Информационные технологии в стоматологии реферат

Обновлено: 30.06.2024

Есть компьютерные программы, позволяющие врачу изучить особенности артикуляционных движений и окклюзионных контактов пациента в анимированном объемном виде на экране монитора. Это – так называемые виртуальные, или 3D артикуляторы. Например, программы для функциональной диагностики и анализа особенностей окклюзионных контактов: MAYA, VIRA, ROSY, Dentcam, CEREC 3D, CAD (AX Compact). Для выбора оптимального метода лечения с учетом особенности клинической ситуации разработаны автоматизированные системы планирования лечения. Даже проведение анестезии может контролировать компьютер.

Содержание работы

Введение……………………………………………………………………………………..3
Технология автоматизированного проектирования и изготовления зубных протезов……………………………………………………………. ………………….…. 4
3D-визуализация лица и зубных рядов…………………………………………. …….8
Методика получения трехмерного изображения лица и зубных рядов и их сопоставление……………. 13
Трехмерные технологии в рентгенодиагностике…………….……………………….16
Компьютерная диагностика в нейромышечной стоматологии………….………….18
Список используемой литературы……………………………………………………. 25

Файлы: 1 файл

компьютерные технологии применяемые в стоматологии.doc

Рис.31 Данные о сканировании

Данные о сканировании легко считываются и отображаются на экране компьютера в виде графиков наглядно демонстрируя процент приложенных сил на каждом отдельном зубе а также суммарное усилие на зубах правой и левой стороны и центре приложения сил (Рис.31). Кроме того все это взаимодействие отслеживается во времени позволяя контролировать процессы окклюзии, полного контакта и дисоклюзии с точностью измеряемой в миллисекундах. Преимущество, получаемое при использовании данной технологии, как для врача, так и для пациента не нуждается в не каких дополнительных стимулах.

Совершенно новый прибор JT-3D был спроектирован и разработан в соответствии с новейшими стандартами кинезиологии нижней челюсти. (Рис.32). Крепежная система прибора JT-3D позволяет быстро и легко установить прибор с правильным распределением веса, при этом она совершенно не касается лица пациента. Перед глазами, носом или ртом пациента нет никаких препятствий, вызывающих приступ клаустрофобии, и врачу ничего не мешает наблюдать за пациентом. Устройство слежения за движениями челюсти JT-3D совместимо со всеми текущими версиями программы BioPack, устройство автоматически устанавливается при подключении.

Рис.32 Устройство регистрации движений челюсти JT-3D

Модель устройства слежения за движениями челюсти JT-3D записывает движения точки на передних зубах в трех измерениях, Небольшой магнит, закрепленный на губной поверхности нижних резцов, контролируется набором датчиков, которые определяют три составляющие движения: вертикаль, горизонталь и движение вперед-назад. Устройство просто и надежно надевается на голову, создавая чрезвычайно прочное основание для датчиков феррозонда, Это позволяет наглядно представить даже небольшие движения челюсти.

Bio JVA

Рис.33 Joint Vibration Analysis (Анализ колебаний сустава)


Bio JVA позволяет выполнять быстрые, неинвазивные и повторяющиеся измерения функции височно- нижнечелюстного сустава, чтобы облегчить диагностику функции височно-нижнечелюстного сустава. Понимание функционирования височно-нижнечелюстного сустава является необходимым при изменении вертикального, латерального или переднезаднего положения нижней челюсти.

Вio ЕМС II

Рис.34 Прибор для электромиографии

Вio ЕМG II был разработан специально для записи данных активности черепно-лицевой мускулатуры в состоянии покоя и в рабочем состоянии (Рис.34). Полученная информация имеет важное значение для клинициста, так как результат лечения не будет нарушать физиологию пациента. По сравнению с общепринятыми системами, которые отображают напряжение в микровольтах в каждом канале, Вio ЕМG II использует интуитивно понятные способы отображения данных, которые быстро и просто интерпретируются. Теперь возможно использовать систему для автоматической группировки мышц по качеству и силе поведения. Используя указанные пороговые значения, система автоматически определяет, какие мышцы неподвижны, а какие гиперактивны. Система позволяет моментально оценить синергию, симметрию и слаженность действия черепно-лицевых мышц, что существенно ускоряет процесс работы.

Вio ЕМG II - это единственная черепно-лицевая электромиограмма, позволяющая определить параметры как в расслабленном состоянии, так и при сжатии челюстей в одной записи без фазового сдвига, Все это стало возможно благодаря созданию единственной системы SЕМG, которая не имеет усиления.

Список используемой литературы:

8. Chan, CA. Common myths of neuromuscular dentistry and the five basic principals of neuromuscular occlusion. Sept./Oct. Vol.2, Number 5. LV1 Dental Vision; 2002:10-11.

9. Alan David. Cerec inLab: the CAD/CAM system with a difference. Acta Med Dent Helv 5, 131-139 (2003).

Внедрение информационных технологий является важнейшим направлением развития отечественного здравоохранения. Проводимый в настоящее время Минздравом России комплекс мероприятий по совершенствованию управления здравоохранением предусматривает полную автоматизацию процессов выработки и принятия решений путем внедрения компьютерных и телемедицинских технологий.

Содержимое работы - 1 файл

стоматология.doc

Внедрение информационных технологий является важнейшим направлением развития отечественного здравоохранения. Проводимый в настоящее время Минздравом России комплекс мероприятий по совершенствованию управления здравоохранением предусматривает полную автоматизацию процессов выработки и принятия решений путем внедрения компьютерных и телемедицинских технологий.

Информатизация здравоохранения в России имеет почти полувековой опыт. Но если на начальном этапе ее развития основной упор делался на решение диагностических задач, то в последующем значительное место заняли информационные системы, обеспечивающие организаторов здравоохранения аналитическими данными. [1]

Цифровые технологии стали неотъемлемой частью любой стоматологической отрасли. Например, в стоматологическую практику внедрены цифровые рентгеновские изображения с системами активации светом или на основе других процессов, а также цифровые архивы рентгеновских и внутриротовых изображений. Эти технологии особенно полезны для проведения консультаций пациентов, так как дают чёткое визуальное отображение предполагаемого лечения, и, следовательно, могут играть важную роль в формировании желания пациента выбрать более дорогостоящий, но в тоже время, самый оптимальный вариант реставрации его зубов. Современные цифровые системы могут обеспечить более детальный мониторинг хирургической операции. И, наконец, они позволяют точно определять цвет зубов пациента независимо от условий освещённости, что значительно улучшает качество информации, передаваемой из кабинета врача зубному технику. [2]

Технологии XXI века

Внедрение технологии CAD/CAM вызвало цифровую революцию в зуботехнических лабораториях. Теперь изделия, необходимые для выполнения зуботехнических работ любого типа, начиная от самых простых и заканчивая самыми сложными, могут быть созданы на экране монитора, а затем просто и легко изготовлены в лаборатории или в каком-то другом месте. Современна тенденция – изготовление эргономичных CAD/CAM систем, лазерных сканеров с высоким разрешением и быстродействующих роботов, предназначенных для механической обработки многих керамических материалов и металлических сплавов. Такие технологии предлагают ряд ценных преимуществ владельцам зуботехнических лабораторий.

Технология CAD/CAM позволила расширить возможности использования керамических материалов для изготовления цельнокерамических протезов. Чаще всего, для изготовления одиночных коронок, мостовидных протезов и других ортопедических конструкций, используется стеклокерамика, армированная лейцитом, алюмооксидная керамика и диоксид циркония. В частности, высоким потенциалом в этой области обладает диоксид циркония, который, благодаря своей высокой прочности, способен выдерживать высокие нагрузки, действующие в жевательных областях зубного ряда. Кроме того, диоксид циркония является идеальным материалом для создания особых протезов, например, первичных коронок для протезных конструкций, в которых применяются двойные коронки. Более того, оптические свойства (светопроницаемость, светоотражение) цельнокерамических протезов и натуральных зубов похожи, поэтому керамические реставрации могут отвечать самым высоким требованиям эстетики.

Технология CEREC.

Стоматология сегодня находится на новом этапе технического развития.

Сегодня уже нельзя не заметить, что многие стоматологические клиники и зуботехнические лаборатории всё чаще открывают свои двери для цельнокерамических реставраций с использованием компьютерных технологий. И это непросто желание специалистов работать с данными технологиями. Всё чаще движущей силой, стимулирующей докторов и техников к переменам в привычном укладе, становятся пациенты. Стоя перед выбором, они отдают предпочтение цельнокерамическим реставрациям, аргументируя своё решение тем, что стоимость данной услуги вполне сопоставима с металлокерамической реставрацией. И, конечно, основополагающими факторами в данном случае являются биосовместимость и естественный вид реставраций из современных стоматологических керамических материалов.

Благодаря технологии CEREC как у клиник, так и у лабораторий появилась возможность выйти на новый уровень своей профессиональной деятельности. Технология CEREC – это новое программное обеспечение inLab 3D V3. 01, предоставляющее пользователям ещё более богатые возможности, и усовершенствованный шлифовальный аппарат inLab MC XL–более производительный и менее шумный. Несмотря на кажущуюся эволюционность этих изменений, пользователи получили ещё более мощный инструмент для реализации своих идей в области безметалловых конструкций.

Аппаратная и программная часть – это ещё не всё, так как качество изготовляемых цельнокерамических конструкций в очень значительной степени зависит от исходных заготовок, из которых происходит вытачивание реставрации. Именно поэтому, до сих пор изготовление качественных безметалловых мостовидных протезов является всё ещё непростой задачей. Долгое время не существовало такого материала, который обладал бы такими качествами как высокая прочность и износостойкость, при этом шлифование такого материала должно занимать незначительное время в процессе изготовления реставрации.

Сейчас уверенные шаги в направлении создания такого без преувеличения долгожданного материала сделаны такими компаниями как Vita, Ivoclar Vivadent, которые активно сотрудничают с компанией Sirona.

Чрезвычайно важной , хотя и внешне не заметной, новинкой стал выпуск новых блоков Vita CADTemp. Их появление может в корне изменить традиционный подход к работе специалиста, использующего технологию CEREC, сделав её более последовательной, логичной и точной. Данные блоки изготовлены из эстетичного композитного материала и предназначены для изготовления временных мостовидных протезов.

Процесс моделирования мостовидных протезов соответствует всем тем основным этапам, которые имеют место при создании цельнокерамической коронки (оптические слепки, прорисовка границ препарирования, выбор зубов из базы данных и т.д.). Новое программное обеспечение автоматически моделирует мостовидный протез. Стоматологу при этом отводится роль наблюдателя и контролёра – остаётся только контролировать процесс, в случае необходимости корректируя готовую модель. Таким образом, ещё до начала этапа шлифования специалист имеет все возможности для того, чтобы с помощью программных инструментов довести реставрацию до совершенства.

Фактически речь идёт о более согласованном и тесном взаимодействии программной оболочки и аппаратного комплекса CEREC. Так, теперь есть возможность дополнительного контроля качества выполняемой конструкции. По этой схеме стоматолог делает оптические слепки отпрепарированных зубов и зубов и зубов-антагонистов, моделирует, изготавливает и устанавливает временный мостовидный протез, после чего делает дополнительный оптический слепок окклюзионной поверхности. Затем он отправляет данные и оптические слепки в зуботехническую лабораторию, которая создаёт каркас мостовидного протеза.

В свою очередь, у лаборатории появляется возможность моделировать и изготавливать индивидуальные коронки из стеклокерамики или полевого шпата с учётом данных оптических слепков и анатомических форм временных мостовидных протезов. Такие коронки устанавливаются на каркас мостовидного протеза после процесса спекания последнего. Такой подход позволяет поднять точность выполняемых работ на новый уровень.

Благодаря нововведениям в систему CEREC у стоматолога наблюдается заметная экономия времени! Высокая точность новых шлифовальных аппаратов inLab MC XL позволяет с уверенностью говорить о том, что конструкции, изготовленные по данной технологии, устанавливаются также быстро, как и реставрации, изготовленные в лаборатории традиционным способом.

Сотрудничество между стоматологами и зубными техниками постепенно выходит на новый уровень .

CEREC – достойная альтернатива металлокерамическим реставрациям!

Стоматология XX века основным направлением была ориентирована на восстановление утраченной функции зубов и зубных рядов, поэтому реставрации и протезы были в основном металлические. Они надёжны в плане долговечности сохранения функции зуба, однако косметические свойства были неудовлетворительные с точки зрения восстановления утраченной эстетики.

При возрастании требований не только к функции, но и к эстетике стали появляться зубные протезы из пластмассы: пластмассовые коронки, пластмассовые вкладки. Это зубные протезы второй половины XX века, которые позволили значительно улучшить эстетичность протезирования но, увы, в ущерб функции.

Современная реставрационная стоматология направлена не только на восстановление анатомической формы передних и боковых зубов, но и на достижения максимального косметического результата.

Создание современных металлокерамических и цельнокерамических протезов позволило получить оптимальное сочетание высоких эстетических свойств зубных протезов или реставраций с их функциональными свойствами и долговечностью.

Любое лечение должно быть научно обоснованно, поэтому стоматология XXI века использует в своём арсенале биологически совместимые материалы, из которых качественно можно создавать высокохудожественные эстетические реставрации. В связи с этим третьим фактором, который определяет эффективность реставрации зубов и зубных рядов является биосовместимость. К сожалению, металлические зубные протезы, также как металлокерамические имеют недостаток, связанный с тем, что некоторые пациенты страдают повышенной чувствительностью к металлическим элементам. Поэтому по эстетическим свойствам, по функциональной долговечности и по биосовместимости наилучшим материалом в сегодняшней стоматологии является керамика.

Для изготовления таких реставраций предложено много методов. Один из высокоточных, доступных и современных методов является CAD/CAM технология, т.е. метод компьютерного моделирования и компьютерного фрезерования.

Большое преимущество этой системы заключается в том, что она даёт возможность создавать высококачественную керамическую реставрацию непосредственно у кресла пациента в одно посещение, чем отличается от традиционных методов лечения, с точки зрения экономии времени пациента и врача.

Фабрично созданные фарфоровые (керамические, ситалловые, одно и многоцветные) блоки отвечают всем общемедицинским, физико-механическим и технологическим требованиям.

Клинические исследования подтвердили долговечность таких протезов, их функциональность и соответствие реставраций всем эстетическим требованиям.

Совершенство и удобство CAD-CAM системы позволяет установить необходимые параметры для изготовления проектируемой конструкции и заранее предусмотреть толщину адгезионного слоя и плотность проксимальных контактов. С использованием виртуального артикулятора система позволяет достичь оптимального соотношения с зубами антагонистами не только в центральной, но и в боковой окклюзии.

Всё большее распространение в настоящее время получают высокопрочные и эстетичные мостовидные протезы, каркасы которых изготовлены из оксида циркония. Их можно окрашивать в нужный цвет, а послойная нанесённая высокоэстетичная керамика максимально приближает их к естественной прозрачности зубов.

Считывание информации о рельефе поверхности зубов и перевод ее в цифровой формат. Технология автоматизированного проектирования и изготовления зубных протезов. Изготовление реставрации зубов пациента. Компьютерное моделирование конструкции протеза.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 07.05.2015
Размер файла 29,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Применение компьютерных технологий в стоматологии

Цифровые технологии могут использоваться на всех этапах ортопедического лечения. Существуют системы автоматизированного заполнения и ведения различных форм медицинской документации, например Kodak EasyShare (Eastman Kodak, Rochester, N.Y.), Dental Base (ASE Group), ThumbsPlus (Cerious Software, Charlotte, N.C.), Частная практика стоматолога (DMG), Dental Explorer (Quintessence Publishing) и др. [2]. В этих программах помимо автоматизации работы с документами может присутствовать функция моделирования на экране конкретной клинической ситуации и предлагаемого плана лечения стоматологических пациентов. Уже существуют компьютерные программы, которые имеют возможность распознавания голоса врача. Впервые такая технология была применена в 1986 г. компанией ProDenTech (Batesville, Ark., USA) при создании автоматизированной системы ведения медицинской документации Simplesoft. Из таких систем наиболее востребована среди американских стоматологов Dentrix Dental Systems (American Fork, 2003) [13].

Компьютерная обработка графической информации позволяет быстро и тщательно обследовать пациента и показать его результаты как самому пациенту, так и другим специалистам [14]. Первые устройства для визуализации состояния полости рта представляли собой модифицированные эндоскопы и были дорогими. В настоящее время разработаны разнообразные внутриротовые цифровые фото- и видеокамеры (AcuCam Concept N (Gendex), ImageCAM USB 2.0 digital (Dentrix), SIROCAM (Sirona Dental Systems GmbH, Germany) и др.). Такие приборы легко подключаются к персональному компьютеру и просты в использовании. Для рентгенологического обследования все чаще используются компьютерные радиовизиографы: GX-S HDI USB sensor (Gendex, Des Plaines), ImageRAY (Dentrix), Dixi2 sensor (Planmeca, Finland) и др. Новые технологии позволяют минимизировать вредное воздействие рентгеновских лучей и получить более точную информацию. Созданы программы и устройства, анализирующие цветовые показатели тканей зубов, например системы Transcend (Chestnut Hill, USA), Shade Scan System, (Cynovad, Canada), VITA Easyshade (VITA, Germany). Эти устройства помогают определить цвет будущей реставрации более объективно.

Есть компьютерные программы, позволяющие врачу изучить особенности артикуляционных движений и окклюзионных контактов пациента в анимированном объемном виде на экране монитора. Это - так называемые виртуальные, или 3D артикуляторы [11]. Например, программы для функциональной диагностики и анализа особенностей окклюзионных контактов: MAYA, VIRA, ROSY, Dentcam, CEREC 3D, CAD (AX Compact) [8]. Для выбора оптимального метода лечения с учетом особенности клинической ситуации разработаны автоматизированные системы планирования лечения [4, 10, 18]. Даже проведение анестезии может контролировать компьютер [19].

2. Технология автоматизированного проектирования и изготовления зубных протезов

Теоретические основы автоматизированного проектирования и производства различных объектов сформировались в 1960-х - начале 70-х годов.

Для обозначения систем автоматизированного проектирования во всем мире используется аббревиатура CAD (от англ. Computer-Aided Design), а для обозначения систем автоматизации производства - CAM (от англ. Computer-Aided Manufacturing). Таким образом, CAD определяет область геометрического моделирования разнообразных объектов с использованием компьютерных технологий. Термин CAM, соответственно, означает автоматизацию решения геометрических задач в технологии производства. В основном это расчет траектории движения инструмента. Поскольку эти процессы дополняют друг друга, в литературе часто встречается термин CAD/CAM. Интегрированные CAD/CAM системы -- это максимально наукоемкие продукты, постоянно развивающиеся и включающие в себя новейшие знания в области моделирования и обработки материалов. Затраты на их разработку составляют 400-2000 человеко-лет [15].

Первые теоретические исследования о возможности использования автоматизированных систем для восстановления разрушенных зубов были проведены Altschuler в 1973 г. и Swinson в 1975 г. [15]. Прототипы стоматологических CAD/CAM систем впервые были предложены в середине 1980-х годов несколькими независимыми группами ученых. Anderson R.W. (система РroCERA, 1983), Duret F. и Termoz C. (1985), Moermann W.H. и Brandestini M. (система CEREC, 1985), Rekow (система DentiCAD, 1987) считаются первооткрывателями в этой области. Сегодня в мире уже выпускается около трех десятков различных работоспособных стоматологических CAD/CAM систем [24].

С самого начала технология развивалась в двух направлениях [3]. Первое - индивидуальные (мини) CAD/CAM системы, позволяющие изготовить реставрацию в пределах одного учреждения, иногда даже непосредственно в стоматологическом кабинете и в присутствии пациента (CEREC 3, Sirona Dental Systems GmbH, Germany). Основное преимущество таких систем - оперативность изготовления любой конструкции. Например, изготовление однослойной цельнокерамической коронки от начала препарирования зуба и до момента фиксации готовой коронки при использовании системы CEREC 3 занимает около 1-1,5 часа. Однако для полноценной работы необходим весь комплекс оборудования (дорогостоящего).

Второе направление развития CAD/CAM технологии - это централизованные системы. Они предусматривают наличие одного производственного высокотехнологичного центра, изготавливающего на заказ большой ассортимент конструкций, и целой сети удаленных от него периферических рабочих станций (например, РroCERA, Nobel Biocare, Sweden). Централизация производственного процесса позволяет стоматологам не приобретать изготавливающий модуль. Основной недостаток таких систем - невозможность провести лечение пациента за одно посещение и финансовые затраты на доставку готовой конструкции врачу, поскольку производственный центр иногда может находиться даже в другой стране [26].

Несмотря на такое многообразие, основной принцип работы всех современных стоматологических CAD/CAM систем остался неизменным с 1980-х годов и состоит из следующих этапов:

1. Сбор данных о рельефе поверхности протезного ложа специальным устройством и преобразование полученной информации в цифровой формат, приемлемый для компьютерной обработки.

2. Построение виртуальной модели будущей конструкции протеза с помощью компьютера и с учетом пожеланий врача (этап CAD).

3. Непосредственное изготовление самого зубного протеза на основе полученных данных с помощью устройства с числовым программным управлением из конструкционных материалов (этап CAM).

Различные стоматологические CAD/CAM системы отличаются лишь технологическими решениями, используемыми для выполнения этих трех этапов [24].

Механические сканирующие системы считывают информацию с рельефа контактным зондом, который шаг за шагом передвигается по поверхности согласно заданной траектории. Прикасаясь к поверхности, устройство наносит на специальную карту пространственные координаты всех точек контакта и оцифровывает их. Для обеспечения максимальной точности в процессе сканирования от начала и до конца недопустимо малейшее отклонение сканируемого объекта относительно его первоначального положения [1, 17].

Из всего многообразия доступных CAD/CAM комплексов пока только два обладают возможностью проведения высокоточного внутриротового сканирования. Это системы CEREC 3 (Sirona Dental Systems GmbH, Germany) и Evolution 4D (D4D Technologies, USA). Все остальные CAD/CAM системы оснащены точными оптическими или механическими сканирующими устройствами, размеры или особенности работы которых не позволяют проводить сбор данных о рельефе непосредственно в полости рта пациента. Для работы таких систем требуется предварительное получение традиционных оттисков слепочными материалами и изготовление гипсовых моделей.

4. Компьютерное моделирование конструкции протеза

Возможно, в будущем появятся технологии изготовления предметов, не требующие предварительного точного геометрического описания создаваемого объекта, но пока это невозможно.

В первых стоматологических автоматизированных системах проектирование будущих конструкций было наиболее трудоемким этапом, требующим от врача серьезных навыков в области черчения и геометрии [15]. Необходимо было вручную вводить координаты всех ключевых точек, в которых изменялось направление движения шлифовального устройства. Некоторые из автоматических систем и по сей день требуют предварительного изготовления вручную прототипа реставрации из воска или пластмассы (так называемой промежуточной модели), с последующим ее механическим копированием в соотношении 1:1 (система CELAY, Mikrona Technologic, Sweden).

Развитие автоматизированного проектирования у всех производителей стоматологических CAD/CAM систем было направлено на упрощение и максимальную визуальную ясность данного процесса. Современные системы, получив со сканера оцифрованную информацию о рельефе поверхности протезного ложа, приступают к построению его изображения на экране монитора. После этого специальное программное обеспечение предлагает врачу наиболее приемлемый вариант реставрации зуба. Некоторые из современных компьютерных программ могут спроектировать протезы, не уступающие по своим параметрам работам опытных зубных техников [24]. Степень вмешательства, необходимого от оператора системы CAD/CAM, для того чтобы спроектировать реставрацию, может меняться в пределах от минимальных пользовательских настроек до существенного изменения конструкции. Даже в наиболее автоматизированных системах пользователь обычно имеет возможность изменить автоматически спроектированную реставрацию согласно своим предпочтениям. Широкое развитие получило трехмерное анимированное моделирование будущей конструкции. Оно в значительной мере упрощает и ускоряет процесс создания виртуальной модели протеза, делает его более наглядным. Врач может рассмотреть на экране монитора конструкцию со всех сторон, при различном увеличении и внести свои поправки.

5. Изготовление реставрации

Когда моделирование будущей реставрации завершено, программное обеспечение CAD преобразовывает виртуальную модель в определенный набор команд. Они, в свою очередь, передаются на производственный модульCAM, который изготавливает спроектированную реставрацию. Там полученный набор команд преобразуется в последовательность электрических импульсов, управляющих высокоточными движениями изготавливающего инструмента.

Ранние автоматизированные системы изготавливали зубную реставрацию путем вырезания из готового блока с использованием вращающихся алмазных или твердосплавных боров и дисков. Этот подход, при котором излишки конструкционного материала удаляются, чтобы создать заданную форму протеза, получил название “отнимающий метод” (англ. subtractive) [9]. “Отнимающее” изготовление позволяет создать законченную форму сложной конфигурации очень точно, но значительная часть материала расходуется впустую. Приблизительно 90% готового блока удаляется при создании типичных реставрациий зубов. Как альтернатива “добавляющие” (англ. additive) методы производства начинают находить применение в автоматизированных системах. Иногда их называют методами изготовления твердого тела свободной формовкой (англ. solid free-form fabrication). Впервые такие методы были использованы в микроэлектронике при быстром прототипировании деталей.

Избирательное лазерное спекание - одна из технологий, которые используются для изготовления керамических или металлических зубных реставраций. Примером могут служить стоматологические системы Medifacturing (Bego Medical AG, Germany) и DigiDent (Hint-ELs, Germany). При этом методе компьютер просчитывает траекторию движения инструмента, как и в других существующих CAD/CAM-системах. Однако система не сошлифовывает, а спекает лучом лазера слой материала, двигаясь по заданной траектории внутри емкости, заполняемой послойно керамическим или металлическим порошком. Каждый последующий слой спаивается с предыдущим. Такая технология позволяет изготовить конструкции сложной формы без потерь материала.

Некоторые системы CAD/CAM комбинируют “добавляющие” и “отнимающие” подходы. Например в системе Procera (Nobel Biocare, Sweden) сначала фрезеруется увеличенная металлическая копия культи опорного зуба (“отнимающий” метод). Это увеличение рассчитывается компьютером, чтобы компенсировать усадку во время окончательного спекания реставрации. Затем порошок прессуется под давлением на металлический штампик-матрицу, создавая увеличенную реставрацию (“добавляющий” метод). После этого блок фрезеруется снаружи (снова “отнимающий” метод), чтобы создать точные внешние контуры реставрации. В заключение увеличенная конструкция снимается с металлического штампика и спекается для достижения материалом окончательной твердости и размера.

Другой вариант сочетания “добавляющего” и “отнимающего” подходов использован в системе Wol-Ceram (Germany). На первом этапе создается колпачок “добавляющим” способом. Суть процесса заключается в осаждении кристаллов оксида алюминия из суспензии на поверхность культи методом электрофоретической дисперсии. Оператор вручную срезает излишки материала, выступающие за края уступа. Внешняя поверхность реставрации формируется шлифованием (“отнимающий” подход). Затем оператор снимает колпачок со штампика-матрицы, пропитывает его стеклом и спекает [5].

Интересный пример “добавляющей” технологии - изготовление моделей протезов методом трехмерной печати. CAM-устройство WaxPro printer (система Pro 50, Cynovad, Canada) действует, как струйный принтер, только вместо чернил он выстреливает микроскопические порции расплавленного воска. Так, слой за слоем и получается восковая модель каркаса или искусственной коронки. В дальнейшем по восковой репродукции протез отливается из металла или прессуется из керамики. Усовершенствованный вариант печатающего модуля системы Cynovad способен создавать конструкции не только из воска, но и из композиционных материалов. Это существенно расширяет возможности данной системы и позволяет, к примеру, использовать ее для изготовления челюстно-лицевых протезов [25].

Стремительное развитие стоматологических систем автоматизированного проектирования и производства протезов привело к появлению нового сегмента в материаловедении - материалы для CAD/CAM технологии. автоматизированный зубной протез

Область применения стоматологических CAD/CAM-систем не ограничивается одним только изготовлением зубных протезов (таблица). Так, разработано несколько CAD/CAM-систем для применения в хирургической практике. Например, система SurgiGuide (Materialise, Belgium) используется для изготовления индивидуальных хирургических шаблонов, облегчающих правильное расположение зубных имплантов во время операции [20]. CAD/CAM-система Nobel Guide software (Nobel Biocare, Sweden) позволяет изготовить реставрацию непосредственно после установки имплантата [27]. Обе системы используют данные, полученные методом компьютерной томографии, специальное программное обеспечение CAD, чтобы определить идеальное размещение реставрации, и технологии CAM для производства шаблонов или рабочих моделей.

Таблица 1 Компьютерные технологии, применяемые в стоматологии

Обучение специалистов, научные исследования

Симуляторы - обучающие программы, в которых воспроизводятся различные клинические ситуации

CLINSIM (Morita, Japan); PREPassistant (KaVo Dental GmbH, Germany); DentSim Compact (Yoshida, Japan)

Современный период развития общества характеризуется сильным влиянием на него информационных технологий, пришли во все сферы человеческой деятельности, обеспечивают распространение информационных потоков в обществе, образуя глобальное информационное пространство. Они быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности.

Информационные технологии в медицине

Трудно найти сферу, в которой сейчас не используются информационные технологии. Лидерами отрасли по внедрению компьютерных технологий является архитектура (архитектурное проектирование), машиностроение, образование, банковская сфера и, с запозданием, медицина.

Современные информационные технологии все больше используются в области здравоохранения, бывает удобным, а порой просто необходимо. Благодаря этому медицина, в том числе и нетрадиционная, приобретает сегодня совершенно новые черты. Во многих медицинских исследованиях просто не возможно обойтись без компьютера и специального программного обеспечения к нему. Этот процесс сопровождается существенными изменениями в медицинской теории и практике, связанными с внесением корректив как на этапе подготовки медицинских работников, так и для медицинской практики.

Жизненный путь каждого человека в той или иной степени пересекается с врачами, которым мы доверяем свое здоровье и жизнь. Но образ медицинского работника и медицины в целом в последнее время претерпевает серьезные изменения, и происходит это во многом благодаря развитию информационных технологий.

Современные информационные технологии в медицинской практике

За последние 20 лет уровень применения компьютеров в медицине — повысился. Практическая медицина становится все более автоматизированной.

Выделяют два вида компьютерного обеспечения:

Программное обеспечение включает в себя системное и прикладное. В системное программное обеспечение входит сетевой интерфейс, который обеспечивает доступ к данным на сервере. Данные, введенные в компьютер, организованы, как правило, в базу данных, которая, в свою очередь, управляется прикладной программой управления базой данных (СУБД) и может содержать, в частности, истории болезни, рентгеновские снимки в оцифрованном виде, статистическую отчетность по стационара, бухгалтерский учет. Прикладное обеспечение это программы, для которых, собственно, и предназначен компьютер. Это — вычисления, обработка результатов исследований, различного рода расчеты, обмен информацией между компьютерами. Сложные современные исследования в медицине немыслимы без применения вычислительной техники. К таким исследованиям можно отнести компьютерную томографию, томографию с использованием явления ядерно-магнитного резонанса, ультрасонографию, исследования с применением изотопов. Количество информации, которое получается при таких исследования такая огромная, что без компьютера человек был бы в силах ее воспринять и обработать.

Комплексная система автоматизации деятельности медицинского учреждения

Разработанные медицинские информационные системы можно разделить по следующим критериям:

§ Медицинские системы, включающие в себя программы, решающие узкие задачи врачей-специалистов, таких как рентгенолог, УЗИ и т.д.

§ Медицинские системы организации делопроизводства врачей и обработки медицинской статистики. Больничные информационные системы.

§ Система сбора и обработки информации в современных медицинских центрах должна выполнять так много различных функций, которые нельзя даже описать, а уж тем более автоматизировать в сколько-нибудь короткие сроки. Жизненный цикл автоматизированной информационной системы состоит из пяти основных стадий:

Разработки системы или приобретение готовой системы;

§ Сопровождение программного обеспечения;

Телемедицина

Телемедицина — это отрасль современной медицины, которая развивалась параллельно совершенствованию знаний о теле и здоровье человека вместе с развитием информационных технологий. Современная медицинская диагностика предполагает получение визуальной информации о здоровье пациента. Поэтому для формирования телемедицины необходимы были информационные средства, позволяющие врачу "видеть" пациента. В настоящее время клинические телемедицинские программы существуют во многих информационно развитых странах мира. Информатика — область науки, изучающая структуру и общие свойства научной информации, а также вопросы, связанные с ее сбором, хранением, поиском, переработкой, преобразованием, распространением и использованием в различных сферах человеческой деятельности. Ее медицинская отрасль, образовавшаяся в результате внедрения информационных технологий в одну из древнейших областей деятельности человека, сегодня становится одним из важнейших направлений интеллектуального прорыва медицины на новые рубежи.

Информационные технологии в стоматологии

Сегодня компьютер есть в большинстве стоматологических клиник. Помивтно распространены на стоматологическом рынке компьютерных программ — системы цифровой (дигитальной) рентгенографии, так называемые радиовидеографамы. Системы позволяют детально изучить различные фрагменты снимка зуба и пародонта, увеличить или уменьшить размеры и контрастность изображений, сохранить всю информацию в базе данных и перенести ее (при необходимости) на бумагу с помощью принтера. Наиболее известные программы: Gendex, Trophy. Вторая группа программ — системы для работы с дентальными видеокамерами. К таким программам относятся: Vem Image, Acu Cam, Vista Cam, Telecam DMD.

Электронный документооборот модернизирует обмен информацией внутри стоматологической клиники. Различная степень доступа врачей и пациентов, обязательное использование системы шифрования для кодирования диагнозов, результатов обследования, терапевтических, хирургических, ортодонтических и др. процедур дает возможность надежно защищать любую информацию.

Компьютерная томография

Метод изучения состояния организма человека, при котором производится последовательное, очень частое измерение тонких слоев внутренних органов. Эти данные записываются в компьютер, который на их основе выстраивает полное объемное изображение. Физические основы измерений разнообразны: рентгеновские, магнитные, ультразвуковые, ядерные и пр.

Совокупность устройств, обеспечивающих измерения, сканирование, и компьютер, создает полную картину, называются томографом.

Томография является одним из основных примеров внедрения новых информационных технологий в медицине. Создание этого метода без мощных компьютеров было бы невозможным.

Основные научные достижения Средневековья: Ситуация в средневековой науке стала меняться к лучшему с.

Читайте также: