и формы элементов конструкции.

    Качество паяного шва во многом зависит от прочности связи припоя с металлом основы. В результате смачивания твердой металлической поверхности между припоем и основным металлом возникает межатомная связь. Эта связь может образоваться при растворении металла основы в расплавленом припое с образованием жидкого раствора, распадающегося при последующей кристаллизации; за счет диффузии составляющих припой элементов в основной твердый металл с образованием твердого раствора; за счет реактивной диффузии между припоем и основным металлом с образованием на границе интерметаллических соединений; за счет бездиффузионной связи в результате межатомного взоимодействия.

    Получение паяного соединения состоит из нескольких этапов:

    А) Предварительная подготовка паяемых соединений;

    Б) Нагрев соединяемых деталей до температуры ниже температуры плавления паяемых деталей;

    В) Удаление окисной плёнки с поверхностей паяемых металлов с помощью флюса;

    Г) Введение в зазор между паяемыми деталями жидкой полоски припоя;

    Д) Взаимодействие между паяемыми деталями и припоем;

    Е) Кристаллизация жидкой формы припоя, находящейся между спаевыми деталями;

    Пайкой можно соединять любые металлы и их сплавы. В качестве припоя используются чистые металлы (они плавятся при строго фиксированной температуре) и их сплавы (они плавятся в определенном интервале температур).

    Разница между температурами начала плавления и полного расплавления называется интервалом кристаллизации. При осуществлении процесса пайки необходимо выполнение температурного условия:

    где t1 – температура начала плавления материала детали

    t2 – температура нагрева детали при пайке;

    t3 – температура плавления припоя;

    t4 – рабочая температура паянного соединения;

    По особенностям процесса и технологии пайку можно разделить на капиллярную, диффузионную, контактно-реактивную, реактивно-флюсовую и пайку-сварку.

    Капиллярная пайка. Припой заполняет зазор между соединяемыми поверхностями и удерживается в нем за счет капиллярных сил. На рис.1 показана схема образования шва. Соединение образуется за счет растворения основы в жидком припое и последующей кристаллизации раствора. Капиллярную пайку используют в тех случаях, когда применяют соединение внахлестку. Однако капиллярное явление присуще всем видам пайки.

    Диффузионная пайка. Соединение образуется за счет взаимной диффузии компонентов припоя и паяемых материалов, причем возможно образование в шве твердого раствора или тугоплавких интерметаллов. Для диффузионной пайки необходима продолжительная выдержка при температуре образования паяного шва и после завершения процесса при температуре ниже солидуса припоя.

    Контактно-реактивная пайка . При пайке между соединяемыми металлами или соединяемыми металлами и прослойкой другого металла в результате контактного плавления образуется сплав, который заполняет зазор и при кристаллизации образует паяное соединение. На рис.2 показана схема контактно-реактивной пайки.

    Реактивно-флюсовая пайка. Припой образуется за счет реакции вытеснения между основным металлом и флюсом. Например, при пайке алюминия с флюсом 3ZnCl2 + 2Al = 2AlCl3 + Zn восстановленный цинк является припоем.

    Пайка-сварка. Паяное соединение образуется так же, как при сварке плавлением, но в качестве присадочного металла применяют припой.

    Наибольшее применение получила капиллярная пайка и пайка-сварка. Диффузионная пайка и контактно-реактивная более трудоемки, но обеспечивают высокое качество соединения и применяются, когда в процессе пайки необходимо обеспечить минимальные зазоры. Качество паяных соединений (прочность, герметичность, надежность и т. д.) зависит от правильного выбора основного металла, припоя, флюса, способа нагрева, величины зазоров, типа соединения.

    2. Материалы для пайки.

    Припой. Припои для пайки, заполняющие зазор в расплавленном состоянии между соединяемыми заготовками, должны отвечать следующим требованиям:

    1) температура их плавления должна быть ниже температуры плавления пая-

    2) они должны хорошо смачивать паяемый материал и легко растекаться по

    3) должны быть достаточно прочными и герметичными;

    4) коэффициенты термического расширения припоя и паяемого материала не

    должны резко различаться;

    5) иметь высокую электропроводность при паянии радиоэлектронных и токопроводящих изделий.

    Припои классифицируют по следующим признакам:

    А) Химическому составу;

    Б) Температуре плавления;

    В) Технологическим свойствам;

    По химическому составу припои делятся на свинцово-оловянные, серебряные, медно-фосфорные, цинковые, титановые и др.

    Все припои по температуре плавления подразделяют на низкотемпературные (tпл о С), или мягкие припои, и высокотемпературные (tпл >500 о С), или твердые припои. Припои изготовляют в виде прутков, проволок, листов, полос, спиралей, колец, дисков, зерен и т. д., укладываемых в место соединения.

    К низкотемпературным , или мягким припоям относятся оловянно-свинцовые, на основе висмута, индия, кадмия, цинка, олова, свинца. К высокотемпературным или твердым припоям относятся медные, медно-свинцовые, медно-никелевые, с благородными металлами (серебром, золотом, платиной).

    По техническим свойствам делятся на самофлюсующиеся (частично удаляют окислы с поверхности металла) и композиционные (состоят из тугоплавких и легкоплавких порошков, позволяющих производить пайку с большими зазорами между деталями).

    Изделия из алюминия и его сплавов паяют с припоями на алюминевой основе с кремнием, медью, оловом и другими металлами.

    Магний и его сплавы паяют с припоями на основе магния с добавками алюминия, меди, марганца и цинка.

    Изделия из коррозионно-стойких сталей и жаропрочных сплавов, работающих при высоких температурах(>500 о С), паяют с припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.

    Паяльные флюсы. Эти флюсы применяют для очистки поверхности паяемого металла, а также для снижения поверхностного натяжения и улучшения растекания и смачиваемости жидкого припоя.

    Флюс (кроме реактивно-флюсовой пайки) не должен химически взаимодействовать с припоем. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюс в расплавленном и газообразном состояниях должен способствовать смачиванию поверхности основного металла расплавленным припоем. Флюсы могут быть твердые, пастообразные, жидкие и газообразные.

    Флюсы классифицируют по признакам:

    - Температурному интервалу пайки на низкотемпературные (t 0 C) и высокотемпературные (t>450 0 C);

    - Природе растворителя на водные и неводные;

    - Природе активатора на канифольные, галогенидные, фтороборатные, анилиновые, кислотные и т.д.;

    - По агрегатному состоянию на твердые, жидкие и пастообразные

    Наиболее распространенными паяльными флюсами являются бура

    (Na2 B4 O7 ) и борная кислота (H3 BO3 ), хлористый цинк (ZnCl2 ), фтористый

    калий (KF) и другие галоидные соли щелочных металлов.

    3. Способы пайки.

    Способы пайки классифицируют в зависимости от используемых источников нагрева. Наиболее распространены в промышленности пайка в печах, индукционная, сопротивлением, погружением, радиационная, горелками, экзофлюсовая, паяльниками, электронагревательными металлами и блоками.

    Пайка в печах. Нагревают соединяемые заготовки в специальных печах: электросопротивления, с индукционным нагревом, газопламенных и газовых. Припой заранее закладывают в шов собранного изделия, на место пайки наносят флюс и затем помещают в печь, где это изделие нагревают до температуры пайки. Припой расплавляется и заполняет зазоры между соединяемыми заготовками. Процесс пайки продолжается несколько часов.

    Этот способ обеспечивает равномерный нагрев соединяемых деталей без заметной их деформации.

    Крупные детали паяют в камерных печах с неподвижным подом; большую партию мелких деталей – в печах с сетчатым конвейером или роликовым подом. Пайка в печах позволяет механизировать паяльные работы и обеспечивает стабильное качество изделий и высокую производительность труда.

    Индукционная пайка. Паяемый участок нагревают в катушке-индукторе. Через индуктор пропускают т. в. ч., в результате чего место пайки нагревается до необходимой температуры. Для предохранения от окисления изделие нагревают в вакууме или в защитной среде с применением флюсов. Индуктор выполнен в виде петли или спирали из красной меди. Формы и размеры индуктора зависят от конструкции паяемого изделия. Различают две разновидности пайки с индукционным нагревом: стационарную и с относительным перемещением индуктора или детали.

    Пайка сопротивлением. Соединяемые заготовки нагревают теплотой, выделяющейся при прохождении электрического тока через паяемые детали и токопроводящие элементы. Соединяемые детали являются частью электрической цепи. Нагрев сопротивлением можно осуществлять на контактных сварочных машинах. С нагревом в контактных сварочных машинах паяют при изготовлении тонкостенных изделий из листового материала или при соединении тонкостенных элементов с толстостенными.

    Пайка погружением. Эту пайку выполняют в ваннах с расплавленными солями или припоями. Соляная смесь обычно состоит из 55% KCl и 45% HCl. Температура ванны 700-800 о С. На паяемую поверхность, предварительно очищенную от грязи и жира, наносят флюс, между кромками или около места соединения размещают припой, затем детали скрепляют и погружают в ванну. Соляная ванна предохраняет место пайки от окисления. Перед погружением в ванну с расплавленным припоем, покрытые флюсом детали нагревают до 550 о С. Поверхности, не подлежащие пайке, предохраняют от контакта с припоем специальной обмазкой из графита с добавками небольшого количества извести. Пайку погружением в расплавленный припой используют для стальных, медных и алюминиевых твердых сплавов, деталей сложных геометрических форм. На этот процесс расходуется большое количество припоев. Разновидностью пайки погружением является пайка бегущей волной припоя, когда расплавленный припой подается насосом и образует волну над уровнем расплава. Паяемая деталь перемещается в горизонтальном направлении. В момент касания ванны проходит пайка. Бегущей волной паяют в радиоэлектронной промышленности при производстве печатного радиомонтажа.

    Пайка с радиационным нагревом. Пайку выполняют за слет излучения кварцевых ламп, расфокусированного электронного луча или мощного светового потока от квантового генератора (лазера).

    Конструкцию, подлежащую пайке, помещают в специальный контейнер, в котором создают вакуум. После вакуумирования контейнер заполняют аргоном и помещают в приспособление, с двух его сторон устанавливают для обогрева кварцевые лампы. После окончания нагрева кварцевые лампы отводят, а приспособление вместе с деталями охлаждают. При применении лазерного нагрева сосредоточенная в узком пучке тепловая энергия обеспечивает испарение и распыление окисной пленки с поверхности основного металла и припоя, что позволяет получать спаи в атмосфере воздуха без применения искусственных газовых сред. При радиационном способе пайки лучистая энергия превращается в тепловую непосредственно в материале припоя и паяемых деталей. Этот способ пайки непродолжителен.

    Экзофлюсовая пайка. В основном этим способом паяют коррозионно-стойкие стали. На очищенное место соединения наносят тонкий порошкообразный слой флюса. Соединяемые поверхности совмещают, на противоположные стороны заготовок укладывают экзотермическую смесь. Смесь состоит из разных компонентов, которые укладывают в форме пасты или брикетов толщиной в несколько миллиметров. Собранную конструкцию устанавливают в приспособлении и помещают в специальную печь, в которой происходит зажигание экзотермической смеси при 500 o C.

    В результате экзотермических реакций смеси температура на поверхности металла повышается и происходит расплавление припоя. Этим методом паяют соединения внахлестку и готовые блоки конструкций небольших размеров.

    Газопламенная пайка. Паяемые заготовки нагревают и расплавляют припой газосварочными и плазменными горелками. Газовые горелки обладают наибольшей универсальностью. В качестве горючих газов используют ацетилен, природные газы, водород, пары керосина и т.п.

    При использовании газового пламени припой можно заранее помещать у места пайки или вводить в процессе пайки вручную. На место пайки предварительно наносят флюс в виде жидкой пасты, разведенной водой или спиртом; конец прутка или припоя также покрывают флюсом.

    Нагревают также паяльными лампами, которые по существу являются газовыми горелками, работающими на жидком топливе. Паяльные лампы используют для работы в полевых условиях или в ремонтных мастерских.

    Плазменной горелкой, обеспечивающей более высокую температуру нагрева, паяют тугоплавкие металлы – вольфрам, тантал, молибден, ниобий и т.п.

    Пайка паяльниками . Основной металл нагревают и припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника, который перед пайкой или в процессе ее подогревают. Для низкотемпературной пайки применяют паяльники с периодическим нагревом, с непрерывным нагревом, ультразвуковые и абразивные. Рабочую часть паяльника выполняют из красной меди. Паяльник с периодическим нагревом в процессе работы периодически подогревают от постороннего источника теплоты. Паяльники с постоянным нагревом делают электрическими. Нагревательный элемент состоит из нихромовой проволоки, намотанной на слой асбеста, слюды или на керамическую втулку, устанавливаемую на медный стержень паяльника. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов мягкими припоями с температурой плавления ниже 300-350 о С.

    Ультразвуковые паяльники применяют для бесфлюсовой низкотемпературной пайки на воздухе и для пайки алюминия легкоплавкими припоями. Окисные пленки разрушаются за счет колебаний ультразвуковой частоты.

    Абразивные паяльники . Такими паяльниками можно паять алюминиевые сплавы без флюса. Окисная пленка удаляется в результате трения паяльника об обрабатываемую поверхность. Абразивный паяльник в отличие от электропаяльника имеет рабочий стержень, изготовленный прессованием из порошка припоя и измельченного асбеста.

    4. Типы паяных соединений.

    Основными типами паяных соединений являются стыковые и внахлестку. Остальные разновидности соединений являются комбинациями перечисленных. Например, плоские элементы могут быть соединены внахлестку (рис. 3,а), ступенчатым (рис. 3,б), гребенчатым (рис. 3,в), косостыковым (рис 3,г), стыковым (рис.3,д) и тавровым (рис. 3,е) соединениями.

    Стыковое соединение применяют в тех случаях, когда изделие работает не в жестких условиях и от него не требуется герметичности; соединение внахлестку – во всех остальных случаях, причем чем больше площадь перекрытия паяемых заготовок, тем выше будет прочность паяного шва.

    Криволинейные поверхности соединяют между собой и с плоскими поверхностями в сотовых конструкциях, в панелях с гофрированными проставками и т.п. Эти соединения используют в самолетостроении и для изготовления теплообменников.

    К паянным соединениям в зависимости от назначения изделия, кроме общих требований, могут быть предъявлены и специальные по герметичности, электропроводности, коррозионной стойкости и т.п. Сборные части изделий перед пайкой должны быть прочно сое6динены между собой для предотвращения перекосов и относительных смещений. Способы соединения подбирают экспериментальным путем в зависимости от конструкции изделия.

    5. Подготовка деталей к пайке.

    1. Механическая обработка (подгонка деталей друг к другу и создание шероховатости с помощью шкурки)

    2. Обезжиривание поверхностей, подготавливаемых для пайки (едким натром (5-10 г/л), углекислым натрием (15-30г/л), тирнатрийфосфатом (30-60 г/л), эмульгатор ОП-7 (0,5 г/л)). Детали в растворе выдерживают при температуре 50-60 0 С в течение 15-20 минут. После обработки щелочью детали последовательно промывают горячей и холодной водой, а затем сушат.

    Сварочные флюсы применяют при механизированной сварке под флюсом, по флюсу, с магнитным флюсом и при электрошлаковой сварке. Вследствие существенных различий между названными процессами к флюсам предъявляют различные требования.

    Сварочные флюсы можно разделить на отдельные группы по способу изготовления, химическому составу, по основности, химической активности, назначению, строению и размеру зерен и т. д.

    Классификация по способу изготовления. В зависимости от способа производства флюсы подразделяют на плавленые, керамические и плавлено-керамические.

    Керамические флюсы производят в виде крупки, получаемой при смешении шихты определенного состава на связующем (жидкое стекло) с последующей грануляцией и прокалкой при соответствующих температурах. Некоторые марки керамических флюсов получают без добавок связующего за счет спекания шихты. Указанные флюсы применяют преимущественно при наплавке, поскольку они позволяют легировать наплавляемый металл в широких пределах. Для этой цели во флюсы вводят металлические порошки и ферросплавы. Керамические флюсы при сварке применяют реже. В больших объемах их используют для этой цели в зарубежной практике.

    Плавленые флюсы получают сплавлением компонентов шихты в электрических или пламенных печах с последующей грануляцией расплава мокрым способом в воде, сухим дроблением застывшего шлака и распылением жидкой струи расплава воздушным потоком.

    Плавлено-керамические флюсы включают два метода изготовления с целью повышения сварочно-технологических свойств флюса. В частности, использование плавленого флюса в качестве шлакообразующей основы керамического флюса позволяет улучшить технологические свойства последнего в формировании наплавленного металла, уменьшения газовыделений, стабильности горения дуги, отделимости шлаковой корки и т.п., поскольку керамические флюсы по сравнению с плавлеными обычно обладают худшими сварочно-технологическими свойствами.

    Классификация по химическому составу. В зависимости от химического состава шлаковой основы сварочные флюсы подразделяют на три группы: оксидные, солевые и солеоксидные. Оксидные флюсы состоят из оксидов металлов и могут содержать до 10 % фтористых соединений. Их преимущественно применяют для сварки углеродистых и низколегированных сталей. флюсы солевой группы состоят из фтористых и хлористых солей металлов, а также из других, не содержащих кислород химических соединений. Их применяют для сварки активных металлов, таких, как алюминий, титан и др., а также в электрошлаковой технологии.

    Флюсы солеоксидной группы состоят из фторидов и оксидов металлов. Это группа флюсов наиболее широко применяется при сварке и наплавке средне- и высоколегированных сталей и сплавов.

    Оксидные флюсы построены преимущественно на базе шлаковой системы MnO - SiO2, хотя имеются оксидные флюсы на базе других шлаковых систем. Наиболее распространено деление флюсов по содержанию в них оксидов кремния и марганца: по содержанию кремнезема - бескремнистые (количество SiO2 в виде примеси до 5 %), низкокремнистые (6 - 35 % SiO2) и высококремнистые (более 35 % SiO2); по содержанию марганца - безмарганцовистые (количество МnО в виде примеси до 1 %), низкомарганцовистые (до 10 % МnО), среднемарганцовистые (15-30 % МnО) и высокомарганцовистые (более 30 % МnО).

    По химическому составу, согласно рекомендации Международного института сварки (МИС), сварочные флюсы подразделяют на типы, приведенные в табл. 2.1.

    Приведенная классификация флюсов может иметь большое значение, поскольку тип флюса в определенной степени определяет способность его к взаимодействию в зоне плавления с жидким металлом, т. е. способен характеризовать металлургические свойства флюса.

    Классификация по основности. Химическое воздействие расплавленного флюса-шлака на металл шва в значительной степени определяется соотношением в его составе кислых, основных и амфотерных оксидов. К основным оксидам относят, например, CaO, MgO, MnO, FeO и др., к кислым SiO2, TiO2, ZrO2. Оксиды алюминия (А12О3) и железа (Fe2O3) имеют амфотерный характер. Если в составе флюса содержится много кислых оксидов, то А12О3и Fe2O3 ведут себя как основные оксиды; если во флюсе большую часть составляют основные Оксиды - то как кислые. Фториды и хлориды обычно считают химически нейтральными соединениями.

    Классификация по назначению. Современные флюсы в зависимости от их назначения и преимущественного применения разделяют на флюсы, предназначенные для дуговой механизированной сварки и наплавки, электрошлаковой сварки и пайки. Это разделение в некоторой степени условно, так как флюсы, применяемые для дуговой сварки, можно, например, использовать и при электрошлаковой сварке, а флюсы, преимущественно используемые для сварки и наплавки металлов и сплавов одной группы, могут быть с успехом использованы для сварки и наплавки металлов другой группы. Вместе с тем флюсы, предназначенные для сварки одних цветных металлов или легированных сталей, могут оказаться совершенно непригодными для сварки или наплавки других цветных металлов или некоторых легированных сталей.

    Различают флюсы общего назначения и специальные. флюсы общего назначения предназначены для механизированной дуговой сварки и наплавки углеродистых и низколегированных сталей низкоуглеродистой или низколегированной проволокой, специальные флюсы - для отдельных видов сварки, например электрошлаковой или сварки высоколегированных сталей.

    На металлургические свойства флюса указывают последние три цифры символов. Первая цифра обозначает коэффициент изменения содержания углерода, вторая — марганца и третья — кремния. Их расшифровка приведена в табл. 2.3.

    Цель работы: Ознакомиться со структурой построения стандартов, изучить основные разделы и положения. Приобрестинеобходимые навыки и учиться работать с технической документацией. Освоить практические операции по методикам испытаний и по отбраковке сварочных флюсов. Научиться выполнять комплексное заключение о соответствии представляемых материалов /сварочных флюсов/ требованиям стандартов.

    Назначение. Марки и классификация.

    Флюсы можно классифицировать по назначению, по способу изготовления,химическому составу, строению и размеру частиц.
    В зависимости от назначения и преимущественного применения различают флюсы для электродуговой и для электрошлаковой сварки, а также для механизированной сварки и наплавки углеродистых и легированных сталей, цветных металлов и сплавов.
    Химический состав и сварочные свойства флюсов определяют качество сварных швов. Так, например, при сверке плавленым флюсом обязательнымтребованием к сварным швам является их оптимальные форма и внешний вид. Выполнение этого требования в значительной степени зависит от свойств и состава сварочного флюса. Это обусловлено значительным влиянием флюса на надежность защиты зоны сварки от доступа воздуха, устойчивость процесса горения дуги при электродуговой сварке, их химический состав и стойкость против образования пор, на отделимостьшлаковой корки.
    На форму поперечного сечения шва существенное влияние оказывают стабилизирующие свойства флюса, его насыпная масса, гранулометрический состав. Внешний вид сварного шва в значительной мере зависит от условий кристаллизации металла сварочной ванны в контакте с жидким шлаком. В случае использования чрезмерно легкоплавкого флюса ухудшается формирование швов, т.к. образуется многошлака, затрудняющего процесс сварки. Как правило, хорошее качество формирования обеспечивается при средней вязкости флюса. Химическое взаимодействие между шлаком и металлом описывается реакциями вытеснения из шлака в металл одного элемента другим или распределения элемента между шлаком и металлом. Реакции вытеснения преимущественно ведут к обогащению или обеднению металла шва легирующими элементами, ареакция распределения — к образованию в металле шва неметаллических включений. Одними из причин образования пор в сварном шве могут являться чрезмерная вязкость флюса, недостаточная защита зоны сверки от воздуха /малый слой флюса, большие зазоры между свариваемыми кромками / плохие технологические свойства флюса или несоответствие флюса составу основного металла и электродной проволоки.
    Легкая отделяемостьшлаковой корки от поверхности шва является необходимым условием высокой производительности сварочных работ. Степень прилипания шлака к поверхности шва зависит от характера взаимодействия жидкого шлака и уже затвердевшего металла шва.
    Шлак прочно удерживается на поверхности металла шва в том случае, если эта поверхность окислена, и в составе плана имеются соединения, которые могут прочно сцеплятьсяс поверхностью. Такими соединениями при сварке сталей являются окислы алюминия, хрома и ванадия. Улучшения отделимости шлаковой корки можно достигнуть путем уменьшения окислительной способности флюса, введения в его состав раскислители, уменьшения содержания во флюсе окислов алюминия, хрома, ванадия и других элементов, ухудшающих отделяемость шлаковой корки.
    Правильно подобранный сварочный флюсв сочетании со сварочной проволокой может способствовать повышению стойкости металла шва против образования трещинам, Уменьшая в нем содержание вредных примесей и легируя его полезными элементами и наоборот, — снижению этой стойкости вследствие неблагоприятного изменения химического состава металла шла /изменение количественного соотношения в сварном шве основного и.

    Читайте также: