Источники функционирования и развития систем реферат

Обновлено: 05.07.2024

Системный подход используется во всех областях знания, хотя в различных областях он проявляется по-разному. Так, в технических науках речь идет о системотехнике, в кибернетике – о системах управления, в биологии – о биосистемах и их структурных уровнях, в социологии – о возможностях структурно-функционального подхода, в медицине – о системном лечении сложных болезней (коллагенозы, системные васкулиты и т.д.) терапевтами широкого профиля (врачами-системщиками).

В самой природе науки лежит стремление к единству и синтезу знаний. Выявление и изучение особенностей этого процесса – задача современных исследований в области теории научного знания.

Интерес к системным представлениям проявляется не только как к удобному обобщающему понятию, но и как к средству постановки задач с большой неопределенностью.

Системный подход – это направление методологии научного познания и социальной практики, в основе которого лежит рассмотрение объектов как системы. Системный подход ориентирует исследователей на раскрытие целостности объекта, на выявление многообразных связей и сведение их в единую теоретическую картину.

Закономерностью называют часто наблюдаемое, типичное свойство (связь или зависимость), присущее объектам и процессам, которое устанавливается опытом.

Для нас наибольший интерес представляет общесистемная закономерность.

Общесистемные закономерности - это закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем.

Эти закономерности присущи любым системам, будь то экономическая, биологическая, общественная, техническая или другая система.

Цель данного реферата состоит в том, чтобы рассмотреть основные закономерности существования и развития систем.

Для этого необходимо решить следующие задачи:

1) рассмотреть основные, существующие закономерности систем;

2) разделить закономерности на группы по определенным признакам.

Закономерностью называют часто наблюдаемое, типичное свойство (связь или зависимость), присущее объектам и процессам, которое устанавливается опытом. Для нас же наибольший интерес представляет общесистемная закономерность.

Общесистемные закономерности – это закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем. Эти закономерности присущи любым системам, будь то экономическая, биологическая, общественная, техническая или другая система.

Все общесистемные закономерности можно разделить на несколько групп.

Закономерности взаимодействия части и целого

Эмерджентность (от англ. emergence — возникновение, явление нового) — это возникновение в системе новых интегративных качеств, не свойственных ее компонентам. Эмерджентность является одной из форм проявления диалектического закона перехода количественных изменений в качественные (о том, что объединение элементов создает новое качество, человечество знало давно, еще со времен Аристотеля). Чем проще система, чем из меньшего числа элементов и связей она состоит, тем меньше проявляет она системное качество, и чем сложнее система, тем более непохожим является ее системный эффект по сравнению со свойствами каждого элемента. Из данной закономерности следует важный практический вывод: невозможно предсказать свойства системы в целом, разбирая и анализируя ее по частям.

Кроме эмерджентных свойств, у системы сохраняются отдельные свойства, свойственные ее элементам.

К важным аспектам целостности следует отнести соотношение свойств системы с суммой свойств составляющих ее элементов: свойства системы не являются простой суммой свойств составляющих ее элементов. Объединенные в систему элементы, как правило, утрачивают часть своих свойств (вернее сказать, утрачивают способность проявлять часть своих свойств), присущих им вне системы, т.е. система как бы подавляет ряд свойств элементов; но, с другой стороны, элементы, попав в систему, получают возможность проявить свои потенциальные свойства, которые не могли быть проявлены вне системы, т. е. они как бы приобретают новые свойства.

Аддитивность – поведение объекта, состоящего из совокупности частей, совершенно не связанных между собой; здесь изменение в каждой части зависит только от самой этой части. Такое свойство называют физической аддитивностью, суммативностью, независимостью, обособленностью. Если изменения в системе представляют собой сумму изменений в ее отдельных частях, то такое поведение называется обособленным, или физически суммативным. Свойство физической аддитивности проявляется у системы, как бы распавшейся на независимые элементы. В этом крайнем случае, когда ни о какой системе говорить уже нельзя, мы получаем некоторую вырожденную систему. Если считать элементы системы неделимыми, то энтропия аддитивного образования достигает максимума.

Синергизм (от греческого сотрудничество, содействие) проявляется в виде мультипликативного эффекта при однонаправленных действиях. Мультипликативность отличается от аддитивности тем, что отдельные эффекты не суммируются, а перемножаются.

Прогрессирующая изоляция и прогрессирующая систематизация. Поскольку абсолютная целостность и абсолютная аддитивность не более чем абстракция, то реальные системы находятся где-то в промежуточной точке на оси целостность – аддитивность. Поскольку большинство реальных систем изменяется во времени, то их состояние в конкретный момент времени можно охарактеризовать тенденцией к изменению состояния в сторону целостности или аддитивности. Для оценки этих тенденций американский ученый А. Холл ввел две сопряженные закономерности, которые он назвал: прогрессирующая факторизация – стремление системы к состоянию со все более зависимыми элементами; прогрессирующая систематизация – стремление системы к уменьшению самостоятельности элементов, т. е. к большей целостности.

Если изменения в системе приводят к постепенному переходу от целостности к суммативности, то говорят, что система подвержена прогрессирующей изоляции (факторизации). Прогрессирующая изоляция может носить как прогрессивный (развивающий) характер, так и деструктивный. В связи с этим различают два типа прогрессирующей изоляции: распад системы на независимые части с потерей общесистемных свойств; изменения в направлении возрастающего деления на подсистемы с увеличением их самостоятельности или в направлении возрастающей дифференциации функций, что характерно для систем, включающих в себя некоторый творческий рост или процессы эволюции и развития.

Прогрессирующая систематизация – это, в противоположность прогрессирующей изоляции, процесс, при котором изменение системы идет в сторону целостности. Прогрессирующая систематизация может состоять в усилении ранее существовавших связей между частями системы, появлении и развитии новых связей между ранее не связанными между собой элементами или подсистемами, добавлении в систему новых элементов.

Прогрессирующая изоляция и прогрессирующая систематизация не являются взаимоисключающими явлениями – они могут проходить в системе одновременно или протекать последовательно, сменяя друг друга.

Изоморфизм и изофункционализм. Изоморфизм – это сходство объектов по форме или строению. Это означает, что системы, рассматриваемые отвлеченно от природы составляющих их элементов, являются изоморфными друг другу, если каждому элементу одной системы соответствует, лишь один элемент второй и каждой связи в первой системе соответствует связь в другой и наоборот. Если ввести в описание систем в качестве параметра время, т. е. рассматривать их в динамике, то понятие изоморфизма можно расширить до так называемого изофункционализма и с его помощью сопоставлять сходные процессы (физические, химические, производственные, экономические, социальные, биологические и др.). Отсюда следует общесистемная закономерность: системы, находящиеся между собой в состоянии изоморфизма и изофункционализма, имеют сходные системные свойства.

Закономерности иерархической упорядоченности систем

Группа закономерностей иерархической упорядоченности систем тесно связана с закономерностью целостности; кроме того, большое внимание направлено на взаимодействие системы с ее окружением, со средой, надсистемой, с подчиненными системами. К этой группе закономерностей относятся коммуникативность и иерархичность.

Коммуникативность. Любая система не изолирована от других систем, но связана множеством коммуникаций с окружающей средой, которая представляет собой сложное и неоднородное образование, содержащее: надсистему (систему более высокого порядка, задающую требования и ограничения рассматриваемой системе); элементы или подсистемы (нижележащие, подведомственные системы); системы одного уровня с рассматриваемой. Такое сложное единство системы со средой названо закономерностью коммуникативности.

Закономерности осуществимости систем

Итак, для успешного решения задачи управления управляющая система (техническая или организационная) должна иметь большее (или, по крайней мере, равное) разнообразие (свободу выбора), чем объект управления.

1. какие именно параметры в конкретных системах обеспечивают свойство эквифинальности?

2. как обеспечивается это свойство?

3. как проявляется закономерность эквифинальности в организационных системах?

Закономерности развития

В последнее время понятие жизненного цикла стали связывать с закономерностью историчности – время является непременной характеристикой системы, поэтому каждая система исторична.

Если для биологических и социальных систем легко можно привести примеры становления, расцвета, упадка и даже смерти (гибели), то для конкретных случаев развития организационных систем и сложных технических комплексов трудно определить эти периоды. Не всегда руководители организаций и конструкторы технических систем учитывают закономерности историчности.

В последнее время специалисты и руководители все больше начинают осознавать необходимость учета закономерности историчности систем при исследовании, моделировании, проектировании и управлении.

Рост – это увеличение в числе и размерах.

Развитие – это изменения процессов в системе во времени, выраженные в количественных, качественных и структурных преобразованиях от низшего (простого) к высшему (сложному).

Всякому изменению должна быть причина, и такой причиной является наличие проблемы или противоречия, которые порождают кризис, а он, в свою очередь, часто служит основой нового развития.

Кризис (от греч. krisis – решение, поворотный пункт, исход) – это резкий, крутой перелом в чем-либо. Кризису должна предшествовать разность между: желаемым и действительным; желаемым и возможным; интересами разных групп элементов системы; внутренним и внешним и т. д. Наиболее существенным источником процесса развития выступают различные противоречия: между функцией и целью системы, между потребностями системы в ресурсах и возможностью их удовлетворения и т.д.

Если нет противоречия, то зачем системе изменяться? Таким образом, изменения направлены на ликвидацию противоречия. При этом надо сразу оговориться, что не всякое противоречие надо ликвидировать. Например, гомеостатические системы построены на таких противоречиях, что делает систему крайне устойчивой.

Рассмотрим механизмы изменений. При росте происходит увеличение количества элементов и связей, при уменьшении, наоборот удаляются элементы и рвутся связи. Могут ли при этом происходить качественные изменения? Конечно, закона перехода количества в качество еще никто не отменял, но это нельзя назвать развитием.

Наряду с положительными тенденциями, приписываемыми росту и развитию, можно говорить и об отрицательных тенденциях: отрицательный рост – сокращение, уменьшение и отрицательное развитие – деградация, дезорганизация, деструкция.

Деградация – это постепенное ухудшение, снижение или утрата положительных качеств, упадок, вырождение.

При этом рост (положительный и отрицательный) и развитие, как правило, реализуются путем целенаправленных воздействий на систему, а деградация является естественным процессом. Отсюда следует, что пока существует целенаправленное воздействие на систему, она будет развиваться. Если прекратить такое воздействие, то система будет деградировать.

Закономерность неравномерного развития и рассогласования темпов выполнения функций элементами системы. Чем сложнее система, тем более неравномерно развиваются ее составные части. При этом в процессе функционирования или развития системы ее элементы выполняют свои локальные функции в соответствии со своим темпом. Это закономерно приводит к рассогласованию темпов выполнения функций элементами, что создает угрозу целостности системы и ее способности выполнять свои функции, а также дезорганизации всей системы вплоть до ее остановки.

Закономерность увеличения степени идеальности

Развитие всех систем идет в направлении увеличения степени идеальности. Подразумевается, что идеальная система – это такая система, у которой вес, объем, ненадежность, потребление ресурсов стремятся к нулю, хотя при этом способность системы выполнять свои функции не уменьшается.

Закономерность внутрисистемной и межсистемной конвергенции

Объективной общесистемной закономерностью, во многом определяющей функционирование систем, является внутрисистемная и межсистемная конвергенция. Конвергенция означает схождение, сближение, взаимовлияние, взаимопроникновение между системами или между разными элементами внутри одной системы. Конвергенция возникает: при наличии общей среды обитания для двух систем; при открытости обеих систем, что позволяет факторам среды воздействовать на внутренние структуры систем; при отсутствии противостояния и борьбы между системами; в случае взаимного влияния систем, что ускоряет процесс взаимного обмена сходством.

Другие закономерности

Существует также ряд закономерностей, которые нельзя отнести к какой-либо отдельной группе.

Полисистемность. Любой объект окружающего мира принадлежит в качестве элемента одновременно многим системам. При этом между всеми системами, которым принадлежит общий элемент, существуют противоречия: каждая из этих систем стремится к своей, особой цели, используя любой свой элемент в качестве средства.

Из статистики следует, что:

1. 20% продаж приносят 80% общего дохода;

2. 80% посетителей смотрят только 20% страниц сайта;

3. 80% случаев задержек возникает по вине 20% возможных их причин;

4. 20% крупных предприятий создают 80% всей продукции в мире, в то время как 80 % средних и мелких предприятий создают 20% продукции;

5. 20% населения мира, живущего в странах с самым высоким уровнем доходов, создают 80 % мирового объема внутреннего валового продукта (ВВП);

6. 20%-ная наиболее активная часть ученых создает 80% научной продукции, а другая, менее активная, 80%-ная часть создает 20% продукции. Но при этом для создания всей научной продукции обе части одного целого должны существовать.

Эта 20%-ная закономерность распространяется на пчеловодство и даже на муравейник, где также существует 20%-ная активная часть муравьев, создающая 80% продукции. Если условно выбрать наиболее активную 20%-ную часть и переселить отдельно, то из них опять образуются новая более активная (20%-ная) и новая менее активная (80%-ная) части.

О закономерностях систем можно говорить в разных смыслах. Можно исследовать статические, динамические или статистические закономерности, характерные для конкретных систем, выявлять энтропийные тенденции и механизмы, обеспечивающие устойчивость, саморегулирование, развитие или другие процессы в системе и ее частях. Можно изучать и использовать логические закономерности, лежащие в основе функционирования системы и процессов принятия решений в ней. Можно говорить о закономерностях формирования и развития целей, организационных структур системы в целом и отдельных ее подсистем. Исследование и представление законо-мерностей существенно зависит от выбранного метода отображения и анализа системы. В данной работе мы рассмотрели основные из наиболее исследованных общесистемных закономерностей.

СПИСОК ЛИТЕРАТУРЫ

1. Волкова В. Н., Теория систем / В. Н. Волкова, А. А. Денисов. – М.: Высшая школа, 2006. – 512 с.

2. Волкова В.Н., Теория систем и системного анализа / В.Н. Волкова. – М.: Наука, 1999. – 251 с.

3. Денисов А.А., Теория больших систем управления / А.А Денисов, Д.Н. Колесников. – М.: 1982. – 288 с.

Студент гр. БПИ-20-02 _____________ Юлмухаметова А.З.

Доцент _____________ Мухамадиев А.А.

1. Понятия функционирование и развитие……. ………………………………4

2. Развивающиеся системы. Их признаки………..……………………………. 6

3. Саморазвивающиеся системы………………………….…………. …………7

4. Понятия гибкости и регулирования системы.………………………. 8

Деятельность (работа) системы может происходить в двух основных режимах: развитие (эволюция) и функционирование. Оба эти процесса несомненно важны и не могут существовать друг без друга. Не менее важную роль играют также саморазвитие систем и необходимые для их изучения понятия теории отношений и порядка. Цель данной работы: введение в основы деятельности систем - функционирование и развитие, саморазвитие, необходимый математический аппарат для их рассмотрения - алгебру отношений.

Развитием называется деятельность системы со сменой цели системы.

При функционировании системы явно не происходит качественного изменения инфраструктуры системы; при развитии системы ее инфраструктура качественно изменяется.

Развитие - борьба организации и дезорганизации в системе, она связана с накоплением и усложнением информации, ее организации.

Пример. Информатизация страны в ее наивысшей стадии - всемерное использование различных баз знаний, экспертных систем, когнитивных методов и средств, моделирования, коммуникационных средств, сетей связи, обеспечение информационной, а, следовательно, любой безопасности и др.; это революционное изменение, развитие общества. Компьютеризация общества, региона, организации без постановки новых актуальных проблем, т.е. "навешивание компьютеров на старые методы и технологии обработки информации" - это функционирование, а не развитие. Упадок моральных и этических ценностей в обществе, потеря цели в жизни могут также привести к "функционированию" не только отдельных людей, но и социальных слоев.

Любая актуализация информации связана с актуализацией вещества, энергии и наоборот.

Пример. Химическое развитие, химические реакции, энергия этих реакций в организмах людей приводят к биологическому росту, движению, накоплению биологической энергии; эта энергия - основа информационного развития, информационной энергии; последняя определяет энергетику социального движения и организации в обществе.

Пример. Классически принято считать, что в процессе фотосинтеза

выделяется кислород и поглощается углекислота (в растениях, водорослях и некоторых микроорганизмах) и одновременно под воздействием света выделяется углекислота и

поглощается кислород, - происходит дыхание (или, точнее, фотодыхание). Биоэнергетическое уравнение фотосинтеза и дыхания растений (организмов) имеет вид


Биоэнергоинформационный вариант этой формулы может иметь вид


Такая интерпретация не только учитывает, но и помогает лучше понять биоэнергоинформационное развитие системы и сложные информационные процессы, происходящие в биологической системе с энергетическими потоками.

Пример. При высокой освещенности и наличии кислорода в растении запускается внутренний механизм поглощения углекислоты (т.е. управление передается программе "Поглощение углекислоты"), который уже после запуска может происходить и в темноте, приводя к поглощению углекислоты или снижению фотосинтеза (программа "Выделение кислорода" переходит в "фоновый режим"). Соответствующая информация по подсистемам системы "Растение" передается при этом по волокнам растений.

Пример. Развитие языка как системы зависит от развития и связей составных элементов - слова, понятия, смысла и т.д. Формула для чисел Фибоначчи: xn=xn-1+xn-2, n>2, x1=1, x2=1 однозначно определяет развивающуюся систему чисел. Если же рассматривать числа: 1, 1, 2, 5, 29, . то нетрудно заметить, что начальный отрезок похож на ряд Фибоначчи, но это впечатление обманчиво. На самом деле, каждый член ряда (с третьего) получается не сложением двух предыдущих, а сложением их квадратов. Математически этот закон записывается совсем в другом виде: xn=(xn-1) 2 +(xn-2) 2 , n=3, 4, В "числовой записи" ряда, в отличие от аналитической, таким образом, имелась

некоторая неустойчивость, так как задание лишь первых четырех членов этого ряда могло привести к неверным выводам о поведении системы.


    1. самопроизвольное изменение состояния системы;

    2. противодействие (реакция) влиянию окружающей среды (другим системам), приводящее к изменению первоначального состояния среды;

    3. постоянный поток ресурсов (постоянная работа по их перетоку "среда-система"), направленный против уравновешивания их потока с окружающей средой.

    3.Саморазвивающиеся системы

    Если развивающаяся система эволюционирует за счет собственных материальных, энергетических, информационных, человеческих или организационных ресурсов внутри самой системы, то такие системы называются саморазвивающимися (самодостаточно развивающимися). Это форма развития системы - "самая желанная" (для поставленной цели).

    Пример. Если на рынке труда повысится спрос на квалифицированный труд, то появится стремление к росту квалификации, образования, что приведет к появлению новых образовательных услуг, качественно новых форм повышения квалификации, например, дистанционных. Развитие фирмы, появление сети филиалов может привести к новым организационным формам, в частности, к компьютеризованному офису, более того, - к высшей стадии развития автоматизированного офиса - виртуальному офису или же виртуальной корпорации. Нехватка времени для шоппинга, например, у занятых и компьютерно грамотных молодых людей с достаточным заработком ("яппи") повлияло на возникновение и развитие интернет-торговли.

    Для оценки развития, развиваемости системы часто используют не только качественные, но и количественные оценки, а также оценки смешанного типа.


    1. ожидаемая продолжительность жизни населения (25-85 лет);

    2. уровень неграмотности взрослого населения (0-100 %);

    3. средняя продолжительность обучения населения в школе (0-15 лет);

    4. годовой доход на душу населения (200-40000 $).

    Гибкость системы будем понимать как способность к структурной адаптации системы в ответ на воздействия окружающей среды.

    Пример. Гибкость экономической системы - способность к структурной адаптации к изменяющимся социально-экономическим условиям, способность к регулированию, к изменениям экономических характеристик и условий.

    Траектория системы определяется ее структурой, элементами, окружением. Для простых систем (будем понимать такие системы как системы не свободные в выборе поведения) траекторию можно изменить, лишь изменив элементы, структуру, окружение. Для непростых (сложных - ниже о них подробнее идет речь) систем изменение траектории может произойти и по другим причинам.

    Под регулированием (системы, поведения системы, траектории системы) понимается коррекция управляющих параметров по наблюдениям за траекторией поведения системы с целью возвращения системы в нужное состояние, на нужную траекторию поведения. Под траекторией системы понимается последовательность принимаемых при функционировании системы состояний, которые рассматриваются как некоторые точки во множестве состояний системы. Для физических, биологических и других систем - это фазовое пространство.

    Для формализации фактов в системном анализе (как и в математике, информатике и других науках) используется понятия "отношение" и "алгебраическая структура".

    Реферат - Закономерности систем. Классификация закономерностей

    Введение
    Закономерности систем, их классификация
    Закономерности взаимодействия части и целого
    Закономерности иерархической упорядоченности систем
    Закономерности осуществимости систем
    Закономерности развития
    Другие закономерности
    Заключение
    Список литературы

    Водолазская Е.Г. Основы теории систем и системного анализа

    • формат pdf
    • размер 413.17 КБ
    • добавлен 18 ноября 2010 г.

    Конспект лекций – Краматорск: ДГМА, 2003. - 68 с. Системный подход к решению проблем Общая теория систем (Первичная классификация систем. Основные понятия и определения теории систем. Типы систем. Отношения в системах) Моделирование систем(Основные понятия и определения. Вербально-информационное описание системы как начальный этап моделирования). Общие принципы и методы системного анализа (Принцип декомпозиции систем. Анализ и синтез систем. Зад.

    Горбань О.М., Бахрушин В.Е. Основы теории систем и системного анализа, 2004

    • формат pdf
    • размер 1.24 МБ
    • добавлен 28 мая 2010 г.

    На украинском языке. В пособии изложены основные понятия и методы теории систем и системного анализа, примеры их применения на практике. Содержание: Исторический очерк становления теории систем и системного анализа. Основные понятия и закономерности теории систем. Системный подход к решению проблем. Основные факторы и операции системного анализа. Экспериментальные исследования систем. Особенности сложных систем. Принципы и структура системного а.

    Горелова В.Л., Мельникова Е.Н. Основы прогнозирования систем (1986)

    • формат djvu
    • размер 6.74 МБ
    • добавлен 18 сентября 2010 г.

    В книге изложены основные принципы и подходы к прогнозированию систем. Показаны закономерности развития систем, методы постановки проблем. Даётся описание системной методологии применительно к задачам прогнозирования, определяются подходы к построению моделей развития систем в будущем.

    Лекции по сложным системам

    • формат doc
    • размер 780.96 КБ
    • добавлен 29 мая 2009 г.

    Здесь выложены 7 лекций: Основные понятия теории систем. Системные свойства. Классификация систем. Принципы и закономерности исследования и моделирования систем. Функциональное описание и моделирование систем. Морфологическое (структурное) описание и моделирование систем. Информационное описание и моделирование систем. Структура системного анализа.

    Лекции по теории систем и системному анализу

    • формат pdf
    • размер 1.37 МБ
    • добавлен 31 марта 2010 г.

    2010 год, 47 страниц. 1. Основные понятия теории систем. Определение теории систем. Дескриптивное и конструктивное определение системы. Основные признаки и свойства системы. Классификация систем. 2. Элементы системного анализа. Определение системного анализа. Прямая и обратная задачи исследования систем. Этапы исследования систем. Словесная постановка задачи. Выбор показателя эффективности, математическая. постановка задачи. Модели и их роль при.

    Ответы к зачету по системному анализу

    • формат doc
    • размер 663.96 КБ
    • добавлен 28 июня 2010 г.

    Понятие системного анализа, его цели и задачи Классификация систем. Признаки сложной системы Понятие открытая информационная система Понятие системы как семантической модели Понятие системного подхода и его принципы Проблема проектирования системы. Орг. -тех. принципы разработки новых систем Характеристика методов предпроектной стадии разработки систем Общая характеристика стадий жизненного цикла систем Этапы проектирования и характеристика его м.

    Ответы по теории систем и системному анализу

    • формат doc
    • размер 644 КБ
    • добавлен 15 июня 2010 г.

    ВУЗ - МИУИ, ФИО преподавателя - , 2009й год. Основные понятия теории систем (определение системы, внешней среды, объекта, элемента; системы представлений). Понятия структуры системы. Связи и их виды. Основные свойства систем. (6 свойств). Классификация систем по содержанию. Дайте краткое описание каждого класса. Классификация систем на 9 групп. Дайте краткое описание каждого класса. Назовите закономерности взаимодействия части и целого (2). Дайт.

    Прангишвили И.В. Системный подход и общесистемные закономерности

    • формат djvu
    • размер 12.79 МБ
    • добавлен 04 августа 2010 г.

    М.: СИНТЕГ, 2000. – C. 528 В книге изложены принципы и методы системного подхода к объектам и явлениям различной природы и универсальные системные закономерности, которым подчиняется функционирование большинства природных и общественных систем. Излагаются когнитивный, гомеостатический и синергетический подходы к решению сложных слабоструктурированных и слабоформализуемых задач различной природы и обсуждаются вопросы переноса знаний из одной обл.

    Радаев В.Н. Лекции по системному анализу

    • формат doc
    • размер 728.5 КБ
    • добавлен 18 марта 2010 г.

    ЮУрГУ, 2008. - 67 стр. В лекциях подлежат рассмотрению: признаки системы, функционирование, классификация систем, мера сложности систем, управление системой ти управление в системе.

    Семинары по системному анализу

    • формат doc
    • размер 99.91 КБ
    • добавлен 14 февраля 2009 г.

    Предмет - Системный анализ проектирования компьютерных информационных систем. Классификация систем. Свойства систем. Структура систем. Методы исследования систем: метод Делфи, мозгового штурма и т.п. Эффективность системы. 60 стр.


    Понятия, характеризующие функционирование и развитие систем.

    Изменения и преобразования, происходящие в сложных системах, как правило, сразу не удается представить в виде математических соотношений или хотя бы алгоритмов. Поэтому для того, чтобы хоть как-то охарактеризовать стабильную ситуацию или ее изменения, используются специальные термины, заимствованные теорией систем из теории управления. Рассмотрим основные из этих терминов.

    Поведение. Если система способна переходить из одного состояния в другое (например, с1 → с2 → с3, то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер, алгоритм.

    Равновесие. Понятие равновесие определяют как способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять свое поведение сколь угодно долго.

    Устойчивость. Под устойчивостью понимают способность системы возвращаться в состояние равновесие после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий.

    Развитие. Это понятие помогает объяснить сложные термодинамические и информационные процессы в природе и обществе. Исследование процесса развития, соотношения развития и устойчивости, изучение механизмов, лежащих в их основе, – наиболее сложные задачи теории систем. Целесообразно выделять особый класс развивающихся (самоорганизующихся) систем, обладающих особыми свойствами и требующих использования специальных подходов к их моделированию.

    Обобщённым входом (X) называют некоторое (любое) состояние всех r входов системы, которое можно представить в виде вектора

    X = (x1, x2, x3, …, xk, …, xr).

    Выходы системы yi – это различные точки приложения влияния (воздействия) системы на внешнюю среду (рис. 2.2).

    Выход системы представляет собой результат преобразования информации, вещества и энергии.

    Обратная связь – то, что соединяет выход со входом системы и используется для контроля за изменением выхода (рис. 2.2).

    Рис. 2.2. Схема системы с единичной обратной связью

    Ограничения системы – то, что определяет условия её функционирования (реализацию процесса). Ограничения бывают внутренними и внешними. Одним из внешних ограничений является цель функционирования системы. Примером внутренних ограничений могут быть ресурсы, обеспечивающие реализацию того или иного процесса.

    Движение системы – это процесс последовательного изменения её состояния.

    Вынужденное движение системы – изменение её состояния под влиянием внешней среды. Примером вынужденного движения может служить перемещение ресурсов по приказу (поступившему в систему извне).

    Рассмотрим зависимости состояний системы от функций (состояний) входов системы, её состояний (переходов) и выходов.

    Состояние системы Z(t) в любой момент времени t зависит от функции входов X(t)

    где Fc – функция состояния системы (переходная функция).

    Состояние системы Z(t) в любой момент времени t также зависит от предшествующих её состояний в моменты Z(t – 1), Z(t – 2), …, т.е. от функций её состояний (переходов)

    Z(t) = Fc [X(t), Z(t – 1), Z(t – 2). ], (2.1)

    где Fc – функция состояния (переходов) системы.

    Связь между функцией входа X(t) и функцией выхода Y(t) системы, без учёта предыдущих состояний, можно представить в виде

    где Fв – функция выходов системы.

    Система с такой функцией выходов называется статической.

    Если же система зависит не только от функций входов X(t), но и от функций состояний (переходов) Z(t – 1), Z(t – 2), . то

    Y(t) = Fв [X(t), Z(t), Z(t – 1), Z(t – 2). (Z – u)]. (2.2)

    Системы с такой функцией выходов называются динамическими (или системами с поведением).

    В зависимости от математических свойств функций входов и выходов систем различают системы дискретные и непрерывные.

    Для непрерывных систем выражения (2.1) и (2.2) выглядят как:

    Уравнение (2.3) определяет состояние системы и называется уравнением переменных состояний системы.

    Уравнение (2.4) определяет наблюдаемый нами выход системы и называется уравнением наблюдений.

    Функции Fc (функция состояний системы) и Fв (функция выходов) учитывают не только текущее состояние Z(t), но и предыдущие состояния Z(t – 1), Z(t – 2), …, Z(t – u) входов системы.

    Процессы системы – это совокупность последовательных изменений состояния системы для достижения цели. К процессам системы относятся: входной процесс; выходной процесс; переходный процесс системы.

    Выходной процесс – множество выходных воздействий на окружающую среду, которые изменяются с течением времени. Воздействие системы на окружающую среду определяется выходными величинами (реакциями). Выходные величины изменяются с течением времени, образуя выходной процесс, представляющий функцию Y[X] = γ(X).

    Переходный процесс системы – множество преобразований начального состояния и входных воздействий в выходные величины, которые изменяются с течением времени по определённым правилам.

    2. Подходы к исследованию систем

    Важным для системного подхода является определение структуры системы-совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т.е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.

    При структурном подходе выявляются состав выделенных элементов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры – это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.

    Менее общим является функциональное описание, когда рассматриваются отдельные функции, т.е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системы S с внешней средой E, то свойства могут быть выражены в виде либо некоторых характеристик элементов Si(j) и подсистем Si системы, либо системы S в целом.

    При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.

    Проявление функций системы во времени S(t), т.е. функционирование системы, означает переход системы из одного состояния в другое, т.е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.

    Следует отметить, что создаваемая модель M с точки зрения системного подхода также является системой, т.е. S′ = S′(M), и может рассматриваться по отношению к внешней среде E. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвязей как внутри самой модели M, так и взаимодействия ее с внешней средой E в значительной степени определяется тем, на каком уровне находится наблюдатель.

    Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели M на основе классического (индуктивного) подхода представлен на рис. 2.3, а. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т.е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента К будущей модели. Совокупность компонент объединяется в модель M.

    Таким образом, разработка модели M на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свой собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) требует образуется путем суммирования отдельных ее компонент и не учитывается возникновение системного эффекта.

    Рис. 2.3. Процесс синтеза модели на основе классического (а)
    и системного (б) подхода

    С усложнением объектов моделирования возникла необходимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т.е. системы более высокого ранга, и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач. но и создавать систему, являющуюся составной частью метасистемы. Например, если ставится задача проектирования Автоматизхированной Системы Упраывления (АСУ) предприятием, то с позиции системного подхода нельзя забывать о том, что эта система является составной частью АСУ объединением.

    Системный подход получил применение в системотехнике в связи с необходимостью исследования реальных систем, когда оказалась
    недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды E. Все это заставило исследователей изучать сложный объект не изолированно, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.

    Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы S и построения модели M. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного-формулировки цели функционирования. Процесс синтеза модели M на базе системного подхода условно представлен на рис. 2.3, б. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования к модели Т системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, элементы Э и осуществляется наиболее сложный этап синтеза – выбор В составляющих системы, для чего используются специальные критерии выбора КВ.

    Заключение. Изучены свойства системы: состояние и поведение системы; равновесие и устойчивость системы; движение системы; процессы системы. Рассмотрены подходы к исследованию систем. Описан структурный подход и функциональный подход к разработке математических моделей системы.

    Аннотация: Рассматриваются основные понятия, касающиеся поведения систем - функционирование и развитие (эволюция), а также саморазвитие систем, необходимые для их изучения понятия теории отношений и порядка. Цель лекции: введение в основы деятельности систем - функционирование и развитие, саморазвитие, необходимый математический аппарат для их рассмотрения - алгебру отношений.

    Деятельность (работа) системы может происходить в двух основных режимах: развитие ( эволюция ) и функционирование .

    Функционированием называется деятельность , работа системы без смены (главной) цели системы. Это проявление функции системы во времени.

    Развитием называется деятельность системы со сменой цели системы.

    При функционировании системы явно не происходит качественного изменения инфраструктуры системы; при развитии системы ее инфраструктура качественно изменяется.

    Развитие - борьба организации и дезорганизации в системе, она связана с накоплением и усложнением информации, ее организации.

    Пример. Информатизация страны в ее наивысшей стадии - всемерное использование различных баз знаний, экспертных систем, когнитивных методов и средств, моделирования, коммуникационных средств, сетей связи, обеспечение информационной а, следовательно, любой безопасности и др.; это революционное изменение, развитие общества. Компьютеризация общества, региона, организации без постановки новых актуальных проблем, т.е. "навешивание компьютеров на старые методы и технологии обработки информации" - это функционирование , а не развитие . Упадок моральных и этических ценностей в обществе, потеря цели в жизни могут также привести к " функционированию " не только отдельных людей, но и социальных слоев.

    Любая актуализация информации связана с актуализацией вещества, энергии и наоборот.

    Пример. Химическое развитие , химические реакции, энергия этих реакций в организмах людей приводят к биологическому росту, движению, накоплению биологической энергии; эта энергия - основа информационного развития , информационной энергии; последняя определяет энергетику социального движения и организации в обществе.

    Пример. Классически принято считать, что в процессе фотосинтеза выделяется кислород и поглощается углекислота (в растениях, водорослях и некоторых микроорганизмах) и одновременно под воздействием света выделяется углекислота и поглощается кислород, - происходит дыхание (или, точнее, фотодыхание). Биоэнергетическое уравнение фотосинтеза и дыхания растений (организмов) имеет вид

    Биоэнергоинформационный вариант этой формулы может иметь вид

    Такая интерпретация не только учитывает, но и помогает лучше понять биоэнергоинформационное развитие системы и сложные информационные процессы, происходящие в биологической системе с энергетическими потоками.

    Пример. При высокой освещенности и наличии кислорода в растении запускается внутренний механизм поглощения углекислоты (т.е. управление передается программе "Поглощение углекислоты"), который уже после запуска может происходить и в темноте, приводя к поглощению углекислоты или снижению фотосинтеза ( программа "Выделение кислорода" переходит в " фоновый режим "). Соответствующая информация по подсистемам системы "Растение" передается при этом по волокнам растений.

    Если в системе количественные изменения характеристик элементов и их отношений приводит к качественным изменениям, то такие системы называются развивающимися системами . Развивающиеся системы имеют ряд отличительных сторон, например, могут самопроизвольно изменять свое состояние, в результате взаимодействия с окружающей средой (как детерминированно, так и случайно). В развивающихся системах количественный рост элементов и подсистем, связей системы приводит к качественным изменениям (системы, структуры ), а жизнеспособность ( устойчивость) системы зависит от изменения связей между элементами (подсистемами) системы.

    Пример. Развитие языка как системы зависит от развития и связей составных элементов - слова, понятия, смысла и т.д. Формула для чисел Фибоначчи: xn=xn-1+xn-2 , n>2 , x1=1 , x2=1 однозначно определяет развивающуюся систему чисел. Если же рассматривать числа: 1, 1, 2, 5, 29, . то нетрудно заметить, что начальный отрезок похож на ряд Фибоначчи, но это впечатление обманчиво. На самом деле, каждый член ряда (с третьего) получается не сложением двух предыдущих, а сложением их квадратов. Математически этот закон записывается совсем в другом виде: xn=(xn-1) 2 +(xn-2) 2 , n=3, 4, .. . . В "числовой записи" ряда, в отличие от аналитической, таким образом, имелась некоторая неустойчивость, так как задание лишь первых четырех членов этого ряда могло привести к неверным выводам о поведении системы.

    Читайте также: