Камера сгорания гту реферат

Обновлено: 06.07.2024

На днях Василий рассказал о статье, в которой подробно и простыми словами описан цикл ПГУ-450. Статья действительно очень легко усваивается. Я же хочу рассказать о теории. Коротко, но по-делу.

Газотурбинная установка (ГТУ) представляет собой тепловой двигатель, в котором химическая энергия топлива преобразуется сначала в теплоту, а затем в механическую энергию на вращающемся валу.

Простейшая ГТУ состоит из компрессора, в котором сжимается атмосферный воздух, камеры сгорания, где в среде этого воздуха сжигается топливо, и турбины, в которой расширяются продукты сгорания. Так как средняя температура газов при расширении существенно выше, чем воздуха при сжатии, мощность, развиваемая турбиной, оказывается больше мощности, необходимой для вращения компрессора. Их разность представляет собой полезную мощность ГТУ.

На рис. 1 показаны схема, термодинамический цикл и тепловой баланс такой установки. Процесс (цикл) работающей таким образом ГТУ называется разомкнутым или открытым. Рабочее тело (воздух, продукты сгорания) постоянно возобновляется — забирается из атмосферы и сбрасывается в нее. КПД ГТУ, как и любого теплового двигателя, представляет собой отношение полезной мощности NГТУ к расходу теплоты, полученной при сжигании топлива:

Из баланса энергии следует, что NГТУ = QT — ΣQП, где ΣQП — общее количество отведенной из цикла ГТУ теплоты, равное сумме внешних потерь.

Основную часть потерь теплоты ГТУ простого цикла составляют потери с уходящими газами:

ΔQух ≈ Qух — Qв; ΔQух — Qв ≈ 65…80%.

Доля остальных потерь значительно меньше:

а) потери от недожога в камере сгорания ΔQкс / Qт ≤ 3%;

б) потери из-за утечек рабочего тела ; ΔQут / Qт ≤ 2%;

в) механические потери (эквивалентная им теплота отводится из цикла с маслом, охлаждающим подшипники) ΔNмех / Qт ≤ 1%;

г) потери в электрическом генераторе ΔNэг / Qт ≤ 1…2%;

д) потери теплоты конвекцией или излучением в окружающую среду ΔQокр / Qт ≤ 3%

Теплота, которая отводится из цикла ГТУ с отработавшими газами, может быть частично использована вне цикла ГТУ, в частности, в паросиловом цикле.

Принципиальные схемы парогазовых установок различных типов приведены на рис. 2.

В общем случае КПД ПГУ:

Формула КПД ПГУ - общий случай

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

Рис. 1. Принцип действия простейшей ГТУ

Принцип действия простейшей ГТУ

а — принципиальная схема: 1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — электрогенератор;
б — термодинамический цикл ГТУ в ТS-диаграмме;
в — баланс энергии.

В простейшей бинарной парогазовой установке по схеме, показанной на рис. 2 а, весь пар вырабатывается в котле-утилизаторе: ηУПГ = 0,6…0,8 (в зависимости, главным образом, от температуры уходящих газов).

При ТГ = 1400…1500 К ηГТУ ≈ 0,35, и тогда КПД бинарной ПГУ может дос-тигать 50-55 %.

Температура отработавших в турбине ГТУ газов высока (400-450оС), следовательно, велики потери теплоты с уходящими газами и КПД газотурбинных электростанций составляет 38 % , т. е. он практически такой же, как КПД современных паротурбинных электростанций.

Газотурбинные установки работают на газовом топливе, которое существенно дешевле мазута. Единичная мощность современных ГТУ достигает 250 МВт, что приближается к мощности паротурбинных установок. К преимуществам ГТУ по сравнению с паротурбинными установками относятся:

  1. незначительная потребность в охлаждающей воде;
  2. меньшая масса и меньшие капитальные затраты на единицу мощности;
  3. возможность быстрого пуска и форсирования нагрузки.

Рис. 2. Принципиальные схемы различных парогазовых установок:

Принципиальные схемы различных парогазовых установок

а — ПГУ с парогенератором утилизационного типа;
б — ПГУ со сбросом газов в топку котла (НПГ);
в — ПГУ на парогазовой смеси;
1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — вода из сети на охлаждение; 6 — отвод охлаждающей воды; 7 — свежий пар; 8 — питательная вода; 9 – промежуточный перегрев пара; 10 — регенеративные отбросы пара; 11 — пар, поступающий после турбины в камеру сгорания.
К — компрессор; Т — турбина; ПТ — паровая турбина;
ГВ, ГН — газоводяные подогреватели высокого и низкого давления;
ПВД, ПНД — регенеративные подогреватели питательной воды высокого и низкого давления; НПГ, УПГ — низконапорный, утилизационный парогенераторы; КС — камера сгорания.

Объединяя паротурбинную и газотурбинную установки общим технологическим циклом, получают парогазовую установку (ПГУ), КПД который существенно выше, чем КПД отдельно взятых паротурбинной и газотурбинной установок.

КПД парогазовой электростанции на 17-20 % больше, чем обычной паротурбинной электростанции. В варианте простейшей ГТУ с утилизацией тепла уходящих газов коэффициент использования тепла топлива достигает 82-85%.

Камеры сгорания газовых турбин в составе газотурбинной установки (ГТУ)

В камерах сгорания внутренняя энергия топлива при сжигании преобразуется в потенциальную энергию рабочего тела. В современных ГТУ используется жидкое или газообразное топливо. Для сжигания топлива необходим окислитель, которым служит кислород воздуха. Воздух повышенного Давления поступает в камеру сгорания после компрессора.

При сжигании топлива образуются газообразные продукты сгорания высокой температуры, которые перемешиваются с дополнительным количеством воздуха. Образующийся горячий газ (рабочее тело) направляется в газовую турбину.

Камера сгорания ГТУ

Рис.1. Камера сгорания ГТУ:
1 - подвод топлива, 2 - регистр, 3 — пламенная труба,
4 - смеситель, 5 - зона смешения, 6 - зона горения,
7 - корпус, 8 - топливораздающее устройство (форсунка)

Простейшая камера сгорания газотурбинной установки (рис.1) состоит из топливораздающего устройства 8, регистра первичного воздуха 2, пламенной трубы 3 и смесителя 4, которые размещаются в корпусе 7. Корпус нагружен давлением изнутри.

Топливораздающее устройство (горелка или форсунка) 8 подает топливо в зону горения 6. Весь воздух, подаваемый в камеру сгорания, разделяется на два потока. Меньшая часть воздуха (первичный воздух) в количестве, необходимом для поддержания процесса горения, поступает через регистр 2 в зону горения. Большая часть воздуха (вторичный воздух) в процессе горения не участвует, а проходит между корпусом 7 и пламенной трубой 3, охлаждая ее. Затем, пройдя через смеситель 4, этот воздух перемешивается с продуктами сгорания в зоне смешения 5, охлаждая их до заданной температуры.

Конструкция камеры сгорания газотурбинных установок зависит от назначения и схемы ГТУ, параметров ее цикла и вида топлива. Вместе с тем существует ряд признаков, по которым можно разделить камеры сгорания ГТУ на несколько типов.

Виды и типы камер сгорания газотурбинных установок

Так, камеры сгорания бывают выносные и встроенные. Выносные располагаются вне корпусов турбины и компрессора и соединяются с ними или регенератором трубопроводами, а встроенные находятся непосредственно в корпусе.

Выносные камеры сгорания, чаще всего используемые в стационарных ГТУ и реже на транспортных (судовых локомотивных и автомобильных), хорошо компонуются с регенератом.

Газотурбинные установки с выносной и встроенными камерами сгорания

Рис.2. Газотурбинные установки с выносной (а) и встроенными (б) камерами сгорания:
1 - компрессор, 2 - турбина, 3 - камера сгорания, 4 - регенератор

Расположения выносной камеры сгорания в ГТУ с регенерацией теплоты и встроенной камеры показаны на рис.2,а,б

По конструктивным признакам встроенные камеры сгорания могут быть кольцевыми, трубчато-кольцевыми и секционными (рис.3,а—в), а также - индивидуальными (см. рис.1). Кольцевые камеры сгорания (рис.3,а) наиболее легки компактны, используются в простой схеме ГТУ и располагаются между компрессором и турбиной вокруг ротора 2.

Встроенные камеры сгорания ГТУ

Рис.3. Встроенные камеры сгорания:
а - кольцевая, б - трубчато-кольцевая, в - секционная;
1, 5 - внутренняя и наружная обечайки корпуса, 2 - ротор,
3,4 - внутренняя и наружная обечайки плененной трубы,
6 - регистры, 7 - патрубки переброски пламени,
в - пламенная труба, 9 - корпус

Рабочий объем кольцевой камеры сгорания представляет собой сплошное кольцевое пространство между внутренней 3 и наружной 4 обечайками пламенной трубы. Кольцевые камеры сгорания, работающие на жидком топливе, применяются преимущественно в авиации, так как при больших размерах они становятся ненадежными. В стационарных ГТУ используются кольцевые микрофакельные камеры сгорания, работающие на газе.

Трубчато-кольцевые камеры сгорания (рис.3,б) имеют несколько пламенных труб 8, расположенных в общем корпусе вокруг оси турбокомпрессора (обычно их 6-12) и соединенных патрубками 7 для переброски пламени. Это необходимо при пуске, а также случайном погасании факела в одной из пламенных труб. Вторичный воздух омывает пламенные трубы снаружи. Продукты сгорания попадают в общий кольцевой патрубок, а из него - в газовую турбину.

Секционные камеры сгорания газотурбинных установок (рис.3,в) состоят из нескольких одинаковых камер сгорания, расположенных вокруг оси турбокомпрессора в собственных корпусах 9, соединенных патрубками 7. Продукты сгорания попадают в турбину из общего кольцевого коллектора. Секционные камеры сгорания самые большие по габаритам, однако наиболее удобные при ремонте, так как разборки всех камер сгорания в этом случае не требуется.

В настоящее время в стационарных ГТУ, особенно транспортных, все чаще применяются камеры сгорания, объединяющие признаки трубчато-кольцевых, секционных и индивидуальных.

Кроме того, камеры сгорания можно разделить по роду сжигаемого топлива - жидкого, газообразного, твердого.

Камеры сгорания, в которых сжигают жидкое и газообразное топливо, отличаются размерами горелочных устройств, а для сжигания твердого топлива имеют дополнительные устройства для удаления золы. Пока камеры сгорания для сжигания твердого топлива находятся в опытной эксплуатации.

По направлению потоков камеры сгорания подразделяют на прямоточные и противоточные. В прямоточных продукты сгорания и воздух имеют одинаковое направление, а в противоточных их направление встречное.

Камеры сгорания подразделяются также по количеству горелок на одной пламенной трубе на одногорелочные и многогорелочные (рис.4).

Многогорелочная камера сгорания газотурбинной установки

Рис.4. Многогорелочная камера сгорания:
1 - корпус пламенной трубы, 2 - регистры,
3 - каналы для прохода воздуха

Одним из основных элементов любой камеры сгорания является пламенная труба. На рис.5 показана пламенная труба, состоящая из отдельных обечаек, вставленных друг в друга. Между обечайками остается зазор, так как они отделены друг от друга волнистой лентой, приваренной к наружной обечайке контактной сваркой.

Пламенная труба из обечаек

Рис.5. Пламенная труба из обечаек:
1 - обечайки, 2 - регистр, 3 - смеситель, 4 - волнистая лента

Двухстенная пламенная труба и схемы ее охлаждения

Рис.6. Двухстенная пламенная труба (а) и схемы ее охлаждения (б,в,г):
1 - регистр, 2,3 - наружная и внутренняя стенки, 4 - смеситель,
5 - ребра, 6 - отверстия для прохода воздуха, 7 - штифты,
8 - гофрированная внутренняя стенка

На рис.6,а показана двухстенная пламенная труба, а на рис.6,б-г различные схемы ее охлаждения. Внутренняя стенка 3 (рис.6,б,в) может иметь ребра 5, на которых держится наружная стенка 2, или не иметь их. Внутренняя стенка может быть также гофрированной <рис.6,г) и крепится к наружной специальными штифтами 7.

Особое внимание обращают на организацию охлаждения пламенной трубы, так как температура среды внутри нее достигает 1500—1800°С. В пламенной трубе, показанной на рис.5, небольшое количество вторичного воздуха проходит в кольцевые щели между обечайками и образует на ее внутренней поверхности защитную пленку, отделяющую стёнку трубы от пламени.

Такой слой создается при любой схеме охлаждения. В стенках двухстенной пламенной трубы (рис.6,а-г) выполняются отверстия 6, через которые проходит охлаждающий воздух, создающий защитную пленку. Кроме того, применяют одновременное охлаждение через кольцевые щели и отверстия.

Теплота передается к стенкам пламенной трубы в основном от светящегося факела пламени лучеиспусканием. Несмотря на охлаждение, стенки пламенных труб имеют высокую температуру и поэтому изготавливаются из жаростойкой стали. Форсунки предназначены для подачи жидкого топлива в камеру сгорания. Эффективность сжигания жидкого топлива в первую очередь зависит от качества распыливания. При плохом распыливании появляется механический недожог, вызывающий снижение экономичности, закоксовывание камер сгорания и опасность разрушения проточной части турбины отрывающимися коксовыми наростами.

Жидкое топливо не горит, горят его пары. Скорость испарения капель пропорциональна их поверхности. Чем лучше распылено топливо, тем больше площадь его соприкосновения с воздухом и тем быстрее оно испаряется и сгорает.

Форсунки должны обеспечивать высокое качество распыливания при всех возможных режимах работы (расход топлива может изменяться от 10 до 100%), иметь простую конструкцию и быть взаимозаменяемыми.

Для распыливания жидкого топлива в ГТУ применяют форсунки двух типов: механические и пневматические. Преимуществом механических форсунок является компактность, малая затрата энергии на распыление и удачное взаимодействие топливного факела с воздухонаправляющим устройством завихривающего типа. В пневматических форсунках топливо дробится с помощью сжатого воздуха или пара, для чего на ГТУ должен иметься их источник. Давление воздуха или пара должно быть намного больше давления в камере сгорания, что является основным недостатком пневматических форсунок.

Рассмотрим принцип действия форсунок различных типов.

Простейшая механическая форсунка (рис.7) имеет распылитель, который выполнен в виде цилиндрического корпуса 1 и вставки 3.

Механическая форсунка газотурбинной установки

Рис.7. Механическая форсунка ГТУ:
1 - корпус, 2 - канал для подвода топлива, 3 - вставка,
4 - вихревая камера, 5 - тангенциальный канал, 6 — сопло

Жидкое топливо из камеры, расположенной между корпусом и вставкой, попадает в камеру завихрения 4 через тангенциальные каналы 5, закручивается и в виде кольцевой струи вытекает из сопла 6. Сплошная кольцевая струя I (рис.8), вытекающая из форсунки, неустойчива и при высоких скоростях истечения распадается под действием гидродинамических сил сначала на крупные куски пленки II, а затем на мелкие капли III.

Схема образования капель топлива при вытекании из сопла

Рис.8. Схема образования капель топлива при вытекании из сопла

Изменять расходы топлива в простейшей форсунке можно, изменяя давление перед ней. Однако от перепада давлений зависит тонкость распыливания. Уменьшение расхода топлива на 60% приводит к увеличению диаметра капли в 1,85 раза. Такое распыливание неудовлетворительно.

Простейшим способом его улучшения является замена односоплового распылителя групповым, состоящим из 3—6 форсунок. При этом изменяют расход в основном отключением отдельных форсунок и регулируют давление в каждой из них в узких пределах.

Механическая форсунка с изменяемым сечением тангенциальных каналов

Рис.9. Механическая форсунка с изменяемым сечением тангенциальных каналов:
1 - корпус, 2 - вставка, 3 - поршень, 4 - тангенциальные каналы, 5 - сопло

Усложнив конструкцию форсунки, можно изменять расход топлива, изменяя сечения тангенциальных каналов (рис.9). Во вставке 2 выполнено несколько отверстий 4 разной длины. При перемещении поршня 3 изменяется площадь их проходного сечения и, следовательно, расход топлива через форсунку.

Механическая форсунка с обратным сливом

Рис.10. Механическая форсунка с обратным сливом:
1 - корпус, 2 - вставка, 3 - клапан, 4 - камера отвода топлива,
5 - завихритель, 6 - сопло

Применяется также регулирование расхода топлива с помощью обратного слива (рис.10). В таких форсунках не все топливо, поступающее в них, попадает в камеру сгорания. Часть его из камеры 4 возвращается обратно на всас топливного насоса (на рециркуляцию).

Перемещая клапан 3, можно регулировать количество возвращаемого топлива и, следовательно, изменять его расход через сопло 6 в камеру сгорания. Форсунки, основанные на этом принципе действия, просты и надежны, но требуют больших циркуляционных расходов топлива.

Пневматическая форсунка газотурбинной установки

Рис.11. Пневматическая форсунка:
1 - корпус, 2 - ленточная резьба, 3 - вставка,
4 - отверстия для подвода топлива, 5 - зазор

В корпусе 1 пневматической форсунки (рис.11) расположена вставка 3, на наружной поверхности которой выполнены каналы ленточной резьбы 2, а внутри - отверстия 4 для подвода топлива. Воздух подается в зазор 5 между корпусом и вставкой под большим давлением. Топливо из отверстия 4 вставки попадает в каждый из каналов ленточной резьбы и дробится на капли в струе воздуха. Угол распиливания меняется с изменением угла подъема ленточной резьбой.

Плотность орошения механическими и пневматическими форсунками

Рис.12. Плотность орошения механическими (а) и пневматическими (б) форсунками

Механические форсунки подают топливо в пространство, совпадающее с конусом распыливания (рис.12,а), а пневматические — в центр факела (рис.12,б), причем по периферии его располагаются более мелкие фракции, что является преимуществом этих форсунок.

Для сжигания газообразного топлива используются горелки. Так как объемные расходы газообразного топлива велики, велики и размеры горелок.

Горелки всех типов, имеют, внутреннюю и наружную части корпуса, в кольцевое пространство между которыми подается воздух. Газ поступает через полость. Выходит воздух из горелок между лопатками.

Обычно в горелки встраивают форсунки, которые позволяют использовать также жидкое топливо.

Камеры сгорания ГТД предназначаются для подвода теплоты к рабочему телу в двигателе за счет преобразования химической энергии топлива, запасенного на борту летательного аппарата, в тепловую при его сгорании с участием кислорода, содержащегося в воздухе. Двигатей ли для сверхзвуковых самолетов имеют обычно две камеры сгорания:

основную (перед турбиной) и форсажную (перед соплом), включаемую для увеличения тяги Топливом для современных авиационных ГТД служит керосин.

Существует много марок авиационных керосинов, но все они, являясь продуктами переработки нефти, представляют собой смесь углеводородов, в которой содержится 84…86 % (по массе) углерода (С), 14…16 % водорода (Н) и некоторое (очень малое) количество других веществ.

Но поскольку разведанных запасов нефти хватит, по ориентировочным оценкам только на 40…80 лет‚ в настоящее время ведутся интенсивные исследования по применению в качестве топлива для авиации так называемых криогенных (сжиженных при низких температурах) топлив — жидкого метана (СН4), сжиженного природного газа (СПГ), состоящего примерно на 90 % (80.95% в разных месторождениях) из метана и жидкого водорода (Н2).

По оценкам специалистов запасов природного газа и соответственно метана хватит еще более чем на 100 лет‚ а запасы сырья для получения водорода в природе (из воды) практически не ограничены,

Криогенные топлива имеют еще одно преимущество — значительно больший, чем у керосина, хладоресурс, т‚е‚ возможность эффективного охлаждения (с их использованием) элементов конструкции двигателя и летательного аппарата на больших сверхзвуковых и гиперзвуковых скоростях полёта. При этом, благодаря очень быстрой испаряемоети при случайном попадании из баков в окружаюшую среду, их пожароопасность по некоторым оценкам может быть ниже, чем у керосина.

Типы основных камер сгорания и организация процесса горения в них

Основные камеры сгорания авиационных ГТД могут иметь разнообразные формы проточной части И различное конструктивное выполнение. Применяются практически камеры сгорания трех основных типов (рис. 9.3):

а — трубчатые (индивидуальные),

Трубчатая камера сгорания состоит из жаровой трубы, внутри которой организуется процесс горения, и корпуса (кожуха) 2. На двигателях обычно устанавливалось несколько таких камер. В современных авиационных ГТД трубчатые камеры сгорания практически не используются.

В трубчато-кольцевой камере все жаровые трубы заключены в общий корпус, имеющий внутреннюю и наружную поверхности, охватывающие вал двигателя. В кольцевой камере сгорания жаровая труба имеет в сечении форму кольца, также охватывающего вал двигателя.

Важная особенность этих камер состоит в том, что скорость потока воздуха или топливо-воздушной смеси в них (выбираемая с учетом требований К габаритным размерам двигателя) существенно превышает скорость распространения пламени при турбулентном диффузионном гореНИИ. И, если не принять специальных мер, пламя будет унесено потоком за пределы камеры сгорания

Поэтому организация процесса горения топлива в основных камерах ГТД основывается на следующих двух принципах, позволяющих обеспечить устойчивое горение топлива при больших значениях ос И высоких скоростях движения потока в них:

1. Разделение всего потока воздуха на две части , из которых только одна часть (обычно меньшая) подается непосредственно в зону горения (где за счет этого создается необходимый для устойчивого горения состав смеси). А другая часть направляется в обход зоны горения (охлаждая снаружи жаровую трубу) в так называемую зону смешения (перед турбиной), где смешивается с продуктами сгорания, понижая в нужной мере их температуру;

2. Стабилизация пламени в зоне горения путем создания в ней зоны обратных токов, заполненной горячими продуктами сгорания, непрерывно поджигающими свежую горючую смесь.

Конкретные формы реализации этих мероприятий могут быть различными. На рис. 9.4 показана схема одного из вариантов трубчато-кольцевой камеры сгорания. Камера состоит из жаровой трубы 1 и корпуса 2. В передней части жаровой трубы, которую называют фронтовым устройством, размещаются форсунка 3 для подачи топлива и лопаточный завихритель 5. Для уменьшения скорости воздуха в камере на входе в нее (за компрессором) выполняется диффузор 4, благодаря которому скорость воздуха перед фронтовым устройством обычно не превышает 50 м/с.

Подвод первичного и вторичного воздуха в жаровую трубу должен быть организован так, чтобы в зоне горения создавалась нужная структура потока. Эта структура должна обеспечить хорошее смешение топлива с воздухом, создание нужных полей концентраций топлива и наличие мощных обратных токов, обеспечивающих надежное воспламенение свежей смеси на всех режимах работы камеры.

Структура потока в передней части жаровой трубы камеры сгорания с так называемым лопаточным завихрителем показана схематично на рис. 9.5. Воздух поступает сюда через завихритель лопатки которого закручивают поток (подобно лопаткам входного направляющего аппарата компрессора). Далее воздух движется вдоль поверхности жаровой трубы в виде конической вихревой струи

Вихревое движения воздуха приводит к понижению давления в области за завихрителем, вследствие чего в эту область устремляемтся газ из расположенных дальше от фронтового устройства участков жаровой трубы.

В результате здесь возникает зона обратных токов, граница которой показана на рисунке линией 5. Там же показаны эпюры распределения осевых составляющих скорости воздуха (газа) Са.

Топливо-воздушная смесь, образовавшаяся за фронтовым устройством, при запуске двигателя поджигается огненной струей, создаваемой пусковым воспламенителем 6 (см. рис. 9.4). Но в последующем горячие продукты сгорания вовлекаются в зону обратных токов и обеспечивают непрерывное поджигание свежей смеси. Кроме того, горячие газы, циркулирующие в этой зоне, являются источником теплоты, необходимой для быстрого испарения топлива.

Наряду с рассмотренной схемой камеры сгорания с завихрителем и с одной форсункой в каждой жаровой трубе (или с одним рядом форсунок в кольцевой камере) могут использоваться и другие схемы основных камер сгорания — с несколькими форсунками (несколькими рядами форсунок), с другими способами создания зоны обратных токов и т.д. Но общие принципы организации рабочего процесса в них остаются такими же.

Газотурбинные установки (ГТУ) – тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина.

Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, – газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины.

При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива – газообразного и жидкого. В обычном режиме ГТУ работает на газе.

В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания.

Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке.

Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться.

Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор.

Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу.

Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды.

Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей.

Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ – метан. В аварийном режиме ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан).

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

  • Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке.
  • Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения.

В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа.

Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии.

Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

  • Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.
  • Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.
  • Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.
  • В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой – более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.
  • Около половины развиваемой турбиной мощности расходуется на привод компрессора.
  • ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.
  • Мощность одной газотурбинной установки ограничена 150 МВт.

Энергетические газотурбинные установки. Циклы газотурбинных установок

Газотурбинные установки (ГТУ) представляют собой единый, относительно компактный энергетический комплекс, в котором спаренно работают силовая турбина и генератор. Система получила широкое распространение в так называемой малой энергетике. Отлично подходит для электро- и теплоснабжения крупных предприятий, отдаленных населенных пунктов и прочих потребителей. Как правило, ГТУ работают на жидком топливе либо газе.

Устройство газотурбинной установки

Установка включает три базовых узла: газовую турбину, камеру сгорания и воздушный компрессор.

Все агрегаты размещаются в сборном едином корпусе. Роторы компрессора и турбины соединяются друг с другом жестко, опираясь на подшипники.

Вокруг компрессора размещаются камеры сгорания, каждая в отдельном корпусе.

Для поступления в компрессор воздуха служит входной патрубок, из газовой турбины воздух уходит через выхлопной патрубок.

Базируется корпус ГТУ на мощных опорах, размещенных симметрично на единой раме.

Принцип работы

В ГТУ используется принцип непрерывного горения, или открытого цикла:

  • Рабочее тело (воздух) закачивается при атмосферном давлении соответствующим компрессором.
  • Воздух сжимается до большего давления и направляется в камеру сгорания.
  • В нее подается топливо, которое сгорает при постоянном давлении, обеспечивая постоянный подвод тепла. Благодаря сгоранию топлива температура рабочего тела увеличивается.
  • Рабочее тело (газ, представляющей собой смесь воздуха и продуктов сгорания) поступает в газовую турбину, где, расширяясь до атмосферного давления, совершает полезную работу (крутит турбину, вырабатывающую электроэнергию).
  • После турбины газы сбрасываются в атмосферу, через которую рабочий цикл и замыкается.
  • Разность работы турбины и компрессора воспринимается электрогенератором, расположенным на общем валу с турбиной и компрессором.

Установки прерывистого горения

В установках прерывистого горения применяются два клапана вместо одного.

  • Компрессор нагнетает воздух в камеру сгорания через первый клапан при закрытом втором клапане.
  • Когда давление в камере сгорания поднимается, первый клапан закрывают. В результате объем камеры оказывается замкнутым.
  • При закрытых клапанах в камере сжигают топливо, естественно, его сгорание происходит при постоянном объеме. В результате давление рабочего тела дополнительно увеличивается.
  • Далее открывают второй клапан, и рабочее тело поступает в газовую турбину. При этом давление перед турбиной будет постепенно снижаться. Когда оно приблизится к атмосферному, второй клапан следует закрыть, а первый открыть и повторить последовательность действий.

Используемое топливо

Подавляющее большинство ГТУ рассчитаны на работу на природном газе.

Иногда жидкое топливо используется в системах малой мощности.

Новым трендом становится переход компактных газотурбинных систем на применение твердых горючих материалов (уголь, торф и древесина).

Читайте также: