Катионы и анионы реферат

Обновлено: 05.07.2024

Теоретические основы.Химические методы качественного анализа основаны на аналитических реакциях, которые имеют специфический эффект (выпадение осадка, выделение газа или изменение цвета раствора) для одного или нескольких ионов, присутствующих в исследуемом растворе. В том случае, если аналитическая реакция характерна для одного иона, ее называют специфической. Например, реакция образования желтого осадка гексанитрокобальтата (III) калия является специфической:

В том случае, когда аналитическая реакция имеет сходный эффект для нескольких ионов, она носит название групповой. В частности, ионы Ba 2+ образуют белые кристаллические осадки с ионами SO4 2 , PO4 3 и CO3 2 , поэтому нитрат бария – групповой реагент для определения этих ионов.

Качественный анализ можно условно разделить на две части: анализ катионов и анализ анионов. В зависимости от отношения ионов к различным групповым реагентам катионы и анионы делятся на аналитические группы.

В основе классификации катионов лежит их различие во взаимодействии с кислотами и основаниями.

Первая аналитическая группа катионов содержит ионы NH4 + , Na + и K + . Группа не имеет специфического реагента, большинство солей на основе этих ионов хорошо растворимы в воде.

Вторая аналитическая группа катионоввключает ионы Ag + , Pb 2+ и Hg2 2+ . Групповым реагентом является соляная кислота HCl, в присутствии которой происходит осаждение малорастворимых хлоридов вышеуказанных металлов.

В состав третьей аналитической группы катионоввходят ионы Ba 2+ и Ca 2+ , которые образуют белые кристаллические осадки сульфатов кальция и бария при действии на раствор серной кислоты (групповой реагент).

Четвертая аналитическая группа катионовобъединяет ионы, основания которых проявляют амфотерные свойства - Al 3+ , Cr 3+ , Zn 2+ . Групповой реагент – избыток NaOH, который осаждает катионы всех остальных групп (кроме первой) и переводит катионы четвертой группы в форму гидроксокомплексов.

Пятая аналитическая группа катионовсодержит ионы Fe 2+ , Fe 3+ , Mn 2+ . Гидроксид аммония NH4OH (групповой реагент) переводит их в осадок соответствующих гидроксидов, которые нерастворимы в избытке реагента.

К ионам шестой аналитической группыотносятся Cu 2+ , Co 2+ , Ni 2+ , которые образуют растворимые комплексные аммиакаты в присутствии избытка NH4OH (групповой реагент).

КЛАССИФИКАЦИЯ АНИОНОВ

В основе аналитической классификации анионов лежит их различное отношение к солям бария и серебра.

Первая аналитическая группа анионовобразована анионами SO4 2 , PO4 3 и CO3 2 . Эти ионы образуют белые кристаллические осадки в присутствии нитрата бария, который является групповым реагентом.

Вторая аналитическая группа анионоввключает ионы Cl , Br и I . Групповой реагент – нитрат серебра, который осаждает вышеуказанные ионы.

Третья аналитическая группа анионовсодержит такие ионы, как NO3 , NO2 и CH3COO . Большинство солей на основе этих ионов хорошо растворимо в воде. Групповой реагент отсутствует.

Цель работы.Изучение аналитических реакций катионов и анионов и определение состава неизвестного раствора.

Порядок работы.

Опыт 1. Качественные реакции катионов и анионов.

Проведите аналитические реакции катионов и анионов, описанные ниже. Обратите внимание на внешний эффект реакций. Результаты оформите в виде таблицы:

Группа Ион Реагент Условия Уравнение реакции Наблюдения

1. Аналитические реакции катионов первой группы

Реакция иона аммония

Концентрированные растворы щелочей выделяют аммиак в газообразном виде из растворов солей аммония.

Налейте в фарфоровую чашку 1 мл раствора соли аммония, добавьте 1 мл концентрированного раствора NaOH и закройте часовым стеклом с прикрепленной индикаторной бумажкой, пропитанной раствором фенолфталеина (газовая камера). Наблюдайте изменение цвета индикаторной бумаги.

Реакция иона натрия

Ионы натрия в растворе можно определить с помощью гексагидроксистибата (V) калия K[Sb(OH)6].

Возьмите в пробирку 3-5 капель любой соли натрия и добавьте такое же количество раствора K[Sb(OH)6] (реакция идет в нейтральной среде). Охладите пробирку под струей холодной воды и потрите стеклянной палочкой стенку пробирки. В присутствии ионов натрия выпадает белый кристаллический осадок Na[Sb(OH)6] .

Реакция иона калия

Специфическим реактивом на ионы калия в растворе служит гексанитрокобальтат (III) натрия Na3[Co(NO2)6].

Подкислите раствор, содержащий соль калия, разбавленным раствором уксусной кислоты (рН = 5) и добавьте несколько кристаллов Na3[Co(NO2)6]. Образование желтого осадка K2Na[Co(NO2)6] доказывает присутствие ионов калия в растворе. Ионы аммония мешают определению, поэтому в случае их присутствия в растворе их необходимо удалить кипячением в присутствии NaOH.

2. Аналитические реакции катионов второй группы

Реакция иона Ag(I)

Соляная кислота образует с Ag + белый осадок хлорида серебра, который растворяется в избытке NH4OH с образованием комплексного соединения состава.

Возьмите в пробирку 2-3 капли раствора нитрата серебра и добавьте 2 капли разбавленного раствора соляной кислоты. Наблюдайте образование осадка AgCl и его растворение в избытке NH4OH.

Реакция иона Hg (I)

Соляная кислота HCl образует в присутствии ионов Hg2 2+ белый осадок, разлагающийся под действием NH4OH:

белый осадок черный осадок

Возьмите в пробирку 2-3 капли раствора нитрата ртути (I) и добавьте 2 капли разбавленного раствора соляной кислоты. Наблюдайте образование белого осадка и изменение его цвета в присутствии NH4OH.

Реакции иона Pb (II)

a) В присутствии соляной кислоты образуется белый осадок PbCl2, растворимый в горячей воде.

Возьмите в пробирку 2-3 капли раствора нитрата свинца (II) и добавьте 2 капли разбавленного раствора соляной кислоты. Наблюдайте образование белого осадка. Добавьте дистиллированной воды и нагрейте раствор на водяной бане.

б) В присутствии иодида калия образуется желтый осадок иодида свинца (II), который растворяется в горячей воде и кристаллизуется в виде желтых игольчатых кристаллов при охлаждении (золотой дождь).

3. Аналитические реакции катионов III группы

Реакция иона кальция

Оксалат аммония (NH4)2C2O4 осаждает ионы Ca 2+ в виде белого кристаллического осадка, растворимого в сильных кислотах и избытке уксусной кислоты (при проведении реакции обратите внимание на рН раствора (нейтральная или слабокислая среда).

Возьмите в пробирку 2-3 капли раствора нитрата или хлорида кальция и добавьте 2 капли раствора оксалата аммония. Наблюдайте образование белого осадка. Испытайте растворимость осадка в разбавленных соляной и уксусной кислотах.

Реакции иона бария

(а) В присутствии серной кислоты ионы Ba 2+ образуют белый кристаллический осадок, нерастворимый в кислотах и щелочах.

Возьмите в пробирку 2-3 капли раствора нитрата или хлорида бария и добавьте 2 капли разбавленного раствора серной кислоты. Наблюдайте образование белого осадка. Испытайте растворимость осадка в кислотах и щелочах.

(б) В нейтральных растворах в присутствии K2CrO4 или K2Cr2O7 образуется желтый кристаллический осадок BaCrO4, который растворим в сильных кислотах.

Возьмите в пробирку 2-3 капли раствора нитрата или хлорида бария и добавьте 2 капли раствора хромата калия. Наблюдайте образование желтого осадка. Испытайте его растворимость в соляной и уксусной кислотах.

4. Аналитические реакции катионов IV группы

Реакция иона алюминия

Органическое соединение ализарин C11H6O2(OH)2 образует с гидроксидом алюминия малорастворимое комплексное соединение розового цвета.

Поместите на фильтровальную бумагу 1-2 капли любой соли алюминия и подержите ее в парах аммиака (над открытой склянкой с концентрированным раствором гидроксида аммония). Добавьте 1 каплю раствора ализарина и снова поместите бумагу в пары NH3 на 1-2 минуты. Высушите фильтровальную бумагу над пламенем горелки и наблюдайте образование розового пятна алюминиевого комплекса. (Фиолетовая окраска пятна обусловлена аммонийной солью ализарина, которая разлагается при нагревании).

Реакция иона хрома (III)

Пероксид водорода в щелочных растворах переводит ион хрома (III) в CrO4 2 (хромат-ион).

Возьмите в пробирку 2-3 капли раствора любой соли хрома (III), добавьте 6-7 капель раствора NaOH до образования зеленого раствора Na3[Cr(OH)6], а затем – 3-4 капли 10%-ного раствора H2O2. Нагрейте раствор. Обратите внимание на изменение цвета. (Выделение газа обусловлено процессом разложением пероксида водорода, катализатором которого служат хромат-ионы).

Реакция иона цинка

Дитизон (дифенилтиокарбазон) S=C образует с ионами цинка в слабокислой среде комплексное соединение красного цвета, растворимое в хлороформе CHCl3.

Возьмите в пробирку 2-3 капли любой соли цинка, добавьте 2-3 капли ацетатного буферного раствора и 2-3 капли раствора дитизона в хлороформе. Встряхните пробирку и наблюдайте изменение цвета органического слоя.

5. Аналитические реакции катионов V группы

Реакция иона железа (II)

Гексацианоферрат (III) калия K3[Fe(CN)6] (красная кровяная соль) образует в присутствии ионов Fe (II) темно-синий осадок KFe[Fe(CN)6].

Возьмите в пробирку 2-3 капли раствора сульфата железа (II) и добавьте 2 капли раствора K3[Fe(CN)6]. Наблюдайте образование осадка.

Реакции иона железа (III)

(а) Гексацианоферрат (II) калия K4[Fe(CN)6] (желтая кровяная соль) образует в присутствии ионов Fe (III) темно-синий осадок KFe[Fe(CN)6].

Возьмите в пробирку 2-3 капли раствора хлорида или сульфата железа (III) и добавьте 2 капли раствора K4[Fe(CN)6]. Наблюдайте образование осадка.

(б) Тиоцианат (роданид) аммония NH4SCN (или калия KSCN) образует в присутствии ионов Fe (III) кроваво-красный раствор комплексного соединения:

Fe 3+ + n SCN [Fe(SCN)n] 3 n

Возьмите в пробирку 2-3 капли раствора хлорида или сульфата железа (III) и добавьте 2 капли раствора роданида аммония. Наблюдайте изменение цвета раствора.

Реакция иона марганца (II)

В присутствии азотной кислоты висмутат натрия NaBiO3 окисляет ионы марганца (II) до марганцевой кислоты HMnO4.

Возьмите в пробирку 1-2 капли раствора нитрата или хлорида марганца (II), добавьте 1 мл разбавленной азотной кислоты и несколько кристалликов NaBiO3. Обратите внимание на изменение цвета раствора.

6. Аналитические реакции катионов V группы

Реакция иона меди (II)

Гидроксид аммония образует с ионами меди Cu (II) темно-синий раствор комплексного соединения [Cu(NH3)4] 2+ . В присутствии ионов металлов, образующих нерастворимые основания, отделите их осадок на центрифуге и наблюдайте темно-синий цвет раствора.

Возьмите в пробирку 2-3 капли раствора хлорида или сульфата меди (II) и добавьте разбавленный раствор гидроксида аммония до изменения цвета раствора.

Реакция иона кобальта (II)

NH4SCN (или KSCN) в присутствии органических растворителей образует с ионами Со (II) растворимое комплексное соединение голубого цвета:

Co 2+ + 4 SCN [Co(SCN)4] 2

Налейте в пробирку 2-3 капли раствора хлорида кобальта (II), добавьте несколько кристаллов NH4SCN (или KSCN) и 4-5 капель изоамилового спирта или его смеси с эфиром. Встряхните пробирку и наблюдайте появление синего окрашивания органического слоя.

Если в растворе одновременно присутствуют ионы Co (II) и Fe (III), синее окрашивание раствора не появляется, так как железо образует с роданид-ионами более прочное комплексное соединение, которое окрашивает раствор в кроваво-красный цвет. Для отделения ионов Co (II) следует добавить к раствору немного кристаллического KF (или NH4F). В этом случае происходит маскирование ионов Fe (III) (перевод в более прочное бесцветное комплексное соединение K3[FeF6]). Поэтому красная окраска раствора не проявляется, и можно открыть ионы Co (II) в присутствии ионов Fe (III).

Реакция иона Ni (II)

Органический реагент – диметилглиоксим (реактив Чугаева), C4H8N2O2, образует с ионами никеля (II) розовый осадок диметилглиоксимата никеля. Реакция идет в слабощелочной среде в присутствии разбавленного раствора NH4OH (pH=9):

Возьмите в пробирку 2-3 капли раствора хлорида или сульфата никеля (II), добавьте несколько капель разбавленного раствора гидроксида аммония и 2 капли раствора диметилглиоксима (реактива Чугаева). Наблюдайте образование осадка.

7. Аналитические реакции некоторых анионов

Реакция сульфат-ионов SO4 2 -

Ионы бария образуют с сульфат-ионами белый кристаллический осадок BaSO4, который нерастворим в сильных минеральных кислотах.

Возьмите в пробирку 2-3 капли раствора сульфата любого металла и добавьте 2 капли раствора нитрата или хлорида бария. Наблюдайте образование белого осадка. Испытайте растворимость осадка в разбавленной азотной кислоте.

Реакция фосфат-ионов РO4 3 -

Ионы бария образуют с фосфат-ионами белый кристаллический осадок BaНРO4, который растворим в сильных минеральных кислотах.

Возьмите в пробирку 2-3 капли раствора фосфата натрия или калия и добавьте 2 капли раствора нитрата или хлорида бария. Наблюдайте образование осадка. Испытайте растворимость осадка в разбавленной азотной кислоте. Сравните растворимость фосфата бария с растворимостью сульфата бария.

Реакции карбонат-ионов СO3 2 -

Ионы бария образуют с карбонат-ионами белый кристаллический осадок, который растворим в кислотах с выделением газа (СО2).

Налейте в пробирку несколько капель карбоната натрия и добавьте раствор хлорида бария. Наблюдайте образование осадка карбоната бария. Добавьте несколько капель разбавленного раствора азотной кислоты. Выделение газа свидетельствует о присутствии в растворе карбонат-ионов.

Реакции хлорид- и иодид-ионов Cl - и I -

В присутствии хлорид-ионов ионы серебра образуют белый осадок AgCl, который растворим в избытке аммиака с образованием комплексного соединения:

Подкисление раствора приводит к разрушению комплексного соединения и образования осадка AgCl.

Осадок AgI – светло-желтый, в избытке аммиака не растворяется.

Возьмите две пробирки и добавьте в одну 2-3 капли раствора хлорида натрия, а в другую – 2-3 капли раствора иодида натрия. Добавьте в каждую пробирку 2 капли раствора нитрата серебра. Наблюдайте образование осадков хлорида и иодида серебра (сравните цвета осадков). Добавьте в каждую пробирку разбавленный раствор гидроксида аммония. В какой из пробирок осадок растворился? Подкислите раствор, содержащий хлорид диамминосеребра, и наблюдайте образование белого осадка AgCl.

Реакция нитрат-ионов NO3 -

Дифениламин (C6H5)2NH окисляется нитрат- и нитрит-ионами с образованием продуктов, окрашенных в темно-синий цвет.

Налейте в пробирку несколько капель раствора, содержащего нитрат- или нитрит-анионы, и добавьте (по стенке пробирки) 1 каплю дифениламина (соблюдайте осторожность – соединение растворено в концентрированной серной кислоте!). Наблюдайте образование темно-синего пятна на стенке пробирки.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Методы качественного анализа 3

Аналитические реакции 3

Условия проведения аналитических реакций 5

Реактивы 5

Систематический и дробный анализ 6

Оборудование и посуда 8

Классификация анионов и групповые реагенты 13

Общая характеристика анионов первой группы 15

Обнаружение анионов первой группы 15

Частные реакции анионов первой группы 17

Общая характеристика анионов второй группы 18

Обнаружение анионов второй группы 18

Частные реакции анионов второй группы 19

Общая характеристика анионов третьей группы 20

Обнаружение анионов третьей группы 20

Частные реакции анионов третьей группы 21

Введение

ель аналитической химии - установление качест­венного и количественного состава вещества или смеси веществ. В соответствии с этим аналитическая химия делится на качественный и количественный анализ.

Задачей качественного анализа является выяснение качественного состава вещества, т. е. из каких элемен­тов или ионов состоит данное вещество.

При изучении состава неорганических веществ в большинстве случаев приходится иметь дело с водными растворами кислот, солей и оснований. Эти вещества яв­ляются электролитами и в растворах диссоциированы на ионы. Поэтому анализ сводится к определению от­дельных ионов — катионов и анионов.

При проведении качественного анализа можно рабо­тать с различными количествами исследуемого вещест­ва. Имеются так называемые грамм-метод, при котором масса исследуемого вещества берется более 0,5 г (более 10 мл раствора), сантиграмм-метод (масса исследуемого вещества от 0,05 до 0,5 г, или 1—10 мл раствора), мил­лиграмм-метод (масса исследуемого вещества от 10 -6 г до 10 -3 г, или от 0,001 до 0,1 мл раствора) и др. Наибо­лее распространенным является сантиграмм-метод, или полумикрометод.]

Методы качественного анализа

етоды качественного анализа делятся на химиче­ские, физико-химические и физические.

Физические методы основаны на изучении фи­зических свойств анализируемого вещества. К этим ме­тодам относятся спектральный, рентгеноструктурный, масс-спектрометрический анализы и др.

В физико-химических методах течение ре­акции фиксируется измерением определенного физического свойства исследуемого раствора. К этим методам относятся полярография, хроматография и др.

К химическим методам относятся методы, ос­нованные на использовании химических свойств иссле­дуемых веществ.

Аналитические реакции

Анализ вещества, проводи­мый в растворах, называется анализом мокрым путем. Это основной путь полного определения соста­ва вещества. При этом применяют реакции образования осадка, окрашенных соединений или выделения газа. Эти реакции проводят обычно в пробирках. Ряд качест­венных реакций проводят на предметных стеклах и об­разующиеся кристаллы рассматривают под микроско­пом. Это так называемые микрокристаллоскопические реакции. Иногда прибегают к выполнению реакций ка­пельным методом. Для этого на полоску фильтроваль­ной бумаги наносят каплю испытуемого раствора и кап­лю реактива и рассматривают окраску пятна на бу­маге.

Реакции, проводимые сухим путем (не в раство­рах), обычно применяются как вспомогательные, глав­ным образом при предварительных испытаниях. Из ре­акций, проводимых сухим путем, чаще применяются ре­акции окрашивания перлов буры. В качественном анализе используются также пирохимические реакции: окраши­вание пламени в различные цвета летучими солями не­которых катионов.

В химическом анализе используется лишь незначи­тельная часть того многообразия реакций, которое свой­ственно данному иону

Для открытия ионов пользуются реакциями, сопро­вождающимися различными внешними изменениями, на­пример выпадением или растворением осадка, измене­нием окраски раствора, выделением газов, т. е. откры­ваемый ион переводят в соединение, внешний вид и свойства которого характерны и хорошо известны. Про­исходящее при этом химическое превращение называет­ся аналитической реакцией.

Вещества, с помощью которых выполняется открытие ионов, называются реактивами на соответствующие ио­ны. Реакции, характерные для какого-либо иона, назы­ваются частными реакциями этого иона.

Аналитическая реакция должна отвечать определен­ным требованиям. Она должна протекать не слишком медленно и быть достаточно простой по выполнению.

Для аналитических реакций важнейшими требова­ниями являются специфичность и чувствительность. Чем меньшее количество ионов вступает в реакцию с данным реактивом, тем более специфична данная реакция. Чем меньшее количество вещества может быть опреде­лено с помощью данного реактива, тем более чувстви­тельна эта реакция.

Чувствительность реакции можно охарактеризовать количественно при помощи двух показателей: открывае­мого минимума и предельного разбавления.

Открываемым минимумом называется наименьшее количество вещества или иона, которое может быть от­крыто данным реактивом при данных условиях.

Предельное разбавление характеризует наименьшую концентрацию вещества (или иона), при которой еще возможно открыть его данным реактивом.

Условия проведения аналитических реакций

Выпол­нение каждой аналитической реакции требует соблюде­ния определенных условий ее проведения, важнейшими из которых являются:

концентрация реагирующих ве­ществ,

Реактивы

Реактивы используемые для выполнения аналитиче­ских реакций, делятся на специфические, избиратель­ные, или селективные, и групповые.

Специфические реактивы образуют характерный оса­док или окрашивание только с определенным ионом. Например, реактив Кз[Fе(СN)6] образует темно-синий осадок только с ионами Fe 2+ .

Избирательные, или селективные, реактивы реагиру­ют с несколькими ионами, которые могут принадлежать к одной или к разным группам.

Например, реактив KI реагирует с ионами Pb 2+ , Ag + , Hg2 2+ (II группа), а так­же с ионами Hg 2+ и Си 2+ (VI группа).

Групповой реактив вступает в реакцию со всеми ио­нами данной группы. С помощью этого реактива ионы данной группы можно отделить от ионов других групп. Например, групповым реактивом второй аналитической группы является хлороводородная кислота, которая с катионами Pb 2+ , Ag + , Hg2 2+ образует белые труднорас­творимые осадки.

Систематический и дробный анализ

Большин­ство аналитических реакций недостаточно специфично и дает сходный эффект с несколькими ионами. Поэтому в процессе анализа приходится прибегать к отделению ионов друг от друга. Таким образом, открытие ионов проводится в определенной последовательности. После­довательное разделение ионов и их открытие носит на­звание систематического хода анализа.

Систематический ход анализа основан на том, что сначала с помощью групповых реактивов разделяют смесь ионов на группы и подгруппы, а затем уже в пре­делах этих подгрупп обнаруживают каждый ион харак­терными реакциями. Групповыми реагентами действу­ют на смесь ионов последовательно и в строго опреде­ленном порядке.

В ряде случаев прибегают не к систематическому разделению ионов, а к дробному методу анализа. Этот метод основан на открытии ионов специфическими реак­циями, проводимыми в отдельных порциях исследуемого раствора. Так, например, ион Fe 2+ можно открыть при помощи реактива Кз[Fе(СN)6] в присутствии любых ионов.

Так как специфических реакций немного, то в ряде случаев мешающее влияние посторонних ионов устраня­ют маскирующими средствами. Например, ион Zn 2+ можно открыть в присутствии Fe 2+ при помо­щи реактива (NH4)2[Hg(SCN)4], связывая мешающие ионы Fe 2+ гидротартратом натрия в бесцветный комп­лекс.

Дробный анализ имеет ряд преимуществ перед систе­матическим ходом анализа: возможность обнаруживать ионы в отдельных порциях в любой последовательности, а также экономия времени и реактивов.

Но так как специфических реакций немного и ме­шающее влияние многих ионов нельзя устранить маски­рующими средствами, в случае присутствия в растворе многих катионов из разных групп прибегают к систе­матическому ходу анализа, открывая лишь некоторые ионы дробным методом.

Оборудование и посуда

аиболее удобно в обычной практике проводить ка­чественное исследование полумикрометодом. Этот метод не требует больших количеств веществ для анализа, дает значительную экономию времени и реактивов по срав­нению с макрометодом. В то же время этот метод значительно проще микрометода, требующего специальной аппаратуры и особых навыков работы.

Для работы полумикрометодом в лаборатории необ­ходимо иметь следующее оборудование.

1. Переносной деревянный штатив с набором капель­ниц с растворами солей, реактивов, кислот и щелочей и баночек с сухими солями (рис. 1).

2. Штатив для пробирок.

3. Металлический штатив с кольцом, фарфоровым треугольником и асбестированной сеткой.

4. Держатели для пробирок.

5. Центрифужные пробирки (рис. 2).

8. Стеклянные палочки (рис. 4.).

9. Фарфоровые чашки диаметром 3—5 см.

10. Промывалка (рис. 5).

13. Предметные стекла с углублениями (рис. 7).

14. Ершик для мытья посуды.

15. Водяная баня (рис. 8).

16. Центрифуга (рис. 9)

Частные реакции, а также операции разделения ио­нов проводят в конических пробирках для центрифуги­рования или в маленьких цилиндрических пробирках. В пробирку вносят несколько капель анализируемого раствора и, соблюдая необходимые условия, прибавля­ют по каплям реактив, помешивая реакционную смесь стеклянной палочкой.

Выполняя реакцию, необходимо следить за тем, чтобы кончик пипетки не касался стенок пробирки во избежание загрязнения реактива. Вынутую из капельницы пипетку по выполнении реакции необходимо сразу же опустить в ту же капельницу.

Вместо пробирок частные реакции можно выполнять также на фарфоровых капельных пластинках (рис. 6) или особых предметных стеклах с углублениями (рис. 7). В этом случае расход реактивов минималь­ный, а результат реакции хорошо заметен.

Для нагревания реакционной смеси пробирку погру­жают в кипящую водяную баню. Водяная баня может также служить для упаривания (выпаривания до небольшого объема) растворов. Выпаривание до­суха обычно проводят в фарфоровой чашке, нагревая ее на пламени газовой горелки. Пока жидкость не вы­парилась до конца, целесообразно ставить чашку на асбестированную сетку. Если остаток от выпаривания необходимо прокалить, чашку ставят на фарфоро­вый треугольник.

Для отделения осадка от раствора пробирку с осад­ком помещают в центрифугу.

Первая подгруппа: сульфиды не образуют тиосолей при действии Na2S; в) вторая подгруппа: сульфиды растворяются в Na2S с образованием тиосолей. Сульфиды, нерастворимые в воде (гидроксиды, образующиеся при действии группового реагента). Соли бария малорастворимы в воде, но растворимы в разбавленных кислотах (кроме BaS04). Хлориды нерастворимы в воде и разбавленных кислотах (Ag Hg2 Pb2+). Сульфиды… Читать ещё >

Классификация катионов и анионов ( реферат , курсовая , диплом , контрольная )

Существует несколько схем классификации катионов по аналитическим группам. Одной из наиболее распространенных является классификация, основанная на свойствах хлоридов, сульфидов и карбонатов. При разделении по так называемому сероводородному методу систематический ход анализа заключается в следующем.

  • 1. Раствором хлороводородной кислоты осаждают нерастворимые хлориды: AgCl, Hg2Cl2H РЬС12. Таким образом, катионы Ag + , Hg2 + , Pb 2+ составляют так называемую 5-ю аналитическую группу.
  • 2. Раствор, имеющий кислую реакцию, обрабатывают сероводородом. При этом в осадок переходят катионы меди (И), кадмия (И), ртути (И), висмута (Ш), мышьяка, сурьмы и олова, сульфиды которых нерастворимы в разбавленных кислотах. Эти катионы образуют 4-ю аналитическую группу.
  • 3. Отделив раствор от осадка, его нейтрализуют до слабощелочной реакции и обрабатывают сульфидом аммония, который осаждает катионы железа, цинка, марганца (И), никеля (П), кобальта (П), хрома (Ш), алюмипия (Ш) и ряда других элементов. Эти катионы составляют 3-ю аналитическую группу.
  • 4. После отделения осадка, содержащего катионы 3-й группы, катионы щелочноземельных элементов (кроме магния) осаждают из раствора в виде карбонатов. Эта группа называется 2-й аналитической группой.
  • 5. После отделения карбонатов 2-й группы в растворе остаются катионы щелочных металлов, магния и аммония, которые не имеют группового реагента и составляют 1-ю аналитическую группу.

Итак, в основу классификации катионов положено различие в растворимости образуемых ими соединений, позволяющее отделять одни группы ионов от других (табл. 3.1).

Сульфиды, растворимые в воде.

Сульфиды, нерастворимые в воде (гидроксиды, образующиеся при действии группового реагента).

Карбонаты, растворимые в воде.

Карбонаты, нерастворимые в воде.

Сульфиды (гидроксиды), растворимые в разбавленных кислотах.

Сульфиды, нерастворимые в разбавленных кислотах.

К Na NH/, Mg 2 (MgC03 растворим только в присутствии солей аммония).

Ва 2 *, Sr 2 *, Са 2 ‘.

А1 3 *, Cr 3 *, Fe 3 *, Fe 2 *, Mg 2 *, Zn 2 *, Co 2 *, Ni 2 *.

а) первая подгруппа: сульфиды не образуют тиосолей при действии Na2S; в) вторая подгруппа: сульфиды растворяются в Na2S с образованием тиосолей.

Хлориды нерастворимы в воде и разбавленных кислотах (Ag Hg 2 Pb 2+ ).

Группового реагента не имеют.

Групповой реагент H2S + НС1.

Групповой реагент НС1.

Неметаллы в воде содержатся обычно в виде анионов соответствующих кислот. Исключение составляет азот, который может существовать как в форме анионов N03 и NO^, гак и в форме катиона NHJ, и углерод, присутствующий в виде неорганических анионов и органических веществ. Кроме того, следует иметь в виду, что некоторые металлы также могут образовывать анионы, например, такие, как СгО л_ , [А1(ОН)6] л , и ряд других.

Анионы принято делить на три аналитические группы в зависимости от растворимости соответствующих солей бария и серебра. Групповыми реагентами служат хлорид бария и нитрат серебра (табл. 3.2).

Классификация анионов

Номер аналитической группы.

Анионы, составляющие группу.

SO 2 -, СО 2 -, Р04 3 -, SiO 2 -, AsO 3 -, AsO 3 -, CrO 2 -, Cr2() 2 , F и др.

Соли бария малорастворимы в воде, но растворимы в разбавленных кислотах (кроме BaS04).

Теория химической связи занимает важнейшее место в современной химии . Она объясняет, почему атомы объединяются в химические частицы , и позволяет сравнивать устойчивость этих частиц . Используя теорию химической связи , можно предсказать состав и строение различных соединений . Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций .

Химическая связь - это взаимодействие атомов , обусловливающее устойчивость химической частицы или кристалла как целого . Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами : катионами и анионами, ядрами и электронами . При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами . На некотором расстоянии эти силы уравновешивают друг друга , и образуется устойчивая химическая частица .

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами .

В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

1 Взаимодействие ионов

Катионы и анионы способны притягиваться друг к другу . При этом возникает химическая связь , и образуются химические соединения . Такой тип химической связи называется ионной связью :

2 Определение Ионной связи

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами .

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором . Атом щелочного металла легко теряет электрон , а атом галогена - приобретает . В результате этого возникает катион натрия и хлорид-ион . Они образуют соединение за счет электростатического притяжения между ними .

Взаимодействие между катионами и анионами не зависит от направления , поэтому о ионной связи говорят как о ненаправленной . Каждый катион может притягивать любое число анионов , и наоборот . Вот почему ионная связь является ненасыщенной . Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла . Поэтому "молекулой " ионного соединения следует считать весь кристалл .

Для возникновения ионной связи необходимо , чтобы сумма значений энергии ионизации Ei (для образования катиона) и сродства к электрону Ae (для образования аниона) должна быть энергетически выгодной . Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует . Даже в тех соединениях, которые обычно относят к ионным , не происходит полного перехода электронов от одного атома к другому ; электроны частично остаются в общем пользовании . Так, связь во фториде лития на 80% ионная , а на 20% - ковалентная . Поэтому правильнее говорить о степени ионности (полярности ) ковалентной химической связи . Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной . При большей разности соединение можно считать ионным .

Ионной моделью химической связи широко пользуются для описания свойств многих веществ , в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами . Это обусловлено простотой описания таких соединений : считают, что они построены из несжимаемых заряженных сфер , отвечающих катионам и анионам . При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионная связь — крайний случай поляризации ковалентной полярной связи . Образуется между типичными металлом и неметаллом . При этом электроны у металла полностью переходят к неметаллу . Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу) , то общая электронная пара полностью переходит к атому с большей ЭО . Результатом этого является образование соединения противоположно заряженных ионов :

Между образовавшимися ионами возникает электростатическое притяжение , которое называется ионной связью . Вернее, такой взгляд удобен . На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде , обычно на деле связь носит частично ионный , и частично ковалентный характер . В то же время связь сложных молекулярных ионов часто может считаться чисто ионной . Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости . Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

3 Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов . Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию :

При этом остается неясным , где следует провести границу между катионом и анионом . Сегодня известно , что чисто ионной связи не существует , так как всегда имеется некоторое перекрывание электронных облаков . Для вычисления радиусов ионов используют методы исследования , которые позволяют определять электронную плотность между двумя атомами . Межъядерное расстояние делят в точке , где электронная плотность минимальна .

Размеры иона зависят от многих факторов . При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра ) ионный радиус уменьшается . Это особенно хорошо заметно в ряду лантаноидов , где ионные радиусы монотонно меняются от 117 пм для (La 3+ ) до 100 пм (Lu 3+ ) при координационном числе 6 . Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера . Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса , связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона : 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента : Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе , поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами . Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6 , соответственно .

Структура идеального ионного соединения , обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов , во многом определяется соотношением ионных радиусов катионов и анионов . Это можно показать простыми геометрическими построениями.

Читайте также: