Индукционные нагревательные установки реферат

Обновлено: 02.07.2024

Индукционные нагревательные и закалочные установки

В индукционных установках тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем.

Преимущества индукционного нагрева по сравнению с нагревом в печах сопротивления:

1) Передача электрической энергии непосредственно в нагреваемое тело позволяет осуществить прямой нагрев проводниковых материалов. При этом повышается скорость нагрева по сравнению с установками косвенного действия, в которых изделие нагревается только с поверхности.

2) Передача электрической энергии непосредственно в нагреваемое тело не требует контактных устройств. Это удобно в условиях автоматизированного поточного производства, при использовании вакуумных и защитных средств.

3) Благодаря явлению поверхностного эффекта максимальная мощность, выделяется в поверхностном слое нагреваемого изделия. Поэтому индукционный нагрев при закалке обеспечивает быстрый нагрев поверхностного слоя изделия. Это позволяет получить высокую твердость поверхности детали при относительно вязкой середине. Процесс поверхностной индукционной закалки быстрее и экономичнее других методов поверхностного упрочнения изделия.

4) Индукционный нагрев в большинстве случаев позволяет повысить производительность и улучшить условия труда.

Индукционный нагрев широко применяется для:

1) Плавки металлов

2) Термической обработки деталей

3) Сквозного нагрева детали либо заготовок перед пластической деформацией (ковка, штамповка, прессовка)

4) Пайки и наплавки

5) Сварки металла

6) Химико-термической обработки изделий

В индукционных нагревательных установках индуктором создается электромагнитное поле, оно наводит в металлической детали вихревые токи, наибольшая плотность которых приходится на поверхностный слой детали, где и выделяется наибольшее количество тепла. Это тепло пропорционально мощности, подведенной к индуктору, и зависит от времени нагрева и частоты тока индуктора. Путем соответствующего выбора мощности, частоты и времени действия нагрев может быть произведен в поверхностном слое разной толщины либо по всему сечению детали.

Индукционные нагревательные установки по способу загрузки и характеру работы бывают периодического и непрерывного действия. Последние могут встраиваться в поточные и автоматические технологические линии.

Поверхностная индукционная закалка, в частности, заменяет такие дорогостоящие операции поверхностного упрочнения, как цементация, азотирование и др.

Индукционные закалочные установки

Цель индукционной поверхностной закалки: получение высокой твердости поверхностного слоя при сохранении вязкой середины детали. Для получения такой закалки производят быстрый нагрев детали на заданную глубину током, индуцированным поверхностным слоем металла с последующим охлаждением.

Глубина проникновения тока в металл зависит от частоты, то поверхностная закалка требует различных толщин закаливаемого слоя.

Различают следующие виды индукционной поверхностной закалки:

Одновременная индукционная закалка – заключается в одновременном нагреве всей закаливаемой поверхности с последующим охлаждением поверхности. Индуктор и охладитель удобно совместить. Применение лимитируется мощностями питающего генератора. Нагреваемая поверхность не превышает 200-300 см2.

Одновременно-поочередная индукционная закалка – характерна тем, что отдельные части нагреваемой детали нагреваются одновременно-поочередно.

Непрерывно-последовательная индукционная закалка – применяется в случае большой протяженности закаливаемой поверхности и заключается в нагреве участка детали при непрерывном движении детали относительно индуктора либо наоборот. Охлаждение поверхности следует за нагревом. Возможно применение отдельных охладителей или совмещенных с индуктором.

На практике идея индукционной поверхностной закалки реализуется в индукционных закалочных станках .

Различают специальные индукционные закалочные станки, предназначенные для обработки определенной детали или групп деталей, незначительно отличающихся размеров и универсальные индукционные закалочные станки – для обработки любых деталией.

Закалочные станки включают следующие элементы:

1) Понижающий трансформатор

3) Батарея конденсаторов

4) Система водяного охлаждения

5) Элемент контроля и управления работы станка

Универсальные индукционные закалочные станки снабжаются устройствами для закрепления деталей, их передвижения, вращения, возможность для замены индуктора. Конструкция закалочного индуктора зависит от вида поверхностной закалки и от формы закаливаемой поверхности.

В зависимости от вида поверхностной закалки и конфигурации деталей используют различные конструкции закалочных индукторов.

Устройство закалочных индукторов

Индуктор состоит из индуктирующего провода, который создает переменное магнитное поле, токоподводящих шин, контактных колодок для соединения индуктора с источником питания, трубок для подачи и отвода воды. Для закалки плоских поверхностей применяют одно и многовитковые индукторы.

Существует индуктор для закалки внешних поверхностей цилиндрических деталей, внутренних плоских поверхностей и т.д. Бывают цилиндрические, петлевые, спирально-цилиндрические и спирально плоские. При низких частотах индуктор может содержать магнитопровод (в ряде случаев).

Источники питания закалочных индукторов

Источниками питания закалочных индукторов средней частоты служат электромашинные и тиристорные преобразователи, обеспечивающие рабочие частоты до 8 кГц. Для получения частоты в диапазоне от 150 до 8000 Гц используют машинные генераторы. Могут быть использованы преобразователи на основе управляемых вентилей. Для более высоких частот используют ламповые генераторы. В области повышенной частоты используют машинные генераторы. Конструктивно генератор объединяют с приводным двигателем в единый преобразовательный агрегат.

Для частоты от 150 до 500 Гц применяются обычные многополюсные генераторы. Они работают на высоких скоростях вращения. Обмотка возбуждения, расположенная на роторе, питается через контакт кольца.

Для частоты от 100 до 8000 Гц используют индукторные генераторы, ротор которых не имеет обмотки.

В обычном синхронном генераторе обмотка возбуждения, вращаясь с ротором, создает в статорной обмотке знакопеременный поток, то в индукторном генераторе вращение ротора приводит к пульсации магнитного потока, сцепленного с магнитной обмоткой. Применение индукционного генератора на повышенной частоте объясняется конструктивными трудностями генераторов, работающих на частоте > 500 Гц. В таких генераторах трудно разместить многополюсные обмотки статора и ротора, привод осуществляется асинхронными двигателями. При мощностях до 100 кВт обычно обе машины объединяют в одном корпусе. Большая мощность – два корпуса. Индукционные нагреватели и закалочные агрегаты могут получать питание от машинных генераторов по схеме индукционного питания или центрального.

Индукционное питание выгодно, когда генератор полностью загружается одной установкой, которая работает непрерывно в металлических установках сквозного нагрева.

Центральное питание – при наличии большого количества нагревательных установок, работающих циклически. В этом случае возможна экономия установленной мощности генераторов за счет неодновременной работы отдельных нагревательных установок.

Генераторы используют обычно с самовозбуждением, которые могут обеспечивать мощность до 200 кВт. Такие лампы работают при анодном напряжении 10-15 кВ, для охлаждения анодных ламп рассеиваемой мощности более 10 кВт применяется водяное охлаждение.

Для получения высоких напряжений обычно используют мощные выпрямители. Мощность, отдаваемая установкой. Часто регулируют, регулируя выходное напряжение выпрямителя и используя надежную экранировка коаксиальных кабелей для передачи высокочастотной энергии. При наличии неэкранированных нагревательных постов должно быть использовано дистанционное управление, а также механические автоматические работы с целью исключения нахождения персонала в опасной зоне.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

ВВЕДЕНИЕ 3
1. Индукционный нагрев 5
1.2 Принцип индукционного нагрева 6
2. Описание метода. 8
3. Применение: 10
4. Преимущества. 10
5. Установки индукционного нагрева 11
6. Недостатки 14
7. Замечания. 16
8. Вывод 17
ЗАКЛЮЧЕНИЕ 18
ЛИТЕРАТУРА 21

Индукционный нагрев может быть использован для нагрева практически любых материалов: сплавов металлов, проводников, диэлектриков, шлаков, газов и т.д. Его применение позволяет осуществить передачу теплоты нагреваемому объекту без непосредственного контакта и обеспечить практически любые скорости нагрева при минимальных тепловых потерях в окружающую среду. Максимальный же уровень создаваемых температур при индукционном нагреве определяется в основном только стойкостью применяемых огнеупорных материалов. Отсутствие необходимости непосредственного контакта между электрической цепью и нагреваемым материалом позволяет осуществлять нагрев в вакууме или защитной атмосфере. В то же время, наличие относительно холодных шлаков, затрудняющих проведение рафинировочных процессов, сложное и дорогое электрооборудование, низкая стойкость футеровки при резких колебаниях температур между плавками, размывающее действие расплава при электродинамическом явлении перемешивания металла ограничивают сферу применения этого способа передачи энергии.
В основе индукционного нагрева лежит трансформаторный принцип передачи энергии индукцией от первичной электрической цепи к вторичной. При этом электрическая энергия переменного тока подводится к первичной цепи индуктора, который представляет собой многовитковую катушку (соленоид), выполненную из медной профилированной вод охлаждаемой трубки. В результате вокруг него формируется переменное магнитное поле. Под его воздействием в нагреваемом теле, помещенном внутрь индуктора, как вторичной обмотке трансформатора, наводится электрическое поле, линии напряженности которого располагаются в плоскости перпендикулярной направлению линий магнитного потока индуктора и имеют вихревой характер.
Под воздействием этого поля внутренние электрические заряды в расплавляемом теле приходят в движение, образуя вихревые токи. При этом энергия электрического поля необратимо переходит в тепловую в соответствии с законом Джоуля-Ленца.
При использовании в качестве шихты ферромагнитных материалов их нагрев до достижения температуры точки Кюри (740…770оС) осуществляется не только за счет вихревых токов проводимости, но и за счет потерь энергии на перемагничивание. После превышения уровня этой температуры, нагреваемые проводники теряют свои магнитные свойства и работа индукционной печи становится аналогичной работе воздушного трансформатора (без сердечника).
Следовательно, величина ЭДС индукции пропорциональна частоте изменения магнитного потока во времени, а также величине магнитного потока, т.е. числу силовых линий, сцепленных с витком. Тепловая мощность, выделяемая вихревыми токами в толще нагреваемого тела, зависит от частоты переменного поля. Для эффективной работы тигельных индукционных печей их питание осуществляют электрическими токами повышенной или высокой частоты, что достигается установкой специальных генераторов, вырабатывающих ток требуемой частоты. Их применение снижает общий КПД установки.
Практически для индукционного нагрева используют следующие интервалы частот:
а) при нагреве стальных деталей диаметром меньше 0,03 м – 200000 Гц и выше;
б) при нагреве стальных изделий диаметром 0,03…0,15 м и толщине закаливаемого слоя свыше 2 мм – 1000…10000 Гц;
в) при термической обработке деталей свыше 0,15 м при нагреве на большую глубину – 50 Гц;
г) для питания плавильных печей используют 50…10000 Гц.
При частоте до 10000 Гц применяют машинные генераторы, а свыше 10000 Гц – электронно-ламповые.
Преимущества индукционного нагрева
1) Передача электрической энергии непосредственно в нагреваемое тело позволяет осуществить прямой нагрев проводниковых материалов. При этом повышается скорость нагрева по сравнению с установками косвенного действия, в которых изделие нагревается только с поверхности.
2) Передача электрической энергии непосредственно в нагреваемое тело не требует контактных устройств. Это удобно в условиях автоматизированного поточного производства, при использовании вакуумных и защитных средств.
3) Благодаря явлению поверхностного эффекта максимальная мощность, выделяется в поверхностном слое нагреваемого изделия. Поэтому индукционный нагрев при закалке обеспечивает быстрый нагрев поверхностного слоя изделия. Это позволяет получить высокую твердость поверхности детали при относительно вязкой середине. Процесс поверхностной индукционной закалки быстрее и экономичнее других методов поверхностного упрочнения изделия.
4) Индукционный нагрев в большинстве случаев позволяет повысить производительность и улучшить условия труда.
ЛИТЕРАТУРА

1. Основы теории теплогенерации: Учебник для вузов/ М.Д. Казяев, С.Н. Гущин; В.И. Лобанов и др. Екатеринбург: УГТУ-УПИ, 1999. 285 с.
2. Егоров А.В., Моржин В.Ф. Электрические печи (для производства сталей). М.: Металлургия, 1975. 352 с.
3. Вайнберг А.М. Индукционные плавильные печи. Учебное пособие для вузов. М.: Энергия, 1967. 416 с.
4. Теория, конструкция и расчеты металлургических печей. Т.2. По ред. В.А. Кривандина. М.: Металлургия, 1986. 376 с.
5. Бабат Г.И. Индукционный нагрев металлов и его промышленное применение. Л.: Энергия, 1965, 552 с.
6. Фарбман С.А., Колобнев И.Ф. Индукционные печи для плавки металлов и сплавов. М.: НТО ЧиЦМ, 1958, 704 с.
7. Романов Д.И. Электроконтактный нагрев металлов 2-е изд., перераб. и доп. - М. Машиностроение, 1981г. - 166 с.
8. Алиферов А.И., Лупи С. Электроконтактный нагрев. - Новосибирск: Изд-во НГТУ, 2004г. - 224 с.
9. Хасин Г.А., Дианов А.И., Попов Т.П. - М.: Металлургия, 1984 г. – 284 с.
10. Болотов А.В., Шепель Г.Л., Электро-технологические установки.- М. Машиностроение, 1980г. - 160 с.
11. Мостовяк И.В. Цепи уравновешивания режимов трёхфазных систем с установками электроконтактного нагрева. - Киев. ИЭД, 1988 г. – 266 с.
12. Болотин И.Б., Эйдель Л.З. Измерения в переходных режимах короткого замыкания. - Л.: Энергия, 1981г. – 192 с.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Методы электротехнологии, основанные на тепловом и химическом действиях тока. Принцип действия, применение, преимущества и недостатки индукционного нагрева металлов. Генераторы индукционных токов, проблема нагрева заготовок из магнитных материалов.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 05.06.2013
Размер файла 328,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение 1. Индукционный нагрев металлов 1.1 Определение, принцип действия, применение, преимущества и недостатки

1.1.1 Определение

1.1.2 Принцип действия

1.1.3 Применение

1.1.4 Преимущества

1.1.5 Недостатки

1.2 Устройства индукционного нагрева

1.2.1 Генераторы индукционных токов

1.2.1.1 Недостатки трёхточки

1.2.1.2 Проблема индукционного нагрева заготовок из магнитных материалов

1.2.2 Индукционные плиты 1.2.3 Индукционные плавильные печи

1.2.3.1 Конструкция печи

2. Расчетная часть

2.1 Определение мощности

Заключение

Развитие электротехники наглядно определяет тесную взаимосвязь научно-технических проблем с социальными, экономическими, экологическими другими задачами современного общества. расширилась сфера применения электрической энергии в различных областях производства и технологии, информатизации и экологии, социально-бытовой сфере. Под электротехникой в широком смысле слова обычно понимают область науки и техники, использующую электрические и магнитные явления для практических целей.

Первое направление связано с получением, передачей, распределением и преобразованием энергии, поэтому в электротехнике изучаются источники электрической энергии, получаемой из механической, химической, тепловой, световой и некоторых других видов энергии; приемники электрической энергии образующие электрическую энергию в перечисленные виды энергии, а также преобразователи одного вида электрической энергии в другой: трансформаторы выпрямители, преобразователи частоты и др.

Электроэнергетика - одна из основ развития современного человеческого общества. Уровень производства и потребления энергии вообще, в том числе электрической энергии в значительной мере характеризует уровень развития общества, определяет темпы научно-технического и экономического роста. С развитием электрификации тесно связаны важнейшие социально-экономические изменения в обществе.

Интенсивное использование электрической энергии связано с ее преимущественными, перед другими видами энергии, особенностями: возможностью достаточно легкого преобразования в другие виды энергии; возможностью централизованного и экономичного получения на различных электростанциях; простотой и экономичностью передачи к потребителям на большие расстояния.

Традиционные методы электротехнологии, основанные на тепловом и химическом действиях тока, широко применявшиеся ранее, оказались сейчас недостаточными для обеспечения требований современной практики. Только на основе последних достижений электрофизики, электротехники и электроники удалось разработать новые электротехнологические методы с использованием сильных электрических полей и соответственно высоких электрических напряжений.

Современные энергетические и технологические процессы протекают при скоростях, давлениях, механических напряжениях и температурах, что управление и контроль за ними могут быть осуществлены только посредством систем автоматически действующих приборов и устройств, среди которых ведущая роль принадлежит электрическим и электронным приборам: Автоматическое Управления и контроль разнообразными процессами предусматривает получение и передачу системы сигналов и информации и их соответствующую обработку. В связи с этим важно освоение и использование электрических и электронных измерительных приборов, усилителей, импульсных и цифровых электронных устройств и микропроцессоров.

В связи с дальнейшим развитием электроники, теории информации и управляющих машин, все шире внедряются автоматические быстродействующие вычислительные машины для решения сложных математических задач и автоматизации управления технологическими процессами, создаются новые электронные устройства дискретного действия, микропроцессоры и микро-ЭВМ. Информационное направление электротехники важную роль играет при выработке и передаче электроэнергии. Так, например, для обеспечения функционирования мощного энергоблока необходимо контролировать до 1000 переменных величин, из них около 100 должны иметь высоконадежную автоматическую стабилизацию. Во всех отмеченных устройствах и процессах широко используются электрические и магнитные явления, на рис. 1 дается содержание понятия "электротехника".

Рис. 1 К определению понятия "электротехника"

Обобщая все вышесказанное, можно дать следующее определение содержанию понятия "электротехника".Электротехника - область науки и техники, использующая электрические и магнитные явления для осуществления процессов преобразования энергии природы и превращений вещества, а также для получения и передачи информации.

Закладка фундамента электротехники и формирование ее научных основ, заложенные в конце 18 и начале 19 веков явились началом изучения электрических явлений для учебных целей. До окончательного формирования электротехники вопросы практического применения электрических и магнитных явлений изучались в учебной дисциплине - физике. В связи с расширение сети высших учебных заведений различного профиля улучшается специализация преподаваемых наук. Если в 18 в. в России был только один университет - Московский, то в первое же десятилетие 19 в. университеты открылись в Казани и Харькове, а в Петербурге был основан главный педагогический институт, преобразованный в 1819 г. в Петербургский университет. Создаются специальные учебные заведения, в том числе Медико-хирургическая академия. Преподавание в университетах и специальных учебных заведениях естественных наук, при их интенсивном развитии, вызвало усиление интереса к изучению физики, химии, математики. Программы преподавания физики значительно расширяются; по университетскому уставу 1804 г. физика из всеобщего курса естествознания выделяется в самостоятельную дисциплину. Увеличивается объем изданий научной и учебной литературы, в частности, и по физике. Если, например, в 18 в. за четверть века после смерти М.В. Ломоносова в России не было издано ни одного учебника по физике, то в первой половине 19 в. вышли учебники по физике профессоров И.А. Двигубского, П.И. Страхова, Г. Паррота, а также переводные учебники физики профессоров Г. Бриссона, Р. Майера и др.

1. Индукционный нагрев металлов

1.1 Определение, принцип действия, применение, преимущества и недостатки

1.1.1 Определение

Индукционный нагрев (Induction Heating) -метод бесконтактного нагрева токами высокой частоты (англ. RFH - radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла. Система "индуктор-заготовка" представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху. На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Д (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Д плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости м материала заготовки. Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри м имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электропроводящая керамика и т. д.) м примерно равна единице. Формула для вычисления глубины скин-слоя в мм:

где м0= 4р·10?7 - магнитная постоянная Гн/м, с - удельное электрическое сопротивление материала заготовки при температуре обработки, f - частота электромагнитного поля, генерируемого индуктором. Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ? 0,001 мм. Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

ТИГЕЛЬНАЯ ИНДУКЦИОННАЯ ПЕЧЬ, ИНДУКЦИОННЫЙ НАГРЕВ, ТИГЕЛЬ, ШИХТА.

Цель работы:
ознакомиться с тигельными индукционными печами;

изучить устройство и принцип действия индукционных тигельных печей;

Содержание
Введение………………………. …………………………………………. ….4
1. Классификация индукционных установок………………………………. 6

2. Индукционные тигельные печи: достоинства, недостатки,

классификация……………………………………………………..………….9

3. Принцип работы индукционной тигельной печи…………………….…..…12

4. Конструкция основных элементов тигельных печей……………….….…14

5. Технические характеристики индукционных тигельных печей……. …20

6. Электрооборудование и схемы питания индукционных тигельных печей………………………………………………. 23

7. Эксплуатация индукционных тигельных печей и техника безопасности………………………………………………………………..27

Список использованной литературы………………………. …….30

Введение
В связи с быстрым развитием автомобилестроения, самолетостроения и других новейших направлений машиностроения в гражданских и оборонных отраслях, значительно возросла выплавка сплавов цветных металлов. Мировая тенденция развития печных агрегатов для производства сплавов цветных металлов характеризуется следующими положениями:
- печи на коксе практически не используются из-за высокого загрязнения сплавов, трудности получения отливок высокого качества, низкой экологичности и высокого энергопотребления;
- сокращается использование пламенных отражательных печей ввиду повышения угара металла и насыщения его газами, особенно при использовании легковесной садки и существенного загрязнения продуктами сгорания топлива;
- по сути прекратилось применение электродуговых печей также по причине большого угара металла, трудности регулирования химсостава и гомогенности сплава, а также из-за больших затрат энергии при теплосохранении расплава;
- печи сопротивления используются только как теплосохраняющие и практически не применяются как плавильные агрегаты из-за низкой производительности;
- быстро расширяется сфера применения индукционных печей: тигельных и канальных на промышленной частоте, тигельных плавильных на средней частоте и тигельных с укороченным индуктором для выдержки металла, - которые используются во всех видах выплавки цветных металлов, процессах теплосохранения и разливки.
Тигельные печи средней частоты вытесняют индукционные печи промышленной частоты и применяются для скоростных плавок малыми партиями. Канальные индукционные печи промышленной частоты наиболее эффективны как теплосохраняющие и разливочные. Крупные канальные индукционные печи используются для выплавки и накопления отдельных марок цветного металла в ночное время, когда стоимость электроэнергии самая низкая, а в дневное время обеспечивается непрерывная разливка или литье в крупные формы.
Начало формы

Конец формы

1. Классификация индукционных установок

По назначению индукционные установки делятся на плавильные

печи, миксеры и нагревательные установки. Под индукционными фонемами подразумевают индукционные установки, предназначенные для нагрева металлов и сплавов выше температуры их рас­плавления и перегрева металла до температуры разливки. Сюда от­носятся электропечи для плавки черных металлов и для плавки цвет­ных металлов и сплавов. Миксеры служат как для подогрева жид­кого металла до температуры разливки, так и для выравнивания его состава и поддержания его температуры.

Под нагревательными индукционными установками подразумева­ют установки для нагрева деталей до температуры термообработки или горячей деформации металла, т. е. меньшей, чем температура расплавления металла. Это — индукционные установки для сквозно­го нагрева под горячую деформацию металлических заготовок и установки для термообработки (поверхностная закалка, отпуск и пр.).

По частоте тока источника питания индукционные установки делятся на печи и нагревательные установки низкой (промышленной) частоты (50 Гц), печи и нагревательные установки средней частоты (150—10000 Гц), печи и нагревательные установки высокой частоты (50—1000 кГц) и установки диэлектрического нагрева — установки сверхвысокой частоты (5—5000 МГц).

По конструкции индукционные печи и нагревательные установки могут выполняться открытыми, т. е. работающими при атмосферном давлении воздуха, и герметически закрытыми, т. е. работающими или с разрежением воздуха внутри плавильного пространства, или с по­вышенным давлением при заполнении рабочего пространства ней­тральным газом (азотом, аргоном, водородом). Закрытые установки могут быть выполнены как вакуумно-компрессионные.

По режиму работы различают печи и установки периодического действия и печи и установки непрерывного действий.

По принципу действия индукционные печи подразделяются на ти­гельные (печи без сердечника) и канальные (печи с сердечником); названные так по элементам конструкции печи, где находится рас­плавленный металл.

Индукционный нагрев металлов в настоящее время широко применяется в различных областях промышленности для самых разнообразных целей: для плавки металлов и сплавов, горячей деформации металла, термообработки, зонной очистки металлов и т. п.

Установки диэлектрического нагрева образуют отдельную груп­пу установок, работающих на высоких и сверхвысоких частотах. Они. разнообразны по назначению и исполнению. В качестве источников питания применяются ламповые генераторы. Эти установки предназ­начены главным образом для нагрева диэлектриков и полупроводя­щих материалов при получении синтетических материалов из пресс порошков, склейке, сушке, сварке пластиков и других видах обра­ботки непроводниковых материалов.

При диэлектрическом нагреве используются частоты от сотен килогерц до сотен мегагерц. Преимуществом нагрева материалов в поле конденсатора является выделение теплоты непосредственно внутри нагреваемого объекта за счет поляризации (токов смещения). Высокочастотные установки для нагрева непроводниковых и полу­проводниковых материалов применяются в различных отраслях про­мышленности и сельского хозяйства.

Развитие индукционных установок и установок диэлектрического нагрева идет по пути большего использования автоматизации, регу­лирования электрического режима, механизации погрузочно-разгрузочных операций, автоматического контроля качества термообработ­ки, использования нейтральных атмосфер и вакуума. Так как эконо­мическая эффективность возрастает с увеличением емкости и мощ­ности установок, то имеется тенденция к созданию сверхмощных агре­гатов. Так, разрабатываются печи для плавки чугуна емкостью 60 т и для подогрева чугуна (миксеры) на 100 т. Растет число конструк­ций печей и установок непрерывного и полунепрерывного действия.

2. Индукционные тигельные печи: достоинства, недостатки, классификация


По конструкции печи выполняются открытыми — для плавки металлов и сплавов в воздушной атмосфере и герметически закрытыми—для плавки в вакууме или в среде нейтральных газов (вакуумно-компрессионные, печи).

Индукционные тигельные печи получили распростра­ нение в основном для выплавки высококачественных ста­ лей и чугунов специальных марок, т. е. сплавов на основе железа, так как при плавке черных металлов тигельные печи имеют более высокий КПД, чем при плавке цвет­ ных металлов. Несмотря на это, индукционные тигель­ные печи в настоящее время получают все большее развитие и для выплавки цветных металлов и сплавов бла­ годаря другим преимуществам, которые оказываются ре­ шающими при выборе типа печи.

Тигельная печь применяется для плавления различных металлов и сплавов. Схема тигельной печи может включать индукционный нагрев, когда нагревание тел осуществляется благодаря тепловому воздействию на них электрического тока. Ток, который находится в нагреваемом теле, называется наведенным или индуцированным. Индукционные тигельные печи являются довольно сложными устройствами, которые состоят из каркаса, индуктора, вакуумной системы, нагревательная и плавильная камера, механизмы, позволяющие наклонять печь, перемещая расплавленные и нагретые металлы. В большинстве случаев индукционные тигельные плавильные печи имеют цилиндрическую форму и производятся из огнеупорных материалов.

Индукционная тигельная печь, как и другие тигельные плавильные печи имеют ряд преимуществ, основными из которых являются:
1) Энергия выделяется в загрузке, что не требует промежуточных нагревательных устройств.
2) Металлы в тигельных печах плавятся быстро, что обеспечивается равномерным распределением температуры и полным исключением местных перегревов. Благодаря данному преимуществу тигельные печи могут использоваться для получения многокомпонентных и однородных сплавов.
3) Возможность создания в плавильной тигельной печи окислительной, нейтральной и восстановительной атмосферы независимо от давления.

4) Тигельные печи характеризуются высокой производительностью вследствие высокой удельной мощности.
5) Металл из тигля сливается полностью.
6) Тигельные печи, в том числе и газовая тигельная печь, оптимальны для периодической работы, то есть они функционируют в полную силу даже при перерывах между плавками, при этом можно легко переходить с одной марки сплава на другую.
7) Тигельные печи удобны и просты в обслуживании, управлении. Эксплуатация может быть как механической, так и автоматической.
8) Тигельные печи обеспечивают гигиеничность процесса плавления, а ущерб окружающей среде минимальный.

Недостатков у тигельных печей очень мало, и они просто ничтожны по сравнению с преимуществами. Благодаря этому тигельные плавильные печи широко применяются в различных промышленных отраслях. Недостатками являются: относительно низкая температура шлаков; вспу­чивание поверхности расплавленного металла (мениск) из-за больших электродинамических сил, возникающих в расплаве; необходимость для печей малой и средней ем­кости источников питания высокой и средней частоты.
Не менее важным преимуществом является еще и широкое разнообразие моделей тигельных печей, которые можно классифицировать по нескольким параметрам. Тигельные печи могут быть открытыми, когда плавка происходит на воздухе, вакуумными – плавление осуществляется в вакууме, компрессорными, когда плавка производится вследствие высокого давления. Существуют модели тигельных печей, которые могут работать непрерывно, периодически и полунепрерывно. В зависимости от тигля различают тигельные печи с керамическим, холодным металлическим, проводящим металлическим и проводящим графитовым тиглем. По своей конструкции плавильные тигельные печи могут быть стационарные и опрокидывающиеся.

Читайте также: