Ионосферная и метеоритная связь реферат

Обновлено: 30.06.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Ионосфера и распространение радиоволн.

Уверенный приём дальних вещательных станций зависит как от времени года, так и от солнечной активности. Дело в том, что солнечная активность существенно влияет на состояние ионосферы - оболочки Земли, состоящей из разряженного и ионизированного газа. Эта оболочка простирается на 1000 и более километров от поверхности Земли, но для коротких волн существенной является та её часть, которая расположена на высоте от 50 до 400 км.

Радиоволны КВ радиостанция так же, как и свет, распространяются прямолинейно. Но они могут преодолевать многие тысячи километров, огибая земной шар громадными скачками от нескольких сотен до 3000 км и более, отражаясь попеременно от слоя ионизированного газа и от поверхности Земли или от воды.

Ещё в 20-х годах нашего столетия считалось, что радиоволны короче 200 м вообще не пригодны для дальней связи из-за сильного поглощения. И, вот когда были проведены первые эксперименты по дальне приёму коротких волн через Атлантику между Европой и Америкой, английский физик Оливер Хэвисайд и американский инженер-электрик Артур Кеннели независимо друг от друга предположили, что где-то вокруг Земли существует ионизированный слой атмосферы, способный отражать радиоволны. Этот слой получил название Хэвисайда-Кеннели, или ионосферы.

По современным представлениям ионосфера состоит из отрицательно заряженных свободных электронов и положительно заряженных ионов, в основном молекулярного кислорода O+ и окиси азота NO+. Ионы и электроны образуются в результате ионизации, которая заключается в отрыве электрона от нейтральной молекулы газа. А для того, чтобы оторвать электрон, необходимо затратить некоторую энергию - энергию ионизации, основным источником которой для ионосферы является Солнце, точнее его ультрафиолетовое, рентгеновское и корпускулярное излучения.

Пока газовая оболочка Земли освещена Солнцем, в ней непрерывно образуются всё новые и новые электроны, но одновременно часть электронов, сталкиваясь с ионами, вновь образует нейтральные частицы - атомы и молекулы. После захода Солнца образование новых электронов почти прекращается и число свободных электронов начинает убывать. Вообще, чем больше свободных электронов в ионосфере, тем лучше от неё отражаются волны высокой частоты. А если электронов мало, то дальнее прохождение наблюдается только на низкочастотных КВ диапазонах. Вот почему ночью, как правило, возможен приём дальних станций лишь в диапазонах 75, 49, 41 и 31 м.

Электроны распределены в ионосфере неравномерно. На высоте от 50 до 400 км имеется несколько слоёв или областей повышенной концентрации электронов. Эти области плавно переходят одна в другую и по-разному влияют на распространение радиоволн КВ диапазона.

Самая верхняя область, кстати, самая плотная, получила название области F. Она расположена на высоте более 150 км над поверхностью Земли и играет основную отражательную роль при дальнем распространении радиоволн высокочастотных КВ диапазонов. Иногда в летние месяцы область F распадается на два слоя - F1 и F2. Слой F1 может занимать высоты от 200 до 250 км, а слой F2 как бы “плавает” в интервале высот 300 . 400 км. Обычно слой F2 ионизирован значительно сильнее слоя F1. Ночью слой F1 исчезает, а слой F2 остаётся, медленно теряя до 60 % своей ионизации.

Ниже области F на высотах от 90 до 150 км расположена область E, ионизация которой происходит под воздействием мягкого рентгеновского излучения Солнца. Обычно степень ионизации области E ниже, чем области F. Однако днём приём станций низкочастотных КВ диапазонов 31 и 25 м происходит при отражении сигналов от области E. Обычно это станции, расположенные на расстоянии 1000 . 1500 км. Ночью в области E ионизация резко уменьшается, но и в это время она продолжает играть заметную роль в приёме сигналов станций диапазонов 41, 49 и 75 м.

Большой интерес для приёма сигналов высокочастотных КВ диапазонов 16, 13 и 11 м представляют образующиеся в области E прослойки ( точнее облака ) сильно повышенной ионизации. Площадь этих облаков может изменяться от единиц до сотен квадратных километров. Этот слой повышенной ионизации получил название - спорадический слой E и обозначается Es. Облака Es могут перемещаться в ионосфере под воздействием ветра и достигать скорости до 250 км/час. Летом в средних широтах в дневное время происхождение радиоволн за счёт облаков Es за месяц бывает 15 . 20 дней. В районе экватора он присутствует почти всегда, а в высоких широтах обычно появляется ночью. В годы низкой солнечной активности, когда нет прохождения на высокочастотный КВ диапазонах, иногда, как подарок, на диапазонах 16, 13 и 11 м с хорошей громкостью вдруг появляются дальние станции, сигналы которых многократно отразились от Es.

Самая нижняя область ионосферы - область D расположена на высотах между 50 и 90 км. Здесь сравнительно мало свободных электронов. От области D хорошо отражаются длинные и средние волны, а вот сигналы станций низкочастотный КВ диапазонов сильно поглощаются. Это днём, а после захода Солнца ионизация очень быстро исчезает и появляется возможность принимать дальние станции в диапазонах 41, 49 и 75 м, сигналы которых отражаются от слоёв F2 и E.

Из изложенного выше стала понятна роль отдельных слоёв ионосферы а распространении сигналов КВ радиостанций. Необходимо добавить, что если сигнал отразился от слоя E ( или Es ), то скачок не превышает 2000 км, а от слоя F ( точнее F2 ) - 4000 км. Скачков может быть несколько, и тогда к вашему радиоприёмнику приходят сигналы от вещательных станций, отстоящих на тысячи километров. На дневной стороне Земли такой сигнал довольно сольно ослабляется при многократном прохождении через область D. За один скачок это случается дважды. Чем ниже частота, тем это ослабление заметнее.

Но это единственный путь волны в ионосфере по пути от передатчика к вашему приёмнику. Иногда создаются такие условия, при которых волна, отразившаяся от слоя F2, не возвращается обратно к Земле, а распространяется, отражаясь попеременно от слоёв E(Es) и F2. Волна как бы попала в ионосферный волновод и проходит многие тысячи километров при относительно малом ослабление.

А вот подходящие условия для выхода волны из этого волновода обычно образуются в месте приёма при восходе или заходе Солнца. Обычно это даёт возможность принимать станции, расположенные на противоположный точке земного шара. Это явление наиболее явно выражено на низкочастотных КВ диапазонах. Продолжительность такого приема в диапазоне 75 м может быть около часа. При переходе на более коротковолновые диапазоны это время сокращается.

В это статье при описании ионосферы и распространении в ней сигналов КВ станций совершенно не учитывались циклы солнечной активности и возмущения в ионосфере, связанные с “живым” Солнцем.

Радиоволны КВ радиостанций могут преодолевать многие тысячи километров, огибая земной шар громадными скачками, отражаясь попеременно от различных областей ионосферы и от поверхности Земли.

Радиоволны разной частоты от передатчика в пункте A попадают в пункт B, где расположен приёмник. Волна m делает два скачка, дважды отразившаяся от области F и от Земли в пункте Б. Волна n делает те же два скачка, но отражается от области E. А вот волна K попала и волновод между областями F и E.

Конечно, здесь изображена идеальная картина распространения радиоволн. В реальных условиях всё значительно сложнее.

Меня всегда интересовала, а что же нас окружает. И вот мне представилась прекрасная возможность всё узнать. И ещё поделиться этими знания ми с другими.

1.1 Причины

происхождения ионосферы.

Ионизация - это процесс, в котором отрицательно заряженные электроны "отнимаются" (или присоединяются) от нейтральных атомов или молекул для образования положительно (или отрицательно заряженных) ионов и свободных электронов. Из-за ионов и произошло название ионосфера, но она намного легче т.к. в ней свободно движутся электроны, которые очень важны, если говорить о прохождения радиоволн на высоких частотах (КВ: 3-30 МГц). В общем, чем больше количество электронов, тем более высокие частоты можно использовать.

Основным источником ионизации ионосферы днём является коротковолновое излучение Солнца с длиной волны короче 1038 , однако важны также и корпускулярные потоки, галактические и солнечные космические лучи и др. Каждый тип ионизующего излучения оказывает наибольшее действие на атмосферу лишь в определённой области высот, соответствующих его проникающей способности.

1.2 Форма высотной зависимости электронной концентрации.

Наблюдения на мировой сети станций позволили получить глобальную картину изменения ионосферы. Было установлено, что концентрация ионов и электронов в ионосфере распределена по высоте неравномерно: имеются области, или слои, где она достигает максимума. Таких слоев в ионосфере несколько; они не имеют резко выраженных границ, их положение и интенсивность регулярно изменяются в течение дня, сезона и 11-летнего солнечного цикла. Верхний слой F соответствует главному максимуму ионизации ионосферы .Ночью он поднимается до высот 300-400 км, а днём (преимущественно летом) раздваивается на слои F1 и F2 с максимумами на высотах 160-200 км и 220-320 км. На высотах 90-150 км находится область Е, а ниже 90 км область D. Слоистость Ионосфера обусловлена резким изменением по высоте условий её образования .

Область D (60-90 км) характеризуется плотностями N max~ 102—103 см-3, слабой ионизацией и, соответственно, небольшой концентрацией заряженных частиц. Основным ионизирующим фактором этого слоя является рентгеновское излучение Солнца. Некоторую роль играют дополнительные слабые источники ионизации: метеориты, сгорающие на высотах 60-100 км, космические лучи, а во время магнитных бурь — энергичные частицы магнитосферного происхождения.

Ночью ионизация в слое D резко уменьшается, но не исчезает полностью.

Область Е (90-120 км) характеризуется плотностями Nmax~ 105 см-3, ростом концентрации электронов с высотой в дневное время, связанным с поглощением солнечного коротковолнового излучения.

Спорадически на высотах 100-110 км возникает слой ES, очень тонкий (0,5-1 км), но плотный. Особенностью этого подслоя является высокая концентрации электронов (ne~105 см-3), которые оказывают значительное влияние на распространение средних и даже коротких радиоволн, отражающихся от этой области ионосферы.

Вышележащую часть слоя F часто называют слоем F2. Здесь плотность заряженных частиц достигает своего максимума — N ~ 105—106 см-3.

На больших высотах возрастает роль процессов диффузии, что приводит к преобладанию более лёгких ионов: О+ вплоть до высот 400—1000 км, а ещё выше — ионов водорода (протонов) и в меньших количествах — ионов Ne. Диффузионный обмен ионами между верхней частью области F и вышележащей плазмосферой оказывается исключительно важным стабилизатором характеристик области F.

1. Её изменения в течение суток, от сезона к сезону, от года к году, зависимость от солнечной активности.

Ионосфера не является стабильным средством передачи одной и той же частоты в течении года или даже суток. Ионосфера изменяется в зависимости от солнечного цикла, сезона. Таким образом, частота, которая успешно распространяется в данный момент, через какой-то час может быть утеряна.

Частоты области E находятся выше летом, чем зимой. Однако, вариация в частотах F области более усложнена. В обоих полушариях, частоты F области в полдень вообще достигают максимума в момент равноденствий (март и сентябрь). В момент солнечного минимума полуденные летние частоты, как ожидается, в основном выше, чем зимние, но в момент солнечного максимума, зимние частоты в некоторых местоположениях, могут быть выше, чем те летом. Кроме того, частоты в момент равноденствий (март и сентябрь) выше, чем те летом или зимой как для солнечного максимума, так и минимума. Наблюдение полуденных, зимних частот, часто более высоких, чем летом называется сезонной аномалией.

Рабочие частоты обычно выше в течение дня и ниже ночью. С рассветом, солнечная радиация порождает электроны в ионосфере, а частота увеличивается, достигая своего максимума к полудню. В течение полудня, частоты начинают уменьшаться из-за электронной потери и с вечером, области D, E, и F1 становятся мало значащими. Ионосферная ВЧ Связь в течение более низкое из-за недостатка в области D. В течении ночи, частоты уменьшаются, достигая своего минимума как раз перед рассветом.

2.1 Способность отражать радиоволны и обеспечивать, таким образом, дальнюю радиосвязь.

К числу основных физических свойств ионосферы относится способность отражать радиоволны декаметрового диапазона.

Способность радиоволн отражаться от ионосферы зависит от частоты радиопередатчика по отношению к так называемой максимально применимой частоте отражающего слоя определяемой концентрацией свободных электронов. Если частота передатчика меньше максимально применимой частоты, волна отражается от ионосферы, если больше , волна пронизывает ионосферу. Обычно средняя максимально применимая частота составляет 30 МГц. Волны большей частоты называются ультракороткими (УКВ). Отражение от ионосферы также зависит и от угла диаграммы направленности антенны в вертикальной плоскости.

2.2 Зависимость ионосферы от 11 летнего солнечного цикла.

Солнце проходит через фазы восхода и заката, которые влияют на высокочастотную связь, солнечные циклы имеют продолжительность от 9 до 14 лет. При большем количестве радиации излученной солнцем в периоды максимальной солнечной активности возникает большее количество электронов в ионосфере, что и позволяет использовать высокие частоты.

Ионосферу невозможно изучать без соответствующего исследования процессов на Солнце и их влияния на процессы в земной атмосфере. Это утверждение, прежде всего, основывается на том, что излучение Солнца - основной источник энергии для атмосферных процессов. Более того, специфическая ионизирующая радиация, которая и является причиной существования ионосферы, или прямо возникает в результате определенных процессов на Солнце, или сильно зависит от солнечных магнитных полей. Излученная Солнцем ионизирующая радиация составляет лишь небольшую часть всей его энергии излучения. Тем не менее, влияние Солнца оказывается весьма значительным, если речь идет о распространении радиоволн. Еще более сильным оказывается влияние избыточной ионизирующей радиации, которая возникает в результате возмущений на Солнце.

Солнечные вспышки являются наиболее важной частью солнечной активности, влияющей на ионосферу. Во время этих возмущений, которые будут описаны более подробно далее, происходит интенсивное излучение в рентгеновской области спектра. Рентгеновские лучи с большой энергией проникают глубоко в ионосферу, в результате чего ионизированные области образуются на малых высотах, а это существенным образом изменяет характеристики распространения радиоволн, так что временами происходит полное прекращение радиосвязи на высоких частотах. Поток энергии, вызывающий подобные эффекты, может быть меньше, чем 10-2 эрг/см-2*сек.

2.3 Ионосфера как щит Земли.

Ионосфера не является щитом, который не пропускает ультрафиолетовые лучи, ионосфера образуется с помощью этих лучей. Ведь ультрафиолетовое излучение это одна из причин ионизации. При этом процессе огромная часть ультрафиолета забирается. А остальная часть не опасна для живых организмов, которые находятся на Земле.

2.4 Ионосфера как предвестник землетрясений.

2.5 Сияния в ионосфере.

Северное сияние - это потрясающее по красоте, захватывающее дух зрелище. Оно может продолжаться от нескольких часов до нескольких суток.

Северное сияние возникают вследствие бомбардировки верхних слоёв ионосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса. Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя, занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра.

Я узнала замечательные свойства ионосферы. Кратко перечислим замечательные свойства Ионосферы:

Можно быть уверенным что ещё не все свойства ионосферы открыты и изучены. С помощью её огромной силы у нас появятся потрясающие возможности.



Атмосфера Земли постоянно бомбардируется маленькими частицами, называемыми метеорами. Эти частицы состоят из различных минералов или металлов, и их размер колеблется в широких пределах — от мельчайших пылинок до больших глыб. Скорость, с которой метеоры входят в атмосферу Земли, составляет от 11 до 72 км/с. В результате трения об атмосферу Земли метеорные частицы на высотах 80-110 км сильно разогреваются, плавятся и образуют сильно ионизированный метеорный след.

Часто летом, в августе месяце, при ясном ночном небе можно видеть невооруженным глазом десятки таких следов на ночном небе. Протяженность метеорного следа достигает нескольких километров и зависит от массы метеора, а толщина не превышает нескольких сантиметров. Большие метеоры, имеющие массу несколько килограмм, достигают низших слоев атмосферы, создавая длинный метеорный след в течение нескольких секунд. Наиболее крупные из них могут достигать поверхности Земли, создавая метеорный след, видимый в течение нескольких десятков секунд. Для метеорных связей наибольшее значение имеют частицы, масса которых превышает 10 в минус 7 степени грамма. Время испарения метеора составляет около одной десятитысячной секунды. Первоначальный диаметр метеорного следа составляет несколько сантиметров. Со временем из-за диффузии он значительно увеличивается и становится равным нескольким метрам. В результате этого уменьшается плотность электронов й способность эффективно отражать радиоволны. Так же как и для ионосферы, для каждого метеорного следа существует критическая частота. В результате диффузии следа растет его диаметр и критическая частота уменьшается. Время отражения от метеорного следа длинных волн больше, чем коротких.

От насыщенного метеорного следа отражение происходит так же как и от проводящей поверхности, т.е. угол падения равняется углу отражения. Для радиосвязи это явление благоприятное, так как отражающая поверхность находится в области первой зоны Френеля, а сам след ориентирован и на корреспондента. Уровень отраженного сигнала меняется во времени. Метеорные следы подвергаются воздействию ионосферных ветров, которые изменяют их положение и форму. В результате наблюдаются многократные отражения, приводящие к сильному колебанию уровня принимаемого сигнала.

Для тех, кто заинтересуется проведением метеорных радиосвязей, полезно будет иметь следующую информацию:
1. Наиболее благоприятными для проведения радиосвязи являются метеорные потоки. Они появляются периодически в течение года и позволяют сравнительно просто осуществить метеорную радиосвязь, получить от этого удовлетворение и уже в дальнейшем наращивать свои результаты.

2. Земля при своем движении вокруг Солнца встречается с метеорами, рассеянными в межпланетном пространстве. Метеоры движутся вокруг Солнца по разным эллиптическим орбитам. Одни из них, перемещаясь в направлении, противоположном направлению движения Земли, сталкиваются с ней и попадают на ту ее часть, которая освещена Солнцем. Другие метеоры, догоняя Землю, падают со скоростью 11-30 км/с на ту сторону Земли, на которой сумерки. С учетом наклона оси Земли можно показать, что наибольшая частота появления метеоров приходится на осенние месяцы.

3. В период встречи Земли с метеорами число метеоров, отражающих радиоволны, возрастает до 400-1000 в час, что приводит к достаточной ионизации определенного пространства ионосферы. Однако интервалы ионизации достаточно короткие — от долей секунд до нескольких секунд. Кривая 1 соответствует времени, в течение которого сигнал уменьшается до 0,37 своего максимального уровня, кривая 2 — времени, в течение которого отраженный сигнал имеет минимальный уровень.

4. Чаше происходит отражение от ненасыщенных метеорных следов. Однако уровень отраженного сигнала достаточно слабый. Реже появляются сигналы, отраженные от насыщенного слоя, уровень сигнала резко возрастает.

5. Не каждый метеорный след можно использовать для проведения метеорной радиосвязи. Для каждой станции имеются области с большей вероятностью установления радиосвязи. Увеличить силу сигнала можно поворотом в утренние часы антенны на 7-10° севернее, а вечером на 7—10° южнее направления на корреспондента. Эти отклонения должны быть сделаны двумя корреспондентами.

6. Существует оптимальная угломестная ориентация антенн при проведении метеорных радиосвязей.

7. Если существует достаточно уверенная связь между станциями N и О, а рядом расположена другая приемная станция О’, то с увеличением расстояния между обеими приемными станциями О и О’ радиосвязь между станциями N и О’ будет ухудшаться. Так, например, при удалении от станции О на расстояние около 100 км количество принятой информации на станции О’ уменьшиться вдвое. Это свидетельствует о том, что метеорная радиосвязь обладает острой направленностью. Кроме того, эта радиосвязь не нарушается при изменении состояния ионосферы и практически не зависит от других факторов, обусловленных изменением солнечной активности.

8. Метеорные радиосвязи требуют в среднем продолжительности сеанса от часа до двух, в течение которых радиосвязь считается комплектной, т.е. полностью завершенной. В течение этого времени будут слышны многочисленные всплески сигналов продолжительностью от долей секунд (пинги) до минут (бурсты).

Когда ионосфера возмущена

Метеорная радиосвязь — способ передачи информации, использующий отражение радиоволн от ионизированных следов в атмосфере. Эти следы образуются при сгорании мелких метеорных тел. Из-за своей природы такой способ передачи представляет собой прерывистый канал связи. Однако в приполярных областях другие виды радиосвязи работать не будут.


Дело в том, что такие природные явления, как северное сияние и возмущение ионосферы, сильно сказываются на работе устройств связи, — в эфире появляется много шума и помех. Такие нарушения особенно сильно проявляются в областях, близких к магнитным полюсам земли. Альтернативой может быть только метеорная радиосвязь, которая в любых широтах позволяет получить адекватный канал передачи данных.

Группа специалистов Высшей школы прикладной физики и космических технологий (ВШПФиКТ) Санкт-Петербургского политехнического университета под руководством профессора Сергея Макарова предложила рабочую версию устройств, которые могут быть использованы в качестве резервного канала связи.

Комплекс оборудования включает усилители, модем и соответствующее программное обеспечение как для базовых станций, так и для мобильных абонентских устройств.

Оборудование для систем метеорной радиосвязи находится в высокой степени готовности к серийному выпуску, добавил он.

Предусмотрены различные сценарии использования разработанного комплекса. Предполагается построение распределённой сети передачи данных на основе принципа отражения радиоволн от метеорных следов.

— Возможно размещение на территории Российской Федерации нескольких базовых станций, которые могут покрывать всю ее территорию, — отмечает доцент ВШПФиКТ Сергей Завьялов. — Причём мощность таких станций относительно невелика (до 1 киловатта), но одна вышка может работать с дальностью в 2 тыс. км. То есть диаметр зоны обслуживания одной вышки — 4 тыс. км. Получается, что на всю Россию нужно всего пять-восемь вышек. Следовательно, метеорная связь получается еще и очень дешевой.


На связи метеор

Задел, касающийся разработок устройств для метеорной радиосвязи, был создан еще в СССР. Параллельно подобные исследования велись в США и Канаде. В Штатах система даже была доведена до коммерческого использования, однако она оказалась очень громоздкой и дорогой, представляя собой огромный стокилограммовый ящик.

Оборудование, разработанное в СПбПУ, — это устройство размером с ноутбук (30x30x10 см).

Освоение Арктики, геномные исследования, применения робототехники и искусственного интеллекта названы стратегическими задачами технологического развития

Профессор факультета инфокоммуникационных технологий Университета ИТМО Владимир Григорьев также не сомневается в необходимости разработки и в реализуемости заявленной технологии.

— В Советском Союзе, а затем в России, школа специалистов по метеорной связи сложилась на уровне, не уступающем общемировому. Однако окупаемость создания такого рода систем пока оценить сложно, так как необходимо понимать стоимость как самого оборудования, так и строительства и эксплуатации всей сети. Основной конкурент — спутниковые системы связи на высокоэллиптических и низких орбитах. Конкурентность предлагаемого решения, по сравнению со спутниковыми, определится себестоимостью передачи условной единицы данных, достижимой скоростью и устойчивостью связи.

Через два-три месяца ученые СПбПУ приступят к широкомасштабным испытаниям оборудования для метеорной связи, и готовы предоставить его к использованию в 2020 году.

Информацию с помощью метеорной связи можно передать в короткие промежутки времени — около 0,5 секунды. Далее ионизированный след распадается, и передача информации становится невозможной, — необходимо ждать появления другого метеора. Интервал между появлением таких следов в среднем составляет 40 секунд. Однако во время метеорных потоков (их существует порядка 700) связь становится постоянной. Расписание метеорных потоков известно, их можно использовать для передачи данных.

Читайте также: