Канальные индукционные печи реферат

Обновлено: 05.07.2024

В металлургической промышленности широко применяются индукционные печи. Такие печи нередко изготавливают самостоятельно. Для этого необходимо знать их принцип работы и конструктивные особенности. Принцип работы таких печей был известен еще два столетия назад.

Принцип действия и применение

Индукционные печи способны решать следующие задачи:

  • Плавка металла.
  • Термообработка металлических деталей.
  • Очистка драгоценных металлов.

Такие функции имеются в промышленных печах. Для бытовых условий и обогрева помещения существуют печи специальной конструкции.

Работа индукционной печи заключается в нагревании материалов путем использования свойств вихревых токов. Чтобы создать такие токи применяется специальный индуктор, который состоит из катушки индуктивности с несколькими витками провода большого поперечного сечения.

К индуктору подводится сеть питания переменного тока. В индукторе переменный ток создает магнитное поле, которое меняется с частотой сети, и пронизывает внутреннее пространство индуктора. При помещении какого-либо материала в это пространство, в нем возникают вихревые токи, осуществляющие его нагревание.

Вода в работающем индукторе нагревается и кипит, а металл начинает плавиться при достижении соответствующей температуры.

Условно можно разделить индукционные печи на типы:

  • Печи с магнитопроводом.
  • Без магнитопровода.

Первый тип печей содержит индуктор, заключенный в металл, что создает особый эффект, повышающий плотность магнитного поля, поэтому нагревание осуществляется качественно и быстро. В печах без магнитопровода индуктор находится снаружи.

Виды и особенности печей

Индукционные печи можно разделить на виды, которые обладают своими особенностями работы и отличительными признаками. Одни служат для работ в промышленности, другие применяются в быту, для приготовления пищи.

Вакуумные индукционные печи

Такая печь предназначена для плавки и литья сплавов индукционным методом. Она состоит из герметичной камеры, в которой расположена тигельная индукционная печь с литейной формой.

В вакууме можно обеспечить совершенные металлургические процессы, получать качественные отливки. В настоящее время вакуумное производство перешло на новые технологические процессы из непрерывных цепочек в вакуумной среде, которая дает возможность создавать новые изделия, и уменьшать издержки производства.

Достоинства вакуумной плавки:
  • Жидкий металл можно выдерживать в вакууме длительное время.
  • Повышенная дегазация металлов.
  • В процессе плавки можно производить дозагрузку печи и воздействовать на процесс рафинирования и раскисления в любое время.
  • Возможность постоянного контроля и регулировки температуры сплава и его химического состава во время работы.
  • Высокая чистота отливок.
  • Быстрый нагрев и скорость плавки.
  • Повышенная гомогенность сплава из-за качественного перемешивания.
  • Любая форма сырья.
  • Экологическая чистота и экономичность.

Принцип действия вакуумной печи состоит в том, что в тигле, находящемся в вакууме с помощью индуктора высокой частоты плавят твердую шихту и очищают жидкий металл. Вакуум создается путем откачки воздуха насосами. При вакуумной плавке достигается большое снижение водорода и азота.

Канальные индукционные печи

Печи с электромагнитным сердечником (канальные) широко применяются в литейном производстве для цветных и черных металлов в качестве раздаточных печей, миксеров.

1 — Ванна
2 — Канал
3 — Магнитопровод
4 — Первичная катушка

Переменный магнитный поток проходит по магнитопроводу, контуру канала в виде кольца из жидкого металла. В кольце возбуждается электрический ток, который разогревает жидкий металл. Магнитный поток образуется первичной обмоткой, работающей от переменного тока.

Чтобы усилить магнитный поток, используется замкнутый магнитопровод, который выполнен из трансформаторной стали. Пространство печи соединяется двумя отверстиями с каналом, поэтому при наполнении печи жидким металлом создается замкнутый контур. Печь не сможет работать без замкнутого контура. В таких случаях сопротивление контура большое, и в нем течет малый ток, который назвали током холостого хода.

Вследствие перегрева металла и действия магнитного поля, которое стремится вытолкнуть металл из канала, жидкий металл в канале постоянно движется. Так как металл в канале нагрет выше, чем в ванне печи, то металл постоянно поднимается в ванну, из которой поступает металл с меньшей температурой.

Если металл слить ниже допустимой нормы, то жидкий металл будет выбрасываться из канала электродинамической силой. В итоге произойдет самопроизвольное выключение печи и разрыв электрического контура. Чтобы избежать таких случаев печи оставляют некоторое количество металла в жидком виде. Его называют болотом.

Канальные печи разделяют на:
  • Плавильные печи.
  • Миксеры.
  • Раздаточные печи.

Чтобы накопить некоторое количество жидкого металла, усреднения химического состава его и выдержки, используют миксеры. Объем миксера рассчитывают равным не ниже двукратной часовой выработки печи.

Канальные печи разделяют на классы по расположению каналов:
По форме рабочей камеры:
  • Барабанные индукционные печи.
  • Цилиндрические индукционные печи.

Барабанная печь выполнена в виде стального сварного цилиндра с двумя стенками на торцах. Для поворота печи применяются приводные ролики. Чтобы повернуть печь, необходимо включить привод электродвигателя с двумя скоростями и цепной передачей. Двигатель имеет пластинчатые тормоза.

На торцевых стенках есть сифон для заливки металла. Для загрузки присадок и снятия шлаков имеются отверстия. Также для выдачи металла имеется канал. Канальный блок состоит из индуктора печи с V-образными каналами, сделанными в футеровке при помощи шаблонов. При первой же плавки эти шаблоны расплавляются. Обмотка и сердечник охлаждаются воздухом, корпус блока охлаждается водой.

Если канальная печь имеет другую форму, то выдача металла осуществляется с помощью наклона ванны гидроцилиндрами. Иногда металл выдавливают избыточным давлением газа.

Достоинства канальных печей:
  • Малый расход электроэнергии вследствие малых потерь тепла ванны.
  • Повышенный электрический КПД индуктора.
  • Малая стоимость.
Недостатки канальных печей:
  • Сложность регулировки химического состава металла, так как наличие оставленного жидкого металла в печи создает трудности при переходе от одного состава к другому.
  • Малая скорость движения металла в печи уменьшает возможности технологии плавки.
Конструктивные особенности

Каркас печи изготавливается из листовой стали с низким содержанием углерода толщиной от 30 до 70 мм. Внизу каркаса есть окна с присоединенными индукторами. Индуктор выполнен в виде стального корпуса, первичной катушки, магнитопровода и футеровки. Его корпус сделан разъемным, а части изолированы между собой прокладками для того, чтобы части корпуса не создавали замкнутый контур. В противном случае будет создаваться вихревой ток.

Магнитопровод выполнен из пластин специальной электротехнической стали 0,5 мм. Пластины изолированы между собой для снижения потерь от вихревых токов.

Катушка изготавливается из медного проводника сечением, зависящим от тока нагрузки и метода охлаждения. При воздушном охлаждении допустимый ток 4 ампера на мм 2 , при охлаждении водой допустимый ток 20 ампер на мм 2 . Между футеровкой и катушкой монтируют экран, который охлаждается водой. Экран изготовлен из магнитной стали или меди. Для отведения тепла от катушки монтируют вентилятор. Чтобы получить точные размеры канала, применяют шаблон. Он выполнен в виде полой стальной отливки. Шаблон ставится в индуктор до того момента, пока не будет заполнения огнеупорной массой. Он находится в индукторе при разогреве и сушке футеровки.

Для футеровки применяют огнеупорные массы влажного и сухого вида. Влажные массы используют в виде набивных или заливных материалов. Заливные бетоны используют при сложной форме индуктора, если нельзя уплотнить массу по всему объему индуктора.

Такой массой наполняют индуктор и уплотняют вибраторами. Сухие массы уплотняют вибраторами высокой частоты, набивные массы уплотняют пневматическими трамбовками. Если в печи будет выплавляться чугун, то футеровку выполняют из оксида магния. Качество футеровки определяется по температуре охлаждающей воды. Наиболее эффективным методом проверки футеровки является проверка по значению индуктивного и активного сопротивления. Эти измерения проводятся с помощью контрольных приборов.

В электрооборудование печи входит:
  • Трансформатор.
  • Батарея конденсаторов для компенсации потерь электрической энергии.
  • Дроссель для подсоединения 1-фазного индуктора к 3-фазной сети.
  • Щиты управления.
  • Кабели питания.

Чтобы печь нормально функционировала, к питанию подключают трансформатор на 10 киловольт, который имеет на вторичной обмотке 10 ступеней напряжения для регулировки мощности печи.

Набивочные материалы футеровки содержат:
  • 48% сухого кварца.
  • 1,8% кислоты борной, просеянной через мелкое сито с ячейками 0,5 мм.

Массу для футеровки готовят в сухом виде с помощью смесителя, и последующей просевкой через сито. Приготовленная смесь не должна храниться более 15 часов после подготовки.

Футеровку тигля производят с помощью уплотнения вибраторами. Электрические вибраторы используются для футеровки больших печей. Вибраторы погружают в пространство шаблона и производят уплотнение массы через стенки. При уплотнении вибратор передвигают краном и вертикально вращают.

Тигельные индукционные печи

Этот вид печи наиболее распространенный. В конструкции печи нет сердечника. Распространенная форма печи представляет собой цилиндр из огнестойкого материала. Тигель находится в полости индуктора. К нему подводится питание переменного тока.

Преимущества тигельных печей:
  • Энергия выделяется при загрузке материала в печь, поэтому вспомогательные нагревательные элементы не нужны.
  • Достигается высокая однородность многокомпонентных сплавов.
  • В печи можно создать реакцию восстановления, окисления, независимо от величины давления.
  • Высокая производительность печей из-за повышенной удельной мощности на любых частотах.
  • Перерывы в плавке металла не влияют на эффективность работы, так как для разогрева не требуется много электроэнергии.
  • Возможность любых настроек и простая эксплуатация с возможностью автоматизации.
  • Нет местных перегревов, температура выравнивается по всему объему ванны.
  • Быстрое плавление, позволяющее создать качественные сплавы с хорошей однородностью.
  • Экологическая безопасность. Внешняя среда не подвергается никакому вредному воздействию печи. Плавка также не оказывает вреда природе.
Недостатки тигельных печей:
  • Малая температура шлаков, применяющихся для обработки зеркала расплава.
  • Малая стойкость футеровки при резких температурных перепадах.

Несмотря на имеющиеся недостатки, тигельные индукционные печи получили большую популярность на производстве и в других областях.

Индукционные печи для отопления помещения

Чаще всего такая печь устанавливается в помещении кухни. В ее конструкции основной частью является сварочный инвертор. Конструкция печи обычно совмещается с водонагревательным котлом, который дает возможность для отопления всех помещений в здании. Также есть возможность подключения подачи горячей воды в здание.

Эффективность работы такого устройства небольшая, однако, нередко такое оборудование все-таки применяется для отопления дома.

Конструкция нагревающей части индукционного котла подобна трансформатору. Наружный контур – это обмотки своеобразного трансформатора, которые подключаются к сети. Второй контур внутренний – это устройство обмена теплом. В нем происходит циркуляция теплоносителя. При подключении питания катушка создает переменное магнитное поле. В итоге внутри теплообменника индуцируются токи, которые осуществляют его нагревание. Металл нагревает теплоноситель, который обычно состоит из воды.

На таком же принципе основана работа бытовых индукционных плит, в которых в качестве вторичного контура выступает посуда из специального материала. Такая плита намного экономичнее обычных плит из-за отсутствия тепловых потерь.

Водонагреватель котла оснащен устройствами управления, которые дают возможность поддержания температуры теплоносителя на определенном уровне.

Отопление электроэнергией является дорогим удовольствием. Оно не может создать конкуренцию с твердым топливом и газом, дизельным топливом и сжиженным газом. Одним из методов снижения расходов является установка теплоаккумулятора, а также подключение котла в ночное время, так как ночью чаще всего действует льготное начисление за электричество.

Для того, чтобы принять решение об установке индукционного котла для дома, необходимо получить консультацию у профессиональных специалистов по теплотехнике. У индукционного котла практически нет преимуществ перед обычным котлом. Недостатком является высокая стоимость оборудования. Обычные котел с ТЭНами продается уже готовым к установке, а индукционный нагреватель требует дополнительного оборудования и настройки. Поэтому, прежде чем приобрести такой индукционный котел, необходимо произвести тщательный экономический расчет и планировку.

Футеровка индукционных печей

Процесс футеровки необходим для обеспечения защиты корпуса печи от воздействия повышенных температур. Она дает возможность значительно сократить потери тепла, увеличить эффективность плавки металла или нагрева материала.

Для футеровки применяют кварцит, являющийся модификацией кремнезема. К материалам для футеровки предъявляются некоторые требования.

Такой материал должен обеспечить 3 зоны состояний материала:
  • Монолитная.
  • Буферная.
  • Промежуточная.

Только наличие трех слоев в покрытии способно защитить кожух печи. На футеровку отрицательно влияет неправильная укладка материала, плохое качество материала и тяжелые условия работы печи.

ТИГЕЛЬНАЯ ИНДУКЦИОННАЯ ПЕЧЬ, ИНДУКЦИОННЫЙ НАГРЕВ, ТИГЕЛЬ, ШИХТА.

Цель работы:
ознакомиться с тигельными индукционными печами;

изучить устройство и принцип действия индукционных тигельных печей;

Содержание
Введение………………………. …………………………………………. ….4
1. Классификация индукционных установок………………………………. 6

2. Индукционные тигельные печи: достоинства, недостатки,

классификация……………………………………………………..………….9

3. Принцип работы индукционной тигельной печи…………………….…..…12

4. Конструкция основных элементов тигельных печей……………….….…14

5. Технические характеристики индукционных тигельных печей……. …20

6. Электрооборудование и схемы питания индукционных тигельных печей………………………………………………. 23

7. Эксплуатация индукционных тигельных печей и техника безопасности………………………………………………………………..27

Список использованной литературы………………………. …….30

Введение
В связи с быстрым развитием автомобилестроения, самолетостроения и других новейших направлений машиностроения в гражданских и оборонных отраслях, значительно возросла выплавка сплавов цветных металлов. Мировая тенденция развития печных агрегатов для производства сплавов цветных металлов характеризуется следующими положениями:
- печи на коксе практически не используются из-за высокого загрязнения сплавов, трудности получения отливок высокого качества, низкой экологичности и высокого энергопотребления;
- сокращается использование пламенных отражательных печей ввиду повышения угара металла и насыщения его газами, особенно при использовании легковесной садки и существенного загрязнения продуктами сгорания топлива;
- по сути прекратилось применение электродуговых печей также по причине большого угара металла, трудности регулирования химсостава и гомогенности сплава, а также из-за больших затрат энергии при теплосохранении расплава;
- печи сопротивления используются только как теплосохраняющие и практически не применяются как плавильные агрегаты из-за низкой производительности;
- быстро расширяется сфера применения индукционных печей: тигельных и канальных на промышленной частоте, тигельных плавильных на средней частоте и тигельных с укороченным индуктором для выдержки металла, - которые используются во всех видах выплавки цветных металлов, процессах теплосохранения и разливки.
Тигельные печи средней частоты вытесняют индукционные печи промышленной частоты и применяются для скоростных плавок малыми партиями. Канальные индукционные печи промышленной частоты наиболее эффективны как теплосохраняющие и разливочные. Крупные канальные индукционные печи используются для выплавки и накопления отдельных марок цветного металла в ночное время, когда стоимость электроэнергии самая низкая, а в дневное время обеспечивается непрерывная разливка или литье в крупные формы.
Начало формы

Конец формы

1. Классификация индукционных установок

По назначению индукционные установки делятся на плавильные

печи, миксеры и нагревательные установки. Под индукционными фонемами подразумевают индукционные установки, предназначенные для нагрева металлов и сплавов выше температуры их рас­плавления и перегрева металла до температуры разливки. Сюда от­носятся электропечи для плавки черных металлов и для плавки цвет­ных металлов и сплавов. Миксеры служат как для подогрева жид­кого металла до температуры разливки, так и для выравнивания его состава и поддержания его температуры.

Под нагревательными индукционными установками подразумева­ют установки для нагрева деталей до температуры термообработки или горячей деформации металла, т. е. меньшей, чем температура расплавления металла. Это — индукционные установки для сквозно­го нагрева под горячую деформацию металлических заготовок и установки для термообработки (поверхностная закалка, отпуск и пр.).

По частоте тока источника питания индукционные установки делятся на печи и нагревательные установки низкой (промышленной) частоты (50 Гц), печи и нагревательные установки средней частоты (150—10000 Гц), печи и нагревательные установки высокой частоты (50—1000 кГц) и установки диэлектрического нагрева — установки сверхвысокой частоты (5—5000 МГц).

По конструкции индукционные печи и нагревательные установки могут выполняться открытыми, т. е. работающими при атмосферном давлении воздуха, и герметически закрытыми, т. е. работающими или с разрежением воздуха внутри плавильного пространства, или с по­вышенным давлением при заполнении рабочего пространства ней­тральным газом (азотом, аргоном, водородом). Закрытые установки могут быть выполнены как вакуумно-компрессионные.

По режиму работы различают печи и установки периодического действия и печи и установки непрерывного действий.

По принципу действия индукционные печи подразделяются на ти­гельные (печи без сердечника) и канальные (печи с сердечником); названные так по элементам конструкции печи, где находится рас­плавленный металл.

Индукционный нагрев металлов в настоящее время широко применяется в различных областях промышленности для самых разнообразных целей: для плавки металлов и сплавов, горячей деформации металла, термообработки, зонной очистки металлов и т. п.

Установки диэлектрического нагрева образуют отдельную груп­пу установок, работающих на высоких и сверхвысоких частотах. Они. разнообразны по назначению и исполнению. В качестве источников питания применяются ламповые генераторы. Эти установки предназ­начены главным образом для нагрева диэлектриков и полупроводя­щих материалов при получении синтетических материалов из пресс порошков, склейке, сушке, сварке пластиков и других видах обра­ботки непроводниковых материалов.

При диэлектрическом нагреве используются частоты от сотен килогерц до сотен мегагерц. Преимуществом нагрева материалов в поле конденсатора является выделение теплоты непосредственно внутри нагреваемого объекта за счет поляризации (токов смещения). Высокочастотные установки для нагрева непроводниковых и полу­проводниковых материалов применяются в различных отраслях про­мышленности и сельского хозяйства.

Развитие индукционных установок и установок диэлектрического нагрева идет по пути большего использования автоматизации, регу­лирования электрического режима, механизации погрузочно-разгрузочных операций, автоматического контроля качества термообработ­ки, использования нейтральных атмосфер и вакуума. Так как эконо­мическая эффективность возрастает с увеличением емкости и мощ­ности установок, то имеется тенденция к созданию сверхмощных агре­гатов. Так, разрабатываются печи для плавки чугуна емкостью 60 т и для подогрева чугуна (миксеры) на 100 т. Растет число конструк­ций печей и установок непрерывного и полунепрерывного действия.

2. Индукционные тигельные печи: достоинства, недостатки, классификация


По конструкции печи выполняются открытыми — для плавки металлов и сплавов в воздушной атмосфере и герметически закрытыми—для плавки в вакууме или в среде нейтральных газов (вакуумно-компрессионные, печи).

Индукционные тигельные печи получили распростра­ нение в основном для выплавки высококачественных ста­ лей и чугунов специальных марок, т. е. сплавов на основе железа, так как при плавке черных металлов тигельные печи имеют более высокий КПД, чем при плавке цвет­ ных металлов. Несмотря на это, индукционные тигель­ные печи в настоящее время получают все большее развитие и для выплавки цветных металлов и сплавов бла­ годаря другим преимуществам, которые оказываются ре­ шающими при выборе типа печи.

Тигельная печь применяется для плавления различных металлов и сплавов. Схема тигельной печи может включать индукционный нагрев, когда нагревание тел осуществляется благодаря тепловому воздействию на них электрического тока. Ток, который находится в нагреваемом теле, называется наведенным или индуцированным. Индукционные тигельные печи являются довольно сложными устройствами, которые состоят из каркаса, индуктора, вакуумной системы, нагревательная и плавильная камера, механизмы, позволяющие наклонять печь, перемещая расплавленные и нагретые металлы. В большинстве случаев индукционные тигельные плавильные печи имеют цилиндрическую форму и производятся из огнеупорных материалов.

Индукционная тигельная печь, как и другие тигельные плавильные печи имеют ряд преимуществ, основными из которых являются:
1) Энергия выделяется в загрузке, что не требует промежуточных нагревательных устройств.
2) Металлы в тигельных печах плавятся быстро, что обеспечивается равномерным распределением температуры и полным исключением местных перегревов. Благодаря данному преимуществу тигельные печи могут использоваться для получения многокомпонентных и однородных сплавов.
3) Возможность создания в плавильной тигельной печи окислительной, нейтральной и восстановительной атмосферы независимо от давления.

4) Тигельные печи характеризуются высокой производительностью вследствие высокой удельной мощности.
5) Металл из тигля сливается полностью.
6) Тигельные печи, в том числе и газовая тигельная печь, оптимальны для периодической работы, то есть они функционируют в полную силу даже при перерывах между плавками, при этом можно легко переходить с одной марки сплава на другую.
7) Тигельные печи удобны и просты в обслуживании, управлении. Эксплуатация может быть как механической, так и автоматической.
8) Тигельные печи обеспечивают гигиеничность процесса плавления, а ущерб окружающей среде минимальный.

Недостатков у тигельных печей очень мало, и они просто ничтожны по сравнению с преимуществами. Благодаря этому тигельные плавильные печи широко применяются в различных промышленных отраслях. Недостатками являются: относительно низкая температура шлаков; вспу­чивание поверхности расплавленного металла (мениск) из-за больших электродинамических сил, возникающих в расплаве; необходимость для печей малой и средней ем­кости источников питания высокой и средней частоты.
Не менее важным преимуществом является еще и широкое разнообразие моделей тигельных печей, которые можно классифицировать по нескольким параметрам. Тигельные печи могут быть открытыми, когда плавка происходит на воздухе, вакуумными – плавление осуществляется в вакууме, компрессорными, когда плавка производится вследствие высокого давления. Существуют модели тигельных печей, которые могут работать непрерывно, периодически и полунепрерывно. В зависимости от тигля различают тигельные печи с керамическим, холодным металлическим, проводящим металлическим и проводящим графитовым тиглем. По своей конструкции плавильные тигельные печи могут быть стационарные и опрокидывающиеся.

На тему: Индукционные канальные печиВыполнил: студент гр. ЭП-07
Иванов В.А
Проверил: Дейс Д.А.


Чита 2011
Содержание.

Индукционные канальные печи. 3

Общие сведения. 3

Индукционные канальные печи 4

Принцип работы индукционных канальных печей 8

Достоинства и недостатки канальных печей 11

Расчет индукционной канальной печи. 13

Индукционные канальные печи.Общие сведения.

В индукционных печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой нагрев.
Индукционный нагрев металлов основан на двух физических законах: законе электромагнитной индукции Фарадея-Максвелла и законе Джоуля-Ленца. Металлическиетела (заготовки, детали и др.) помещают в переменное магнитное поле, которое возбуждает в них вихревое электрическое поле. ЭДС индукции определяется скоростью изменения магнитного потока. Под действием ЭДС индукции в телах протекают вихревые (замкнутые внутри тел) токи, выделяющие теплоту по закону Джоуля-Ленца. Эта ЭДС создает в металле переменный ток, тепловая энергия, выделяемая данными токами,является причиной нагрева металла. Индукционный нагрев является прямым и бесконтактным. Он позволяет достигать температуры, достаточной для плавления самых тугоплавких металлов и сплавов.
Интенсивный индукционный нагрев возможен лишь в электромагнитных полях высокой напряженности и частоты, которые создают специальными устройствами - индукторами. Индукторы питают от сети 50 Гц (установкипромышленной частоты) или от индивидуальных источников питания - генераторов и преобразователей средней и высокой частоты.
Простейший индуктор устройств косвенного индукционного нагрева низкой частоты - изолированный проводник (вытянутый или свернутый в спираль), помещенный внутрь металлической трубы или наложенный на ее поверхность. При протекании по проводнику-индуктору тока в трубенаводятся греющие ее вихревые токи. Теплота от трубы (это может быть также тигель, емкость) передается нагреваемой среде (воде, протекающей по трубе, воздуху и т. д.).


Преимущества индукционного нагрева
1) Передача электрической энергии непосредственно в нагреваемое тело позволяет осуществить прямой нагрев проводниковых материалов. При этом повышается скорость нагрева по сравнению сустановками косвенного действия, в которых изделие нагревается только с поверхности.
2) Передача электрической энергии непосредственно в нагреваемое тело не требует контактных устройств. Это удобно в условиях автоматизированного поточного производства, при использовании вакуумных и защитных средств.
3) Благодаря явлению поверхностного эффекта максимальная мощность, выделяется в поверхностномслое нагреваемого изделия. Поэтому индукционный нагрев при закалке обеспечивает быстрый нагрев поверхностного слоя изделия. Это позволяет получить высокую твердость поверхности детали при относительно вязкой середине. Процесс поверхностной индукционной закалки быстрее и экономичнее других методов поверхностного упрочнения изделия.
4) Индукционный нагрев в большинстве случаев позволяетповысить производительность и улучшить условия труда.


Индукционные канальные печи


Канальные печи или, как их называют, печи с железным сердечником используют литейном производстве, в основном в качестве миксеров и раздаточных печей для черных и цветных сплавов. При производстве ковкого чугуна канальные печи применяют для перегрева до 1550° С чугуна, выплавленного в.

С веществом, находящимся в каждом из агрегатных состояний (твердое, жидкое, газообразное, плазменное), посредством постоянных и переменных (различной частоты) токов, постоянных и переменных электрических и магнитных полей (с широким диапазоном напряженностей) можно совершать бесчисленное множество операций, а именно: изменение температуры, формы, структуры, состава, изменение свойств в разных направлениях и т.д.

Содержание

1. ОПИСАНИЕ КОНСТРУКЦИИ И
ПРИНЦИПА ДЕЙСТВИЯ ПЕЧИ………………………………………………..6
1.1 Принцип действия индукционной канальной печи……………………6
1.2 Конструкция индукционных канальных печей………………………..8

2. НАЗНАЧЕНИЕ ИНДУКЦИОННЫХ
КАНАЛЬНЫХ ПЕЧЕЙ………………………………………………………….12

3. ДОСТОИНСТВА И НЕДОСТАТКИ

ИНДУКЦИОННЫХ КАНАЛЬНЫХ ПЕЧЕЙ……………………………….….13

4. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ ИНДУКЦИОННОЙ КАНАЛЬНОЙ

ПЕЧИ ПРЕДНАЗНАЧЕННОЙ ДЛЯ ПЛАВКИ АЛЮНИЯ………………. …14
4.1 Определение полной мощности и количества индукционных…. ….14
единиц индукционной канальной печи для плавки алюминия
4.2 Определение емкости печи…………………………………………….15
4.3 Расчет сечения магнитопровода печного трансформатора……….…16
4.4 Расчет геометрических размеров и числа витков
индуктора. Расчет геометрических размеров
магнитопровода печного трансформатора………………………………..17
4.5 Расчет геометрических размеров канальной части
индукционной единицы……………………………………………. …….20
4.6 Расчет электрических параметров
индукционной канальной печи…………………………………………….21
4.7 Основные технические характеристики
индукционной канальной печи………………………….……..…………..23

Работа содержит 1 файл

Последняя версия ИАК-1.05.docx

ФГАОУ ВПО «Уральский Федеральный Университет

Руководитель Идиятулин А.А.

Студент гр. ЭЗ-48044КУку Яковлев А.С.

1. ОПИСАНИЕ КОНСТРУКЦИИ И

ПРИНЦИПА ДЕЙСТВИЯ ПЕЧИ………………………………………………..6

1.1 Принцип действия индукционной канальной печи……………………6
1.2 Конструкция индукционных канальных печей………………………..8

2. НАЗНАЧЕНИЕ ИНДУКЦИОННЫХ

3. ДОСТОИНСТВА И НЕДОСТАТКИ

ИНДУКЦИОННЫХ КАНАЛЬНЫХ ПЕЧЕЙ……………………………….…. 13

4. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ ИНДУКЦИОННОЙ КАНАЛЬНОЙ

ПЕЧИ ПРЕДНАЗНАЧЕННОЙ ДЛЯ ПЛАВКИ АЛЮНИЯ………………. …14

4.1 Определение полной мощности и количества индукционных…. … .14
единиц индукционной канальной печи для плавки алюминия
4.2 Определение емкости печи……………… …………………………….15
4.3 Расчет сечения магнитопровода печного трансформатора……….…16
4.4 Расчет геометрических размеров и числа витков
индуктора. Расчет геометрических размеров
магнитопровода печного трансформатора…………………… …………..17
4.5 Расчет геометрических размеров канальной части
индукционной единицы……………………………………………. ……. 20
4.6 Расчет электрических параметров
индукционной канальной печи………………………………………… ….21
4.7 Основные технические характеристики
индукционной канальной печи………………………….……..… ………..23

Установки, в которых происходит превращение электрической энергии в другие виды с одновременным осуществлением технологических процессов, в результате которых происходит изменение вещества, называют электротехнологическими.

Следует отметить то, что в электротехнологических процессах используются свойства самих обрабатываемых веществ и материалов: электропроводность, магнитная проницаемость, диэлектрическая проницаемость, теплопроводность, теплоемкость.

С веществом, находящимся в каждом из агрегатных состояний (твердое, жидкое, газообразное, плазменное), посредством постоянных и переменных (различной частоты) токов, постоянных и переменных электрических и магнитных полей (с широким диапазоном напряженностей) можно совершать бесчисленное множество операций, а именно: изменение температуры, формы, структуры, состава, изменение свойств в разных направлениях и т.д.

Электротехнологические установки условно делятся на следующие группы:

  • электротермические – установки, основанные на тепловом действии тока;
  • электрохимические – установки, основанные на электрическом действии тока;
  • электрофизические (электромеханические установки, в которых импульсный ток вызывает возникновение электромеханических усилий в обрабатываемом материале; электрокинетические, в которых происходит преобразование энергии электрического поля в энергию движущихся частиц)
  • специальные установки, представляющие совокупность различного рода воздействий, в частности, перенос энергии за счет электромагнитного поля, например, устройства для электродинамической сепарации в бегущем магнитном поле, предназначенные для извлечения ломов и отходов неферромагнитных металлов из твердых отходов, а также для сортировки ломов цветных металлов; устройства для электромагнитного транспорта и электромагнитного перемешивания жидких металлов.

Среди перечисленных, групп группа электротермических установок является одной из наиболее распространенных.

Электротермическое оборудование предназначено для технологического процесса тепловой обработки с использованием электроэнергии в качестве основного энергоносителя.

Электротермическое оборудование классифицируется следующим образом:

2. Электротермические устройства – оборудование, предназначенное для преобразования электрической энергии в тепловую, без нагревательной камеры.

3. Электротермические агрегаты – совокупность конструктивно связанных электропечей, устройств и другого технологического оборудования (трансформирующего, охлаждающего, моечного и др.), обеспечивающих его нормальное функционирование.

Электротермическое оборудование разнообразно по назначению, конструктивному исполнению, размерам и характерным признакам.

Наиболее существенные особенности электротермического оборудования выявляются при классификации по методу нагрева, т.е. по способу преобразования электрической энергии в тепловую и подвода ее к нагреваемому телу.

По методу нагрева электротермическое оборудование (ЭТО) подразделяется следующим образом:

- ЭТО сопротивления – с выделением теплоты в твердых или жидких телах, включенных непосредственно в электрическую цепь, при протекании по ним электрического тока;

- дуговое ЭТО – с выделением теплоты в электрической дуге. Материал нагревается за счет теплоты, поступающей в него из опорных пятен дуги, а также вследствие теплообмена с дугой и электродами;

- индукционное ЭТО – с передачей электроэнергии нагреваемому телу, помещенному в переменное электрическое поле, и превращением ее в тепловую энергию при протекании индуцированных токов;

- диэлектрическое ЭТО – с выделением теплоты в диэлектриках и полупроводниках, помещенных в переменное электрическое поле, за счет перемещения электрических зарядов при электрической поляризации;

- электронно-лучевое ЭТО – с выделением теплоты при бомбардировке нагреваемого тела в вакууме потоком электронов, эмитируемых катодом;

- ионное ЭТО - с выделением теплоты в нагреваемом теле потоком ионов, образованным электрическим разрядом в вакууме;

- лазерное ЭТО - с выделением теплоты в нагреваемом теле при воздействии на него лазерных лучей, т.е. высококонцентрированных потоков световой энергии, полученных в лазерах - оптических квантовых генераторах;

- плазменное ЭТО - с выделением теплоты, основанном на нагреве газа за счет пропускания его через дуговой разряд или высокочастотное электромагнитное или электрическое поле;

- сварочное ЭТО - с выделением теплоты в нагреваемых телах в целях осуществления неразъемного соединения с обеспечением непосредственной сплошности в месте сварки.

Сварочные ЭТО делятся по виду сварки:

Среди электротермического оборудования важное место занимает группа индукционного ЭТО.

Индукционными установками называют электротермические устройства, предназначенные для индукционного нагрева или плавки тех или иных материалов. Под индукционной установкой понимают весь комплекс устройств, обеспечивающих осуществление электротермического процесса (включая источники питания, устройства автоматики и управления, комплектующее оборудование, токоподводы, некоторые вспомогательные устройства и т.п.).

Индукционной плавильной установкой называют индукционную установку, в которой нагреваемый металл или сплав доводится до плавления, т.е. меняет свое агрегатное состояние в процессе нагрева.

В индукционной нагревательной установке конечная температура нагрева всегда ниже температуры плавления материала.

1. ОПИСАНИЕ КОНСТРУКЦИИ И ПРИНЦИПА ДЕЙСТВИЯ ПЕЧИ

1.1 Принцип действия индукционной канальной печи

Принцип действия индукционной канальной печи подобен принципу действия силового трансформатора, работающего в режиме короткого замыкания. Однако электрические параметры канальной электропечи и обычного трансформатора заметно отличаются. Это вызвано различием их конструкций. Конструктивно печь состоит (рис. 1.1) из футерованной ванны 2, в которой помещается почти вся масса расплавляемого металла 3, и находящейся под ванной индукционной единицы.

Ванна сообщается с плавильным каналом 5, также заполненным расплавом. Расплав в канале и прилегающем участке ванны образует замкнутое проводящее кольцо.

Система индуктор-магнитопровод называется печным трансформатором. Футеровка, образующая плавильный канал, называется подовым камнем 6. Подовый камень представляет собой огнеупорный массив с цилиндрическим проемом 7, в который вставляется индуктор 4, навитый на стержень замкнутого магнитопровода 1.

Индукционная единица объединяет печной трансформатор и подовый камень с каналом.

Индуктор является первичной обмоткой трансформатора, а роль вторичного витка выполняет расплавленный металл, заполняющий канал и находящийся в нижней части ванны.

Ток, протекающий во вторичной цепи, вызывает нагрев расплава, при этом почти вся энергия выделяется в канале, имеющем малое сечение (в канале поглощается 90 – 95% подведенной к печи электрической энергии). Металл нагревается за счет тепло- и массообмена между каналом и ванной.

Перемещение металла обусловлено главным образом электродинамическими усилиями, возникающими в канале, и в меньшей степени конвекцией, связанной перегревом металла в канале по отношению к ванне. Перегрев ограничивается некоторой допустимой величиной, лимитирующей допускаемую мощность в канале.

Рисунок 1.2 Принципиальная схема индукционной канальной печи

Принцип действия канальной печи требует постоянно замкнутой вторичной цепи. Поэтому допускается лишь частичный слив расплавленного металла и дозагрузка соответствующего количества новой шихты. Все канальные печи работают с остаточной емкостью, составляющей обычно 25 – 30% полной емкости печи и обеспечивающей постоянное заполнение канала жидким металлом. Замораживание металла в канале не допускается, во время межплавочного простоя металл в канале должен поддерживаться в расплавленном состоянии.

Читайте также: