Как образовался торф и каменный уголь реферат

Обновлено: 02.07.2024

Уголь – полезное ископаемое, образовавшееся вследствие разложения погибших растений. Углём пользовались ещё наши предки. И до сих пор это полезное ископаемое широко используется. Образно считают, что в чёрном камне законсервирована солнечная энергия.

Виды угля

Существует три вида угля. Все они залегают пластами в недрах Земли.

1. Антрациты. По своей структуре этот вид очень твёрдый, имеет самую высокую температуру сгорания. Залежи этого угля находятся очень глубоко под землёй.

2. Каменный уголь. Это самая распространённая разновидность угля в деятельности человека. Им топят печки, из него получают искусственный графит, жидкое топливо, краски, смазочные масла. Добывается как открытым способом, так и закрытым, в шахтах.

3. Бурый уголь. Сорт образовался из остатков торфа позже всех, поэтому он считается самым молодым. Особенность его в том, что у него очень низкая температура сгорания.

Методы добычи угля

Насколько глубоко под землёй находятся пласты, напрямую будет влиять на способ его добычи. Всего два способа:

  • Открытый способ применяется, когда порода находится не глубоко. Перед тем, как приступить к добыче, проводится анализ почвы на твёрдость, выясняется, насколько выветриваема почва и толщина покрывающего слоя. Отталкиваясь от этого, пригоняется техника для копания. Бульдозеры и скреперы пригоняют для вскапывания мягкого грунта. Экскаваторы и драглайны для толстого слоя. Производят взрыв мощного слоя породы.
  • Закрытый способ применяют, когда уголь находится глубоко. Для добычи строят штольни и шахты. Если глубина достигает более 45 метров, строят шахтные стволы. От неё ведут штольни – горизонтальные тоннели.

Такой способ имеет две системы добычи ископаемого: длинными очистными забоями или же камерно-столбовая. Вторая система менее экономична. Первая гораздо безопаснее и эффективнее. Благодаря ей можно извлекать до 79 процентов угля и равномерно доставить его на поверхность.

Происхождение полезного ископаемого

Когда давно на нашей планете был влажный тёплый климат, в котором развивалась разная растительность. Именно из неё и образовался каменный уголь. Под мощным прессом воды, пород и песка, растительность медленно разлагалась. Вся эта масса начала затвердевать под воздействием огромных температур, после чего всё превратилось в привычный для нас каменный уголь.

Крупные месторождения угля

Угольным бассейном называют место, где залегает уголь. Во всём мире насчитывается свыше 3,5 тыс. угольных бассейнов. Суммарно площадь всех бассейнов занимает 14,9 % земной суши. Страной, в которой больше всего находится залежей угля, является США. Мировой запас там составляет 23%. Следующей страной является Россия, в которой находится около 13% мирового запас. С 11 процентами следующим третьим лидером идёт Китай. В Соединённых Штатах, Аппалачский бассейн – место, с самыми крупными залежами во всём мире. 1600 миллиардов тонн - запасы этого месторождения.

В нашей стране самым большим бассейном является Кузнецкий. Место положения – Кемеровская область. По его запасам насчитывают около 640 млрд. тонн.

Использование угля

Область использования полезного ископаемого огромна

  • Из него добывают свиней, серу, ванадий, цинк.
  • Его применяют в качестве топлива.\
  • Расходуется для выплавки металлов.
  • Из угля выводятся вещества, которые необходимы для производства лаков и красок, а так же других продуктов – бензол и ксилол.
  • Его сжигают и получают жидкое топливо.

На сегодняшний день, в результате хим. обработки, изготавливают более 400 различных видов промышленных продуктов.

Природное полезное ископаемое, такое как уголь, использовали, с древних времен и по сей, день в качестве незаменимого топлива. Цвет характерный ему от черного к серо-черному, иного преобладает глянцевый блеск. Размер и форма преобладает разнообразная от мелкого размера к крупному размеру угля.

Как образуется уголь?

Начало его лежит глубоко под землей. А начало образования угля произошло из-за остатков древних растений, которые находились очень глубоко под земле, это было более 300 миллионов лет тому назад. Так как растения находились, под толстым слоем земли без поступления воздуха и на него воздействовала, довольно большая температуры, постепенно эти растения начинали приобретать вид в торфа. По истечению не малого времени, торф терял влагу и газ, и подвергался прессованию, постепенно приобретал вид и свойства угля.

Из чего состоит уголь?

В состав угля входит углерод, водород, кислород, зола и сера. Уголь хоть и выглядит довольно крепким, но являться очень хрупким и легко разбивается на маленькие кусочки. Для того чтобы уголь дошел до людей, для этого понадобиться приложить не мало усилий и времени.

В случае если уголь расположен не глубоко под землей, а можно сказать что на поверхности, то его могли, добывать на поверхности не подгружаясь, под землю. Его вывозят при помощи специальной техники. А если уголь находиться на глубине более одного километра, то в таком случае его добывают при помощи подземных шахт, где с помощью шахтеров уголь добывается и отправляется в реализацию для дальнейшего его использования по назначению.

Делая вывод, можно сказать, что такое природное ископаемое как уголь, очень ценное и нужное. Его используют в бытовых условия для отопления многих помещений, а так же государственных предприятий, а так же это ископаемое применяют в металлургии и химической промышленности. Это черное золото для человечества просто незаменимое.

3, 4, 5 класс, окружающий мир

Уголь полезные ископаемые

Уголь полезные ископаемые

Так сложилось в процессе эволюции, что человек – единственное разумное существо на планете. То есть человек находиться на самой высшей ступени развития, из-за способности мыслить и разговаривать,

Из-за того, что в нашем организме присутствует пищеварительная система, в организме могут осуществляться множества физических и химических процессов в ходе которых пища поступает в организм, переваривается и впитывается в кровь.

Возле города Нижневартовск располагается месторождение Самотлор, которое делает город уникальным. По свидетельству документов в 1909 году на Оби по правую сторону, построили дровяную пристань. Около неё появилась остановка для купеческих

наука о генезисе твёрдых горючих ископаемых на основании многочисленных фактов (обнаружение в угольных пластах отпечатков листьев, коры, стволов деревьев, спор и т. д., использование изотопного метода анализа) неоспоримо доказала и обосновала теорию об их органическом происхождении. Вместе с тем сложность природных процессов углеобразования и влияния на эти процессы таких факторов, как климат, условия среды отложения, температура, давление и др., привели к выделения химических, микробиологических и геологических аспектов теории генезиса. До сих пор нет единого мнения о том, какие компоненты органических веществ являются исходным материалом при образовании различных углей, нет единой схемы и его генетических преобразований. Предполагают, что общая схема имеет вид:

Высказывались соображения, что генезис твёрдых горючих ископаемых описывается:

a) последовательно протекающими стадиями 1→2→3→4→5→6

b) превращением исходного органического материала 1→2, 1→3→4→5→6 и 1→4→5→6.

Палеографические условия геологических эпох определяли возникновение органических веществ, их развитие, накопление и различные преобразования.

Известно, что в состав растений входит целлюлоза, гемицеллюлоза, лигнин, смолы, воски, жиры, белки, углеводы, пектиновые вещества. Вполне вероятно, что состав этих компонентов и их соотношение в древних растениях различного вида и в зависимости от палеографических условий геологических эпох претерпевал определённые изменения. Тем не менее, многочисленные исследования позволили установить, что роль различных частей современных растений и механизма их превращения в условиях углефикации существенно не отличается от роли растений ранних геологических эпох. В табл. 1 приведен элементный состав основных компонентов растений, участвующих в углеобразовании.

Элементный состав углеобразующих компонентов растений (%)

Компонент С Н О Компонент С Н О
Воски 81 13,5 5,5 Белки* 53 7 22
Смолы 79 10 11 Целлюлоза 44 6 50
Жиры 76-79 11-13 10-12 Пектины 43 5 52
Лигнин 63 6 31

В состав восков помимо сложных эфиров высокомолекулярных жирных кислот и высших алифатических спиртов входят кислоты С24 – С34 , спирты С24 – С34 и иногда углеводы. Растительные воски являются твёрдыми веществами, способными сохранять свой состав и свойства не подвергаться изменениям под действием микроорганизмов. Благодаря их высокой стойкости они встречаются в неизменном состоянии в составе бурых углей.

Смолы состоят из сложных эфиров кислот с одноатомными спиртами. Благодаря ненасыщенной полиизопреновой структуре они способны полимеризоваться и окисляться, что снижает их растворимость, повышает молекулярную массу, превращает в неплавкие соединения. Жиры – сложные эфиры высокомолекулярных насыщенных и ненасыщенных кислот и глицерина. Интересно отметить, что наземные исходные соединения содержат ненасыщенные кислоты С18 – С22 и насыщенную кислоту С16 , тогда как среди морских источников углеобразования преобладают непредельные кислоты С16 – С22 . Жиры легко гидролизуются, изменяются под воздействием микроорганизмов, нагревания и др., а непредельные кислоты – окисляются с образованием полимеров.

Белки являются высокомолекулярными веществами, обладающими коллоидными свойствами. Содержание их в бактериях, водорослях и древесных растениях достигает соответственно 80, 25, 1 – 10 %. Белки гидролизуются с выделением аминокислот, которые связываются с содержащимися в растениях моносахаридами.

Целлюлоза (С6 Н10 О5 ) относится к классу углеводов с регулярной линейной структурой, обладает сложным составом и молекулярной массой от десятков тысяч до нескольких миллионов. Будучи весьма стойкой к воздействию давлений и температуры, целлюлоза сравнительно легко подвергается воздействию ферментов. Гемицеллюлозы являются углеводными соединениями, которые легко подвергаются гидролизу и растворяются в кислотах и щелочах. Это гетерополисахариды, образующие при гидролизе в отличии от целлюлозы не глюкозу, а манозу, фруктозу, галактозу и уроновые кислоты.

Пектиновые вещества повышают механическую прочность стенок растительных клеток, они состоят из остатков D-галактуроновой кислоты, способных легко гидролизоваться минеральными кислотами. Карбоксильные группы в этих остатках находятся в виде солей магния и кальция, а также в виде метиловых эфиров. Прочность клеток высших растений объясняется также присутствием в их составе лигнина, который в отличии от целлюлозы не подвергается гидролизу, стоек к воздействию химических реагентов, нерастворим в воде и органических растворителях. Лигнин является полимером нерегулярного строения, в состав которого входят ароматические и жирноароматические фрагменты. Кислород присутствует в виде карбоксильных и гидроксильных групп, ароматические ядра содержат метокси-группы и связаны между собой пропильными группами. Молекулярная масса лигнина колеблется от 700 до 6000, его высокая химическая стойкость обусловлена накоплением гуминовых кислот.

Таким образом, можно предполагать, что в результате процессов углеобразования появляются химически стойкие компоненты, а менее стойкие участвуют в этих процессах как полупродукты распада.

болота являются наиболее благоприятными местами для накопления и переработки органических продуктов в торф. Заболачивание водоёмов происходит различными путями, и зависит от рельефа дна и берегов, проточности воды и т. д. Как в тропической, так и в умеренных зонах болота делятся на верховые и низинные. Верховые образуются при условии превышения количества годовых атмосферных осадков над объёмом испарения и характеризуется недостатком питательных веществ для растений. Низинные болота имеют пологие берега, заросшие тростником и камышами, покрыты плавающими и подводными растениями. Их происхождение связано с понижением рельефа и они распространены в основном в северных областях. При умеренном климате годовой прирост торфа в низинных болотах составляет 0,5 – 1,0 мм, а на верховых 1 – 2 мм.

Угольные пласты характеризуются следующими основными характеристиками:

1. тип отложений: автохтонный (autos – сам, chtnon – земля) образуется на месте отмирания первичных организмов, аллохтонный – из перемещённых органических остатков и характеризуется повышенным содержанием в углях минеральных примесей.

2. условия отложения. Состав и свойства угля зависят от условий отложения торфа в пресноводных, озёрных или солоноватых морских водах. При воздействии морской воды в битуминозных углях повышается содержание серы, азота, водорода, летучих. Известковые воды способствуют уменьшению кислотности торфа. В аэробных условиях совместное действие кислорода и кальция ускоряет разложение. Большинство обогащённых кальцием углей отличается высоким содержанием серы и пирита, что объясняется высокой активностью бактерий.

3. В зависимости от содержания питательных веществ болота подразделяются на эвтрофные, мезотрофные и олиготрофные. Низинные болота, питающиеся насыщенными питательными веществами подземными водами, являются эвтрофными, их растительность более пышная и разнообразная. Верховые болота олиготрофны, в них образуется кислый торф с низким содержанием минеральных веществ, и соответственно уголь с малым количеством золы.

4. жизнедеятельность бактерий зависит от кислотности торфа. Торф верховых болот имеет рН = 3,3 – 4,6, а низинных 4,8 – 6,5. степень кислотности зависит от притока воды, типа основания болота, поступления кислорода и концентрации гуминовых кислот. Бактерии хорошо развиваются при рН = 7,0 – 7,5, поэтому чем кислее торф, тем меньше в нём бактерий и лучше сохраняется структура исходных растений.

5. Температура торфа. Разложение торфа зависит от температуры, так как в тепле бактерии проявляют повышенную активность. Так при 35 – 40 0 С бактерии разлагают целлюлозу с наибольшей скоростью.

6. Окислительно-восстановительный потенциал. Жизнедеятельность бактерий зависит от потенциала. Процессы превращения остатков органических соединений при свободном доступе кислорода (аэробные условия) и воды аналогичны медленному горению и называются тлением. Гумификация (перегнивание) характеризуется недостаточным доступом воздуха (анаэробные условия) и влаги. Этот процесс приводит к накоплению зауглероженного остатка (гумуса), часть которого может растворяться в воде. Превращение органических веществ в условиях избытка влаги и отсутствия кислорода широко распространено в природе и называется оторфением; оно приводит к появлению твёрдых гумусовых продуктов. Образование сапропелей из водорослей и планктона протекает в отсутствие кислорода под слоем воды (восстановительные реакции) и известно как процессы гниения, или гнилостного брожения.

Превращение органических веществ в торф происходит в результате протекающих химических реакций и деятельности бактерий, поэтому называется биохимической углефикацией. Превращение торфа через стадию бурых углей в антрациты называется углефикацией. Степень углефикации характеризуется уплотнением (повышением плотности), изменением содержания С, О, Н и выхода летучих. Процесс углефикации ускоряется с ростом температуры и глубина его зависит от времени; давление замедляет химические реакции, протекающие при этом.

результаты петрографического исследования углей (от греческого petros – камень, grapho – пишу) позволяют установить природу исходных органических материалов, их генезис, классификацию ТГИ и выбор рационального использования в народном хозяйстве. В настоящее время петрографические исследования углей широко применяются при разведочных и поисковых работах, а петрографические характеристики являются обязательными при утверждении запасов. Так, в результате исследования углей установлено, что они не являются гомогенным веществом. Мецералы (macerare – размягчать) не обладают кристаллическим строением, различаются по химическому составу и физическим свойствам. В углях обнаружены превращённые частицы растительного и животного происхождения (например, водоросли, пыльца, споры, кутикулы, смоленые тельца), которые получили название форменных элементов. Другие вещества, которые претерпели более глубокие изменения не могут быть отнесены к каким-либо определённым исходным веществам, называют основной массой, которая в тонких шлифах разделяется на прозрачную и непрозрачную (опакмассу).

Все мацералы делятся на три группы – витринит, экзинит (липтинит) и инертинит, причём в основе объединения оп группам лежит присущий им химический состав, происхождение и свойства.

Витриниты являются основным компонентом типичных блестящих углей; они образуются из лиственных и древесных тканей в основном за счёт углефикации лигнина и целлюлозы. Широкое распространение витринита в твёрдых горючих ископаемых, однородность его состава, физических и химических характеристик обусловили широкое применение его для определения степени и возраста углефикации при сопоставлении различных отложений. По сравнению с группой экзинита витринит содержит меньше водорода и больше кислорода, в его структуру входят алифатические и ароматические фрагменты. Содержание ароматических структур с возрастом органической массы угля увеличивается от 25 до 65 %, доля летучих достигает 35 – 40 %, а смол полукоксования – 12 – 14 %.

Экзинитная группа содержит остатки сине-зелёных водорослей (алгинт), спор и пыльцы (споринит), полимеризованные смолы или углеводороды, жиры, кутикулы листвы и растений (кутинит), воскообразный эпидермис. Полимеризованные продукты пропитывают древесные ткани или минералы, образуя резенит или диффузный полимеризованный битум. При разложении экзинита выделяется 60 – 90 % летучих веществ, 40 – 50 % смол полукоксования; он практически не растворим, молекулярная масса ≈ 3000, в основе структуры – ассоциированные нафтеновые и ароматические гетероциклические системы.

Группа инертита включает фюзенит (древесный уголь после пожаров или обугливания), окисленные остатки, грибки, полимеризованные смолы или углеводороды. Элементный состав фюзенита разнороден; он содержит много гидроксильных групп и ароматических ядер, выделяет 8 – 20 % летучих, до 4 % смолы полукоксования.

Для изучения физических и химических свойств петрографических ингредиентов их необходимо выделить из угольной массы. Витрен, фюзен, дбрен и кларен можно разделить вручную, особенно в молодых углях; в зрелых каменных углях трудно отделить кларен от дюрена. Другой метод заключается в растирании угольного вещества. При этом наименее твёрдый дюрен переходит в мелкие классы. Концентраты ингредиентов можно получить разделением их в жидкостях с различной плотностью.

Рациональное использование твёрдых горючих ископаемых в народном хозяйстве возможно при наличии классификации, учитывающей весь комплекс физических, химических и технологических свойств. Однако, несмотря на многолетние работы в этой области, до сих пор не существует единой промышленно-генетической классификации.

В соответствии с американской классификацией угли разделяют на несколько классов, отличающихся содержанием влаги и летучих, а также теплотой сгорания. В основе классификации Грюнера лежит элементный состав, отношение О/Н, плотность, выход и состав кокса. Близкой к ней является классификация Брокмана, основанная на сопоставлении данных о естественной влажности, элементном составе, плотности, выходе и свойствах кокса. Немецкий палеоботаник Потонье создал первую генетическую классификацию твёрдых горючих ископаемых всех видов. В основе её было деление минералов, образованных из живых организмов. Минералы, названные биолитами, он разделил на негорючие – акаустобиолиты и горючие – каустобиолиты. Каустобиолиты были разделены на три подгруппы: гуммиты (из многоклеточных растений), сапропилиты (из водорослей и планктона) и липтобиолиты (из устойчивых частей растений). К сожалению, современные методы исследования твёрдых горючих ископаемых не позволяют чётко установить взаимосвязь между их происхождением, свойствами и направлением использования в народном хозяйстве. Это объясняется тем, что из одного исходного органического материала в зависимости от глубины и условий превращения могут образовываться топлива различных видов. Г. Л. Стадников в основу разработанной им естественной классификации положил взаимосвязь между происхождением, физико-химическими свойствами исходного материала и стадиями их превращения. Он пришёл к выводу, что помимо сапропилитовых и гумусовых углей существуют угли смешенных классов – гумусо-сапропилитовые и сапропилито-гумусовые, а исходная органическая масса претерпевает три стадии физико-химических превращений: торф, бурый и каменные угли. Следует отметить, что классификация Г. Л. Стадникова не включает все твердые горючие ископаемые (например, липтобиолиты) и не может быть использована для их промышленной оценки.

По генетической классификации Ю. А. Жемчужникова угли подразделяются на две группы, каждая из которых состоит из двух классов:

Генетическая классификация твёрдых горючих ископаемых по Ю. А. Жемчужникову

Первая группа. Гумолиты – высшие растения Вторая группа. Сапропелиты – низшие растения и животный планктон
Iкласс – гумиты (лигнино-целлюллозные, смолы, кутиковые элементы) III класс – сапропилиты (сохранены водоросли и планктонные остатки)
II класс – липтобиолитовые (смолы, кутиковые элементы) IV класс – сапроколлиты (водоросли превратились в бесструктурную массу)

В классификации Жемчужникова, в отличии от классификации Потонье, рассматривается вероятность образования гумитов и липтобиолитов из одних исходных материалов, но при различных условиях. Позднее А. И. Гинзбург включил в классификацию условия превращения исходного органического материала. И. И. Аммосов в своей классификации показал связь процессов образования углей различных типов с исходными материалами. С. М. Григорьев предложил классификацию горючих ископаемых, основанную на содержании С, Н и О. Н. М. Караваев использовал данные об элементном составе (в атомных долях) в атомном отношении Н/С. Это позволило вывести закономерность в процессах превращения видов топлива. Более общая генетическая классификация, учитывающая происхождение и глубину химических превращений твёрдых горючих ископаемых, была разработана С. Г. Ароновым и Л. Л. Нестеренко.

Образование каменного угля и его виды, свойства и структура осадочной породы. Использование угля в качестве энергетического топлива. Характеристика торфа как природного ископаемого, его экологические функции. Причины и последствия торфяных пожаров.

Рубрика Физика и энергетика
Вид презентация
Язык русский
Дата добавления 02.06.2014
Размер файла 146,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

Добыча каменного угля и его классификация. Перспективы угольной промышленности. Расчет основных характеристик солнечных установок. Влияние климатических условий на выбор режима работы солнечной установки. Классификация систем солнечного теплоснабжения.

контрольная работа [2,5 M], добавлен 26.04.2012

Описание реконструкции котла КВ-ГМ-50 для сжигания угля. Выполнение теплового расчета котельной установки и вентиляции котельного зала. Краткая характеристика топлива. Определение количества воздуха, продуктов сгорания и их парциальных давлений.

дипломная работа [2,7 M], добавлен 20.05.2014

Состояние и перспективы развития энергетики Дальнего востока. Характеристика основного оборудования, топливообеспечения угольной части ВТЭЦ-2 и павловского угля. Водоснабжение и водоподготовка. Золоудаление и золоотвал. Совершенствование сжигания угля.

дипломная работа [200,9 K], добавлен 15.11.2013

Обоснование применения частотно-регулируемого электропривода для питателя сырого угля. Выбор силовой схемы электропривода и частоты; расчёт параметров электродвигателя. Исследование динамических и статических свойств и нелинейной системы регулирования.

дипломная работа [4,1 M], добавлен 28.05.2014

Образование торфа, температурно-осмотические, структурно-образовательные, электрокинетические и другие явления, возникающие при его фильтрации. Водные свойства, состав и строение его твердых и жидких компонентов. Методы определения связанной воды в торфе.


Каменный уголь — твёрдое горючее полезное ископаемое, которое с давних времён используется человеком для обогрева помещений. Кроме того, каменный уголь успешно используют в различных отраслях промышленности. В статье кратко изложим информацию о свойствах каменного угля, описание его видов, способов добычи и использовании.

Как образовался каменный уголь

Каменный уголь — это горная порода, твёрдое полезное ископаемое, образованное из разложившихся останков животных и растений. Относится к исчерпаемым невозобновимым природным ресурсам, то есть к тем, которые не восстанавливаются или скорость восстановления которых очень мала.

Каменный уголь появился на планете около 350 млн лет назад, когда на древних болотах росли огромные древовидные папоротники и голосеменные растения. Отмирая, они опускались на дно водоёма, придавливаясь толщей воды. Так образовался торф, который под дальнейшим многовековым давлением воды и другой органики постепенно превращался в каменный уголь.

Залежи каменного угля

Рис. 1. Залежи каменного угля.

Основные запасы каменного угля относят к эре Палеозоя, когда планету населяли динозавры и гигантские растения. Обильная растительность той эпохи способствовала более интенсивному формированию природного горючего вещества.

Способы добычи каменного угля

В древности каменный уголь собирали в местах выхода пласта на поверхность. Это могло происходить по двум причинам:

  • смещение слоёв земной коры;
  • обвалы в горной местности.

Позже, с появлением первой техники, люди научились разрабатывать каменный уголь открытым способом. Места, где добывают каменный уголь, называют угольными шахтами или копями. Поначалу они были глубиной до нескольких десятков метров. В настоящее время, благодаря мощным техническим приспособлениям, угольные копи достигают в глубину более 1000 метров.

Угольная шахта

Рис. 2. Угольная шахта.

Разновидности угля

Особенность угля такова, что он залегает пластами, и внешне его залежи напоминают обгоревшую древесину. Соотношение компонентов в каменном угле нестабильно, и от преобладания тех или иных элементов уголь делят на виды. К самым распространённым видам каменного угля относят:

  • Бурый уголь. Образован из остатков торфа, является самым молодым видом угля. Бурая разновидность угля насыщена водой, и потому отличается низкой теплотой сгорания. Используется для обогрева частных домов.
  • Антрацитовый уголь. Наиболее твёрдый, древний сорт каменного угля, расположенный на большой глубине и обладающий максимальной теплотой сгорания.

Основной химический элемент каменного угля — углерод, который и определяет свойства полезного ископаемого. Его концентрация зависит от условий образования, процессов и возраста угольных пластов. Процент углерода определяет качество природного топлива: чем он выше, тем выше теплота сгорания порода, и тем больше она ценится в качестве источника тепла и энергии.

Антрацитовый уголь

Рис. 3. Антрацитовый уголь.

Применение каменного угля

Каменный уголь часто называют солнечной энергией, заключённой в камень. При сгорании он выделяет большое количество тепла — гораздо больше, чем можно получить от дров или иного твёрдого вида топлива.

Самые жаркие сорта каменного угля успешно используют в металлургии, ведь там нужны очень высокие температуры.

Что мы узнали?

Каменный уголь — исчерпаемое невозобновимое полезное ископаемое. Он образовывался на протяжении тысяч лет. Свойства каменного угля зависят от содержания углерода — чем оно выше, тем большей теплотой сгорания обладает уголь. К интересным фактам стоит отнести применение угля: используют его не только в качестве топлива, но и для изготовления различной продукции.


Научные доклады

Доклад про каменный уголь

Каменный уголь — это твердое исчерпаемое невосстановимое полезное ископаемое, которое человек использует для получения тепла путем его сжигания. По классификации относится к осадочным горным породам. Уголь, как источник энергии, люди стали использовать еще в древности наравне с дровами.

Как образуется каменный уголь?

Каменный уголь появился на Земле около 300—350 млн лет назад, когда на первобытных болотах пышно росли древовидные папоротники и начали появляться первые голосеменные растения.

Считается, что каменный уголь образовался в результате отложений древесины. Были древние леса, деревья которых накапливались в болотах, где без доступа кислорода деятельность бактерий разлагающих растительные остатки сводится к нулю, образуется торф, а затем в процессе захоронения этих остатков, под большим давлением и температурой образуются уголь.
Так для образования каменного угля требуется залегание торфа на глубине в три километра. На этой глубине слой торфа в двадцать метров, превратится в каменный уголь с толщиной пласта в два метра.

Виды угля

Все виды угля залегают пластами и места их расположения называются угольными бассейнами. Сегодня добывают разные виды угля.

  • Антрациты — наиболее твердые сорта с большой глубины и имеющие максимальную температуру сгорания.
  • Каменный уголь — множество сортов, добываемых в шахтах и открытым способом. Имеет самое широкое распространение во многих сферах деятельности человека.
  • Бурый уголь — образовался из остатков торфа, самый молодой вид угля. Имеет самую низкую температуру сгорания.

Как добывают уголь?

Где используют каменный уголь?

Разные виды угля можно применяют для получения тепла. При сгорании оно выделяется в гораздо большем количестве, чем можно получить его от дров или других твердых видов топлива. Самые жаркие сорта угля используют в металлургии, где нужны высокие температуры.
Кроме того, уголь – ценное сырье для химической промышленности. Из него добывают множество нужных и полезных веществ.

Надеемся, изложенная информация про каменный уголье помогла Вам. А свой доклад про каменный уголь Вы можете оставлять через форму комментариев.

Читайте также: