Історія розвитку обчислювальної техніки реферат

Обновлено: 03.07.2024

Цель работы: изучить историю развития компьютерной техники. Задачи: 1. Изучить и систематизировать имеющийся материал по теме. 2. Оформить и представить работу (развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

МОУ – СОШ с. Журавлевка

учитель Ворожейкина Т.Е.

Начало эпохи ЭВМ .. 5

Первое поколение ЭВМ .. 6

Второе поколение ЭВМ. 7

Третье поколение ЭВМ. 8

Четвертое поколение ЭВМ …………………………………………………… 9-10

Пятое поколение ЭВМ ………………. 11-12

Список литературы. 14

Актуальность темы: Человек XXI века активно стремиться использовать все научные разработки цивилизации - компьютер и Интернет. В наше время трудно представить себе, что без компьютеров можно обойтись. Сегодня компьютерами пользуются все и везде. Компьютер не просто изобретение - это результат длительной технической эволюции, продукт творческой деятельности множества людей.

Цель работы: изучить историю развития компьютерной техники.

1. Изучить и систематизировать имеющийся материал по теме.

2. Оформить и представить работу ( развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

Методы исследования:

- теоретический ( изучение литературы, обобщение );

- практический ( оформление и представление работы с использованием офисных программ)

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Первая ЭВМ [1] ENIAC была создана в конце 1945 г. в США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC . Годом позже появилась американская ЭВМ EDVAC .

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

http://kolomna-school7-ict.narod.ru/DATA/p15112.jpg

Сергей Алексеевич Лебедев (1902 – 1974).

Родился в Нижнем Новгороде. В 1921 году он экстерном сдал экзамены за среднюю школу и поступил в МВТУ на электротехнический факультет. Велика его роль в разработке математического обеспечения для всех отечественных ЭВМ.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстро действием, оперативной памятью, способом ввода

ЭВМ первого поколения появились в 1946 году. Они были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять.

Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.


http://kolomna-school7-ict.narod.ru/DATA/p15114.jpg

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.


Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM -360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

http://kolomna-school7-ict.narod.ru/DATA/p15116.jpg

Миникомпьютер на интегральных схемах

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Вычислительная техника является неотъемлемой частью процесса вычислений и обработки данных. Первыми устройствами для вычисления были, вероятно, известные счетные палочки, которые до сих пор используются во многих начальных школах, чтобы научиться считать. С развитием этих устройств они становились все более сложными, как, например, финикийские глиняные фигурки, которые также предназначались для визуализации количества предметов, подлежащих учету, но для простоты помещались в специальные контейнеры. Похоже, что такие устройства использовались трейдерами и бухгалтерами в то время.

Постепенно из простейших счетных устройств рождались все более сложные устройства: Абак (счет), логарифмическая линейка, механическая арифметика, электронный компьютер. Несмотря на простоту ранних вычислительных устройств, опытный бухгалтер может получить результат простым подсчетом даже быстрее, чем вялый владелец современного карманного калькулятора. Конечно же, мощность и скорость самих современных вычислительных машин давно превзошли возможности самого выдающегося человеческого вычислительного аппарата.

Ранние приборы и счетчики

Тысячи лет назад человечество научилось пользоваться самыми простыми счетными устройствами. Одним из простейших решений было использование весового эквивалента переменного объекта. Для этой цели были использованы простейшие балансировочные весы. Принцип эквивалентности широко использовался в других, многих известных, простейших вычислительных машинах Abac или Accounts. Количество подсчитанных объектов соответствовало количеству перемещенных костяшек этого инструмента.

С изобретением зубчатых колес появились гораздо более сложные вычислительные устройства. Обнаруженный в начале 20 века древний механизм, найденный на месте крушения древнего корабля, затонувшего примерно в 65 году до н.э., смог смоделировать движение планет.

Появление перфокарт и первых программируемых машин

Утверждается, что Ада Лавлейс, дочь лорда Байрона, была первой женщиной-программисткой, хотя это утверждение и важность ее вклада оспаривается многими. Ее имя часто ассоциируется с именем Бэббидж.

Настольные и аналоговые компьютеры

Аналоговый компьютер — это аналоговый компьютер (AVM), который представляет цифровые данные с использованием аналоговых физических величин (скорость, длина, напряжение, ток, давление), что является основным отличием от цифрового компьютера. До Второй мировой войны механические и электрические аналоговые компьютеры считались самыми современными машинами, и многие считали, что это будущее компьютерной техники.

Первое поколение компьютеров с архитектурой фон Неймана

В июне 1951 года в Бюро переписи населения США была установлена система UNIVAC 1. Машина была разработана фирмой Remington Rand, которая в итоге продала 46 таких машин по цене более 1 миллиона долларов каждая. UNIVAC был первым компьютером массового производства; все его предшественники были сделаны в единственном экземпляре. Компьютер состоял из 5200 электрических вакуумных ламп и потреблял 125 кВт электроэнергии. Использовались ртутные линии задержки, в которых хранилось 1000 слов памяти, каждое из которых имело 11 знаков после запятой плюс знак (72-битные слова). В отличие от машин IBM, которые были оснащены устройством ввода пуансонов, UNIVAC использовал металлизированный магнитный ленточный ввод в стиле 1930-х годов, что обеспечило совместимость с некоторыми существующими коммерческими системами памяти. Другие компьютеры того времени использовали высокоскоростной перфорированный ленточный вход и входы/выходы с использованием более современных магнитных лент. программируемый компьютер nyman поколения

В 1954 году компания IBM выпустила IBM 650 весом около 900 кг и еще 1350 кг для блока питания; оба модуля имеют размеры около 1,5 × 0,9 × 1,8 метра. Цена машины — 500 000 долларов. (около 4 миллионов долларов США в 2011 году) или могут быть арендованы за 3500 долларов США в месяц (30 000 долларов США в 2011 году). Память на магнитном барабане хранит 2000 10-символьных слов, позже память увеличивается до 4000 слов.

В 1956 году компания IBM продала первое устройство хранения данных на магнитных дисках — RAMAC. Использовалось 50 металлических дисков диаметром 24 дюйма и 100 дорожек с каждой стороны. Устройство хранит до 5 МБ данных и стоит 10 000 долларов за МБ. (В 2006 году такие запоминающие устройства — жесткие диски — стоили около $0,001 за МБ).

Компьютеры второго поколения

Следующим важным шагом в истории компьютерных технологий стало изобретение в 1947 году транзистора, который стал заменой хрупким и энергоемким лампам. Благодаря транзисторам и печатным платам размер и объем потребляемой энергии могут быть значительно уменьшены, а надежность повышена. Однако компьютеры второго поколения все еще были довольно дорогими и поэтому использовались только университетами, правительствами и крупными компаниями. В 1959 году компания IBM выпустила машину среднего класса IBM 1401 на базе транзисторов, которая использовала ввод перфокарт и стала самым популярным компьютером общего назначения того времени: с 1960 по 1964 год было выпущено более 100 000 экземпляров этой машины, и она заняла около трети мирового компьютерного рынка.

Использование полупроводников позволило улучшить не только центральный процессор, но и периферию. Второе поколение запоминающих устройств позволило хранить десятки миллионов символов и цифр. Замена дискового картриджа в сменном устройстве заняла всего несколько секунд. Хотя емкость съемных носителей, как правило, была меньше, взаимозаменяемость съемных носителей позволила хранить практически неограниченное количество данных. Магнитная лента, как правило, использовалась для архивирования данных, так как она предлагала большую емкость при меньших затратах.

Появились также сопроцессоры — специализированный процессор, расширяющий возможности центрального процессора вычислительной системы, но выполненный в виде отдельного функционального модуля.

Компьютеры третьего и четвертого поколения

Появление микропроцессоров привело к разработке микрокомпьютеров — небольших недорогих компьютеров, которые могли бы принадлежать как малым предприятиям, так и частным лицам. Микрокомпьютеры четвертого поколения, первый из которых появился в 1970-х годах, стали повсеместно использоваться в 1980-х годах и в последующий период. Стив Возняк, один из основателей компании Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а затем и первого персонального компьютера.

Пятое поколение компьютеров

Компьютеры пятого поколения — согласно идеологии развития компьютерных технологий, после четвертого поколения, основанного на крупногабаритных интегральных схемах, должно быть создано следующее поколение, основанное на распределенных вычислениях, в то же время считалось, что пятое поколение станет основой для создания устройств, способных имитировать мышление.

Заключение

Инструменты расчета появились достаточно давно, так как необходимость в различных расчетах и вычислениях существовала уже на самых ранних стадиях развития цивилизации. Различные устройства, которые облегчают и ускоряют процесс расчетов, были изобретены людьми в очень далекие времена. Так что история учёта утрачена в глубине веков, подобные устройства использовались многими народами.

К сожалению, невозможно охватить всю историю компьютеров в рамках абстракции. Можно было бы рассказать и о невидимой войне на компьютерных рынках за право устанавливать стандарты между огромной корпорацией IBM и молодой компанией Apple, которая осмелилась конкурировать с ней и заставила весь мир решить, что лучше — Macintosh или PC. Современные персональные компьютеры являются наиболее распространенным типом компьютеров, их производительность постоянно растет (по закону Мура, количество транзисторов на интегральной схеме удваивается каждые 24 месяца), а спектр их применения расширяется. Эти компьютеры могут быть объединены в сеть так, что десятки и сотни пользователей могут легко обмениваться информацией и получать доступ к общим базам данных одновременно.

Около 50 лет назад человечество даже представить себе не могло, на что способны компьютеры! И чего мы можем ожидать в будущем? Пока не известно. Но ясно одно — создание искусственного интеллекта — это только вопрос времени.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Ранние приспособления и устройства для счета, появление перфокарт и первых программируемых машин. Настольные калькуляторы и аналоговые вычислители. Первое поколение компьютеров на архитектуре Неймана. Особенности четвертого и пятого поколения компьютеров.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 24.06.2015
Размер файла 21,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Департамент охраны здоровья населения Кемеровской области

Новокузнецкий филиал Государственного бюджетного образовательного учреждения среднего профессионального образования

Выполнил: студент группы ФШ-121

Проверил: Пироженко Ю.Ю.

г. Новокузнецк, 2012 г.

1. Ранние приспособления и устройства для счета

2. Появление перфокарт и первых программируемых машин

3. Настольные калькуляторы и аналоговые вычислители

4. Первое поколение компьютеров на архитектуре фон Неймана

5. Второе поколение компьютеров

6. Третье и четвертое поколение компьютеров

7. Пятое поколение компьютеров

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту. Развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка, механический арифмометр, электронный компьютер. Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.

1. Ранние приспособления и устройства для счёта

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Одним из самых простых решений было использование весового эквивалента меняемого предмета. Для этих целей использовались простейшие балансирные весы. Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э., умел моделировать движение планет.

2. Появление перфокарт и первых программируемых машин

Утверждается, что Ада Лавлейс, дочь лорда Байрона, является первым программистом, хотя это утверждение и значение её вклада многими оспаривается. Её имя часто ассоциируют с именем Бэббиджа.

3. Настольные калькуляторы и аналоговые вычислители

Анамлоговый компьютер -- аналоговая вычислительная машина (АВМ), которая представляет числовые данные при помощи аналоговых физических переменных (скорость, длина, напряжение, ток, давление), в чём и состоит его главное отличие от цифрового компьютера. Перед Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники.

4. Первое поколение компьютеров с архитектурой фон Неймана

В июне 1951 года UNIVAC 1 был установлен в Бюро переписи населения США. Машина была разработана в компании Remington Rand, которая, в конечном итоге, продала 46 таких машин по цене более чем в 1 млн $ за каждую. UNIVAC был первым массово производимым компьютером; все его предшественники изготовлялись в единичном экземпляре. Компьютер состоял из 5200 электровакуумных ламп, и потреблял 125 кВт энергии. Использовались ртутные линии задержки, хранящие 1000 слов памяти, каждое по 11 десятичных цифр плюс знак (72-битные слова). В отличие от машин IBM, оснащаемых устройством ввода с перфокарт, UNIVAC использовал ввод с металлизированной магнитной ленты стиля 1930-х, благодаря чему обеспечивалась совместимость с некоторыми существующими коммерческими системами хранения данных. Другими компьютерами того времени использовался высокоскоростной ввод с перфоленты и ввод/вывод с использованием более современных магнитных лент. программируемый нейман поколение компьютер

В 1954 году IBM выпускает машину IBM 650. Она весит около 900 кг, и ещё 1350 кг весит блок питания; оба модуля имеют размер примерно 1,5 Ч 0,9 Ч 1,8 метров. Цена машины составляет 500000 долл. (около 4 млн долл. в пересчёте на 2011 год) либо может быть взята в лизинг за 3500 долл. в месяц (30000 долл. на 2011 год). Память на магнитном барабане хранит 2000 10-знаковых слов, позже память увеличена до 4000 слов.

В 1956 году IBM впервые продаёт устройство для хранения информации на магнитных дисках -- RAMAC. Оно использует 50 металлических дисков диаметром 24 дюйма, по 100 дорожек с каждой стороны. Устройство хранило до 5 МБ данных и стоило по 10 000 $ за МБ. (В 2006 году, подобные устройства хранения данных -- жёсткие диски -- стоят около 0,001 $ за Мб.)

5. Второе поколение компьютеров

Следующим крупным шагом в истории компьютерной техники стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. Благодаря транзисторам и печатным платам было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями. В 1959 году на основе транзисторов IBM выпустила машину среднего класса IBM 1401. Она использовала перфокарточный ввод и стала самым популярным компьютером общего назначения того времени: в период 1960--1964 гг. было выпущено более 100 тыс. экземпляров этой машины и она заняла около трети мирового рынка компьютеров.

Применение полупроводников позволило улучшить не только центральный процессор, но и периферийные устройства. Второе поколения устройств хранения данных позволяло сохранять уже десятки миллионов символов и цифр. Замена кассеты дисков в сменном устройстве требовала лишь несколько секунд. Хотя ёмкость сменных носителей была обычно ниже, но их заменяемость давала возможность сохранения практически неограниченного объёма данных. Магнитная лента обычно применялось для архивирования данных, поскольку предоставляла больший объём при меньшей стоимости.

Так же появились сопроцессоры - специализированный процессор, расширяющий возможности центрального процессора компьютерной системы, но оформленный как отдельный функциональный модуль.

6. Третье и четвертое поколение компьютеров

Появление микропроцессоров привело к разработке микрокомпьютеров -- небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже -- первого персонального компьютера.

7. Пятое поколение компьютеров

Компьютеры пятого поколения -- в соответствии с идеологией развития компьютерных технологий, после четвёртого поколения, построенного на сверхбольших интегральных схемах, ожидалось создание следующего поколения, ориентированного на распределенные вычисления, одновременно считалось что пятое поколение станет базой для создания устройств, способных к имитации мышления.

Средства вычислительной техники появились достаточно давно, так как потребность в различного рода вычислениях и расчетах существовала уже на самых ранних стадиях развития цивилизации. Различные устройства, облегчающие и ускоряющие процесс вычислений, изобретались человеком еще в очень отдаленные времена. Так, история возникновения счетов теряется в глубине столетий, аналогичные по назначению устройства использовались многими народами.

К сожалению, невозможно в рамках реферата охватить всю историю компьютеров. Можно было бы рассказать и о невидимой войне на компьютерных рынках за право устанавливать стандарты между огромной корпорацией IBM, и молодой Apple, дерзнувшей с ней соревноваться, заставившей весь мир решать, что же лучше Macintosh или PC? Современные персональные компьютеры являются наиболее широко используемым видом компьютеров, их мощность постоянно увеличивается (согласно закону Мура - количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца), а область применения расширяется. Эти компьютеры могут объединяться в сети, что позволяет десяткам и сотням пользователей легко обмениваться информацией и одновременно получать доступ к общим базам данных.

Еще каких-то 50 лет назад человечество и представить себе не могло, на что будут способны компьютеры! И что же тогда ждет нас в будущем? Пока это не известно. Но ясно одно - создание искусственного интеллекта - лишь вопрос времени.

Список используемой литературы

2. Горбань А., Н. Нейрокомпьютер, или Аналоговый ренессанс, Мир ПК, 1994, № 10

3. Жан М. Рабаи, Ананта Чандракасан, Боривож Николич., Цифровые интегральные схемы. Методология проектирования - 2-е изд. - М.: Вильямс, 2007. - 912 с.

4. Знакомьтесь: компьютер. Пер. с англ. К. Г. Батаева; Под ред. и с пред. В. М. Курочкина - Москва : Мир, 1989 - 240 с.

5. История информатики и кибернетики в Санкт-Петербурге(Ленинграде), СПб, изд-во РАН, 2008, 356 стр.

6. Криштафович А. К., В. В., Трифонюк. Основы промышленной электроники. - 2-е изд. - М.: "Высшая школа", 1985. - 287 с.

7. Морозов Ю. М., История и методология вычислительной техники СПб, 2012

8. Смирнов А. Д., Архитектура вычислительных систем : Учебное пособие для вузов. - М.: Наука, 1990.

Подобные документы

Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

реферат [37,7 K], добавлен 01.04.2014

История вычислительной техники; ранние приспособления и устройства для счета: перфокарты, программируемые машины, настольные калькуляторы. Появление аналоговых вычислителей, их характеристика и принцип действия; признаки классификации, применение.

контрольная работа [86,9 K], добавлен 17.02.2011

История четвертого поколения или поколения компьютерной техники, разработанной после 1970 года. Распространение персональных компьютеров к концу 70-х годов. Микропроцессоры и микрокомпьютеры. Многопроцессорный вычислительный комплекс. Эльбрус-1. EC-1045.

реферат [48,1 K], добавлен 01.11.2016

История появления и развития первых вычислительных машин. Изучение характеристик электронно-вычислительной машины. Архитектура и классификация современных компьютеров. Особенности устройства персональных компьютеров, основные параметры микропроцессора.

курсовая работа [48,6 K], добавлен 29.11.2016

История персональной вычислительной техники, классификация ПЭВМ. Принципы фон Неймана. Разработка первых персональных компьютеров фирмы IВМ. Концепция "открытой архитектуры". IBM PS/2 и IBM-совместимые 386-е. Использование нового микропроцессора у ПК.

Цель работы: изучить историю развития компьютерной техники. Задачи: 1. Изучить и систематизировать имеющийся материал по теме. 2. Оформить и представить работу (развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

МОУ – СОШ с. Журавлевка

учитель Ворожейкина Т.Е.

Начало эпохи ЭВМ .. 5

Первое поколение ЭВМ .. 6

Второе поколение ЭВМ. 7

Третье поколение ЭВМ. 8

Четвертое поколение ЭВМ …………………………………………………… 9-10

Пятое поколение ЭВМ ………………. 11-12

Список литературы. 14

Актуальность темы: Человек XXI века активно стремиться использовать все научные разработки цивилизации - компьютер и Интернет. В наше время трудно представить себе, что без компьютеров можно обойтись. Сегодня компьютерами пользуются все и везде. Компьютер не просто изобретение - это результат длительной технической эволюции, продукт творческой деятельности множества людей.

Цель работы: изучить историю развития компьютерной техники.

1. Изучить и систематизировать имеющийся материал по теме.

2. Оформить и представить работу ( развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

Методы исследования:

- теоретический ( изучение литературы, обобщение );

- практический ( оформление и представление работы с использованием офисных программ)

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Первая ЭВМ [1] ENIAC была создана в конце 1945 г. в США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC . Годом позже появилась американская ЭВМ EDVAC .

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

http://kolomna-school7-ict.narod.ru/DATA/p15112.jpg

Сергей Алексеевич Лебедев (1902 – 1974).

Родился в Нижнем Новгороде. В 1921 году он экстерном сдал экзамены за среднюю школу и поступил в МВТУ на электротехнический факультет. Велика его роль в разработке математического обеспечения для всех отечественных ЭВМ.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстро действием, оперативной памятью, способом ввода

ЭВМ первого поколения появились в 1946 году. Они были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять.

Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.


http://kolomna-school7-ict.narod.ru/DATA/p15114.jpg

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.


Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM -360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

http://kolomna-school7-ict.narod.ru/DATA/p15116.jpg

Миникомпьютер на интегральных схемах

Сверхбольшие интегральные схемы (СБИС). ЭВМ 4-го поколения.

ЭВМ 5-го поколения.

Роль вычислительной техники в жизни человека.

Список использованной литературы.

В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том году еще почти никому не известная фирма Intel из небольшого американского городка Санта-Клара, выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.

Механические предпосылки возникновения ЭВМ.

Начало развития технологий принято считать с Блеза Паскаля, который в 1642 г. Изобрел устройство, механически выполняющее сложение чисел.

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц, высказавший в 1672 году идею механического умножения без последовательного сложения. Уже через год он представил машину, которая позволяла механически выполнять 4 арифметических действия, в Парижскую академию.

В 1812 году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы. В 1834 году он приступил к созданию Аналитической машины, которая должна была выполнять вычисления без участия человека. К сожалению, он не смог довести до конца работу по созданию Аналитической машины - она оказалась слишком сложной для техники того времени. Но его заслуга в том, что он впервые предложил и частично реализовал, идею программно-управляемых вычислений. Именно Аналитическая машина по своей сути явилась прототипом современного компьютера. Эта идея и ее инженерная детализация опередили время на 100 лет!

Уроженец Эльзаса Карл Томас, основатель и директор двух парижский страховых обществ в 18чиная с 18 году сконструировал счетную машину, уделив основное внимание технологичности механизма, и назвал ее арифмометром. Начиная с XIX века, арифмометры получили очень широкое применение. На них выполнялись даже очень сложные расчеты. Существовала даже особая профессия – счетчик – человек, работающий с арифмометром, быстро и точно соблюдающий определенную последовательность инструкций ( такую последовательность действий впоследствии стали называть программой).

Электромеханические вычислительные машины.

В первые десятилетия ХХ века конструкторы обратили внимание на возможность применения в счетных устройствах новых элементов – электромагнитных реле. В 1941 году немецкий инженер Конрад Цузе, построил вычислительное устройство, работающее на таких реле.

Работа по созданию первой электронно-вычислительной машины была начата в 1937 году в США профессором Джоном Атанасовым, болгарином по происхождению. Эта машина была специализированной и предназначалась для решения задач математической физики. В ходе разработок Атанасов создал и запатентовал первые электронные устройства, которые впоследствии применялись довольно широко в первых компьютерах. Полностью проект Атанасова не был завершен, однако через 3 десятка лет в результате судебного разбирательства профессора признали родоначальником электронной вычислительной техники.

В 1883 году Томас Эдисон, пытаясь продлить срок службы лампы с угольной нитью, ввел в ее вакуумный баллон платиновый электрод и пропустил через него положительное напряжение. Заметив, что в вакууме между электродом и нитью протекает ток он не смог найти никакого объяснения столь необычному явлению. Он не понял, что его лампа накаливания с платиновым электродом по существу была первой в мире электронной лампой.

В 1915 году американский физик Ирвинг Ленгмюр сконструировал двухэлектродную лампу – кенотрон, применяемую в качестве выпрямительной лампы в источниках питания.

В 1929 году голландские ученые Г. Хольст и Б. Теллеген создали электронную лампу с 3-мя сетками – пентод. Дальнейшее развитие электронных ламп, улучшение их характеристик и функциональных возможностей привело к созданию на их основе совершенно новых электронных приборов.

ЭВМ 1-ого поколения. Эниак ( ENIAC )

Начиная с 1943 года группа специалистов под руководством Говарда

Чтобы упростить процесс задания программ, Моучли и Эккерт стали конструировать новую машину, которая могла бы хранить программу в своей памяти. В 1945 году к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. В этом докладе фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Это первая действующая машина, построенная на вакуумных лампах, официально была введена в эксплуатацию 15 февраля 1946 года. Эту машину пытались использовать для решения некоторых задач, подготовленных фон Нейманом и связанных с проектом атомной бомбы.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая

классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представляется ламповыми машинами.

Необходимо отметить огромную роль американского математика фон Неймана в становлении техники первого поколения. Нужно было осмыслить сильные и слабые стороны ENIAC и дать рекомендации для последующих разработок. В отчете фон Неймана и его коллег Г. Голдстайна и А.Беркса (июнь 1946 года) были четко сформулированы требования к структуре компьютеров. Отметим важнейшие из них:

. машины на электронных элементах должны работать не в десятичной,

а в двоичной системе счисления;

. программа, как и исходные данные, должна размещаться в памяти

. программа, как и числа, должна записываться в двоичном коде;

. трудности физической реализации запоминающего устройства,

быстродействие которого соответствует скорости работы логических

схем, требуют иерархической организации памяти (то есть

выделения оперативной, промежуточной и долговременной памяти);

. арифметическое устройство (процессор) конструируется на основе

схем, выполняющих операцию сложения; создание специальных

устройств для выполнения других арифметических и иных операций

. в машине используется параллельный принцип организации

вычислительного процесса (операции над числами производятся

одновременно по всем разрядам).

Первый компьютер, в котором были воплощены

принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 года Джон фон Нейман.

Новые машины первого поколения сменяли друг друга довольно быстро. В

1951 году заработала первая советская электронная вычислительная машина МЭСМ, площадью около 50 квадратных метров. МЭСМ имела 2 вида памяти: оперативное запоминающее устройство, в виде 4 панелей высотой в 3 метра и шириной 1 метр; и долговременная память в виде магнитного барабана объемом 5000 чисел. Всего в МЭСМ было 6000 электронных ламп, а работать с ними можно было только после 1,5-2 часов после включения машины. Ввод данных осуществлялся с помощью магнитной ленты, а вывод – цифропечатающим устройством сопряженным с памятью. МЭСМ могла выполнять 50 математических операций в секунду, запоминать в оперативной памяти 31 число и 63 команды (всего было 12 различных команд), и потребляла мощность равную 25 киловаттам.

Возможности машин первого поколения были достаточно скромны. Так,

Транзисторы. ЭВМ 2-го поколения.

Элементной базой второго поколения стали полупроводники. Без сомнения,

транзисторы можно считать одним из наиболее впечатляющих чудес XX века.

Патент на открытие транзистора был выдан в 1948 году американцам Д.

Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность – тоже. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы – параметроны.

Первая бортовая ЭВМ для установки на межконтинентальной ракете –

В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на

воздушной подушке. Изобретение их позволило создать новый тип памяти – дисковые запоминающие устройства, значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые запоминающие устройства на дисках появились в машинах IBM-305 и RAMAC.

Рекордсменом среди ЭВМ второго поколения стала БЭСМ-6, имевшая быстродействие около миллиона операций в секунду – одна из самых производительных в мире. Архитектура и многие технические решения в этом компьютере были настолько прогрессивными и опережающими свое время, что он успешно использовался почти до нашего времени.

Специально для автоматизации инженерных расчетов в Институте

кибернетики Академии наук УССР под руководством академика В.М. Глушкова были разработаны компьютеры МИР (1966) и МИР-2 (1969). Важной особенностью машины МИР-2 явилось использование телевизионного экрана для визуального контроля информации и светового пера, с помощью которого можно было корректировать данные прямо на экране.

Построение таких систем, имевших в своем составе около 100 тысяч

переключательных элементов, было бы просто невозможным на основе ламповой техники. Таким образом второе поколение рождалось в недрах первого, перенимая многие его черты. Однако к середине 60-х годов бум в области транзисторного производства достиг максимума – произошло насыщение рынка.

Дело в том, что сборка электронного оборудования представляла собой весьма трудоемкий и медленный процесс, который плохо поддавался механизации и автоматизации. Таким образом, созрели условия для перехода к новой технологии, которая позволила бы приспособиться к растущей сложности схем путем исключения традиционных соединений между их элементами.

Интегральные схемы. ЭВМ 3-го поколения

Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р. Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся выше ЭНИАК размерами 9 на15 метров в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.

Несмотря на успехи интегральной техники и появление мини-ЭВМ, в 60-х годах продолжали доминировать большие машины. Таким образом, третье поколение компьютеров, зарождаясь внутри второго, постепенно вырастало из него.

Именно в период развития третьего поколения возникла чрезвычайно

мощная индустрия вычислительной техники, которая начала выпускать в больших количествах ЭВМ для массового коммерческого применения. Компьютеры все чаще стали включаться в информационные системы или системы управления производствами. Они выступили в качестве очевидного рычага современной промышленной революции.

Сверхбольшие интегральные схемы (СБИС). ЭВМ 4-го поколения

Начало 70-х годов знаменует переход к компьютерам четвертого поколения – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.

Техника четвертого поколения породила качественно новый элемент ЭВМ –

микропроцессор. В 1971 году пришли к идее ограничить возможности

процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память. Оценки показали, что применение постоянного запоминающего устройства в 16 килобит позволит исключить 100-200 обычных интегральных схем.

К середине 70-х годов положение на компьютерном рынке резко и

непредвиденно стало изменяться. Четко выделились две концепции развития ЭВМ. Воплощением первой концепции стали суперкомпьютеры, а второй – персональные ЭВМ.

Из больших компьютеров четвертого поколения на сверхбольших

Многопроцессорные ЭВМ, в связи с громадным быстродействием и

особенностями архитектуры, используются для решения ряда уникальных задач гидродинамики, аэродинамики, долгосрочного прогноза погоды и т.п. Наряду с суперкомпьютерами в состав четвертого поколения входят многие типы мини- ЭВМ, также опирающиеся на элементную базу из сверхбольших интегральных схем.

В машинах четвертого поколения сделан отход от архитектуры фон

Неймана, которая была ведущим признаком подавляющего большинства всех предыдущих компьютеров.

Многопроцессорные ЭВМ, в связи с громадным быстродействием и

особенностями архитектуры, используются для решения ряда уникальных задач гидродинамики, аэродинамики, долгосрочного прогноза погоды и т.п. Наряду с суперкомпьютерами в состав четвертого поколения входят многие типы мини-ЭВМ, также опирающиеся на элементную базу из сверхбольших интегральных схем.

ЭВМ 5-го поколения

ЭВМ 4-го поколения не получили широкого распространения из-за своей специфики. Это явилось стимулом для разработки ЭВМ 5-го поколения, при разработке которых ставились совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ 1-4 поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основными задачами разработчиков ЭВМ 5-го поколения являлось создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов),

возможность ввода информации в ЭВМ при помощи голоса, различных изображений. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях. Проект семейства ЭВМ 5 поколения объединяет 16 процессоров. Это позволит достичь быстродействия в 160(106 операций в секунду).

Роль вычислительной техники в жизни человека.

Современные вычислительные машины представляют одно из самых

значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.

Даже 30 лет назад было только около 2000 различных сфер применения

микропроцессорной техники. Это управление производством (16%), транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), медицина (4%), научное исследование, коммунальное и городское хозяйство, банковский учёт, метрология, и другие области.

Для многих мир без компьютера – далекая история, примерно такая же

далекая, как открытие Америки или Октябрьская революция. Но каждый раз, включая компьютер, невозможно перестать удивляться человеческому гению, создавшему это чудо.

Глобальная система электронной связи Intеrnеt обеспечивает за крайне низкую цену возможность оперативного получения информации из всех уголков земного шара, предоставляет возможности голосовой и факсимильной связи, облегчает создание внутрикорпоративных сетей передачи информации для фирм, имеющих отделения в разных городах и странах.

Однако возможности IВМ РС-совместимых персональных компьютеров по обработке информации все же ограничены, и не во всех ситуациях их

Похожие страницы:

Развитие вычислительной техники (2)

Развитие вычислительной техники и возникновение персональных компьютеров

. огромное влияние на развитие вычислительной техники. Автоматизация вычислений, универсальность вычислительной машины, набор внутренних . и Берри. Поколения современных компьютеров Развитие вычислительной техники в современном периоде принято рассматривать с .

История развития вычислительной техники. Краткая историческая справка. Поколения ЭВМ. Перспектив

. Владимирович История развития вычислительной техники. Краткая историческая справка. Поколения ЭВМ. Перспективы развития вычислительной техники. Контрольная работа .

История развития вычислительной техники (7)

. История развития вычислительной техники План 1. Начальный этап развития вычислительной техники 2. Начало современной истории электронной вычислительной техники 3. . Впрочем, скорость прогресса в развитии вычислительной техники такова, что возможности больших .

История развития вычислительной техники (12)

. к человеку в его служебное помещение. Спираль развития вычислительной техники и ее использования человеком завершила очередной . - первый в мире компьютер. Большой толчок в развитии вычислительной техники дала вторая мировая война. Военным .

Читайте также: