Хи квадрат распределение и распределение стьюдента реферат

Обновлено: 08.07.2024

В группу параметрических критериев методов математической статистики входят методы для вычисления описательных статистик, построения графиков на нормальность распределения, проверка гипотез о при­надлежности двух выборок одной совокупности. Эти методы основыва­ются на предположении о том, что распределение выборок подчиняется нормальному (гауссовому) закону распределения. Среди параметрических критериев статистики нами будут рассмотрены критерий Стьюдента и Фишера.

Чтобы определить, имеем ли мы дело с нормальным распределением, можно применять следующие методы:

1) в пределах осей можно нарисовать полигон частоты (эмпирическую функцию распределения) и кривую нормального распределения на основе данных исследования. Исследуя формы кривой нормального распределения и графика эмпирической функции распределения, можно выяснить те параметры, которыми последняя кривая отличается от первой;

2) вычисляется среднее, медиана и мода и на основе этого определяется отклонение от нормального распределения. Если мода, медиана и среднее арифметическое друг от друга значительно не отличаются, мы имеем дело с нормальным распределением. Если медиана значительно отличается от среднего, то мы имеем дело с асимметричной выборкой.

3) эксцесс кривой распределения должен быть равен 0. Кривые с положительным эксцессом значительно вертикальнее кривой нормального распределения. Кривые с отрицательным эксцессом являются более покатистыми по сравнению с кривой нормального распределения;

4) после определения среднего значения распределения частоты и стандартного oтклонения находят следующие четыре интервала распределения сравнивают их с действительными данными ряда:

а) — к интервалу должно относиться около 25% частоты совокупности,

б) — к интервалу должно относиться около 50% частоты совокупности,

в) — к интервалу должно относиться около 75% частоты совокупности,

г) — к интервалу должно относиться около 100% частоты совокупности.

При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух неза­висимых, несвязанных выборок (так называемый двухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.

Во втором случае, когда одна и та же группа объектов порождает числовой матери­ал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.

Статистика критерия для случая несвязанных, независимых выборок равна:

где , — средние арифметические в эксперименталь­ной и контрольной группах,

- стан­дартная ошибка разности средних арифметических. Находится из формулы:

где n 1 и n 2 соответственно величины первой и второй выборки.

Если n 1= n 2, то стандартная ошибка разности средних арифметических будет считаться по формуле:

где n величина выборки.

Подсчет числа степеней свободы осуществля­ется по формуле:

При численном равенстве выборок k = 2 n - 2.

Далее необходимо срав­нить полученное значение t эмп с теоретическим значением t—рас­пределения Стьюдента (см. приложение к учеб­никам статистики). Если t эмп t крит, то гипотеза H 0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.

Рассмотрим пример использования t -критерия Стьюдента для несвязных и неравных по численности выборок.

Пример 1 . В двух группах учащихся — экспериментальной и контрольной — получены следующие результаты по учеб­ному предмету (тестовые баллы; см. табл. 1). [1]

Таблица 1. Результаты эксперимента

Первая группа (экспериментальная) N 1=11 человек

Вторая группа (контрольная)

12 14 13 16 11 9 13 15 15 18 14

13 9 11 10 7 6 8 10 11

Общее количество членов выборки: n 1=11, n 2=9.

Расчет средних арифметических: Хср=13,636; Y ср=9,444

Стандартное отклонение: s x=2,460; s y =2,186

По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:

Считаем статистику критерия:

Сравниваем полученное в эксперименте значение t с табличным значением с учетом степеней свободы, равных по формуле (4) числу испытуемых минус два (18).

Табличное значение tкрит равняется 2,1 при допущении возможности риска сделать ошибочное сужде­ние в пяти случаях из ста (уровень значимости=5 % или 0,05).

Если полученное в эксперименте эмпирическое значение t превы­шает табличное, то есть основания принять альтернативную гипотезу (H1) о том, что учащиеся экспериментальной группы показывают в среднем более высокий уровень знаний. В эксперименте t=3,981, табличное t=2,10, 3,981>2,10, откуда следует вывод о преимуществе эксперимен­тального обучения.

Здесь могут возникнуть такие вопросы:

1. Что если полученное в опыте значение t окажется меньше табличного? Тогда надо принять нулевую гипотезу.

2. Доказано ли преимущество экспериментального метода? Не столько доказано, сколько показано, потому что с самого начала допускается риск ошибиться в пяти случаях из ста (р=0,05). Наш эксперимент мог быть одним из этих пяти случаев. Но 95% возможных случаев говорит в пользу альтернативной гипотезы, а это достаточно убедительный аргумент в статистическом доказательстве.

3. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной? Поменяем, например, местами, сделав средней арифметической эксперимен­тальной группы, a — контрольной:

Отсюда следует вывод, что новый метод пока не про­явил себя с хорошей стороны по разным, возможно, при­чинам. Поскольку абсолютное значение 3,9811>2,1, принимается вторая альтернативная гипотеза (Н2) о пре­имуществе традиционного метода.

В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.

Вычисление значения t осуществляется по формуле:

где — разности между соответствующими значениями переменной X и переменной У, а d - среднее этих разностей;

Sd вычисляется по следующей формуле:

Число степеней свободы k определяется по формуле k= n -1. Рассмотрим пример использования t -критерия Стьюдента для связных и, очевидно, равных по численности выборок.

Если t эмп t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 2. Изучался уровень ориентации учащихся на художественно-эстети­ческие ценности. С целью активизации формирования этой ориентации в экспериментальной группе проводились бе­седы, выставки детских рисунков, были организованы по­сещения музеев и картинных галерей, проведены встречи с музыкантами, художниками и др. Закономерно встает вопрос: какова эффективность проведенной работы? С целью проверки эффективности этой работы до начала эксперимента и после давался тест. Из методических со­ображений в таблице 2 приводятся результаты небольшо­го числа испытуемых. [2]

Таблица 2. Результаты эксперимента

Вспомогательные расчеты

до начала экспери­мента (Х)

экспери­мента (У)

Вначале произведем расчет по формуле:

Затем применим формулу (6), получим:

И, наконец, следует применить формулу (5). Получим:

Число степеней свободы: k =10-1=9 и по таблице При­ложения 1 находим tкрит =2.262, экспериментальное t=6,678, откуда следует возможность принятия альтерна­тивной гипотезы (H1) о достоверных различиях средних арифметических, т. е. делается вывод об эффективности экспериментального воздействия.

В терминах статистических гипотез полученный результат будет звучать так: на 5% уров­не гипотеза Н0 отклоняется и принимается гипотеза Н1 .

Критерий Фишера позволяет сравнивать величины выбороч­ных дисперсий двух независимых выборок. Для вычисления Fэмп нуж­но найти отношение дисперсий двух выборок, причем так, что­бы большая по величине дисперсия находилась бы в числителе, а меньшая – в знаменателе. Формула вычисления критерия Фи­шера такова:

где - дисперсии первой и второй выборки соответственно.

Так как, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значе­ние Fэмп всегда будет больше или равно единице.

Чис­ло степеней свободы определяется также просто:

k 1=nl - 1 для первой выборки (т.е. для той выборки, величина дисперсии которой больше) и k 2= n 2 - 1 для второй выборки.

В Приложе­нии 1 критические значения критерия Фишера находятся по величинам k 1 (верхняя строчка таблицы) и k 2 (левый столбец таблицы).

Если t эмп> t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 3. В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. [3] Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос — есть ли различия в степени однородности показателей умственного развития между классами.

Решение. Для критерия Фишера необходимо сравнить дис­персии тестовых оценок в обоих классах. Резуль­таты тестирования представлены в таблице:

Рассчитав дисперсии для переменных X и Y, получаем:

Тогда по формуле (8) для расчета по F критерию Фишера находим:

По таблице из Приложения 1 для F критерия при степенях свободы в обоих случаях равных k =10 - 1 = 9 находим F крит=3,18 ( c следователь может утверждать, что по степени однородности такого показа­теля, как умственное развитие, имеется различие между выбор­ками из двух классов.

Сравнивая на глазок (по процентным соотношениям) результаты до и после какого-либо воздействия, исследователь приходит к заключению, что если наблюдаются различия, то имеет место различие в сравниваемых выборках. Подобный подход категорически неприемлем, так как для процентов нельзя определить уровень достоверности в различиях. Проценты, взятые сами по себе, не дают возможности делать статистически достоверные выводы. Чтобы доказать эффективность какого-либо воздействия, необходимо выявить статистически значимую тенденцию в смещении (сдвиге) показателей. Для решения подобных задач исследователь может использовать ряд критериев различия. Ниже будет рассмотрены непараметрические критерии: критерий знаков и критерий хи-квадрат.

Критерий предназначен для срав­нения состояния некоторого свойства у членов двух зави­симых выборок на основе измерений, сделанных по шка­ле не ниже ранговой.

Имеется две серии наблюдений над случайными переменными X и У, полученные при рассмотрении двух зависимых выборок. На их основе составлено N пар вида (х i , у i ), где х i , у i — результаты двукратного измерения одного и того же свойства у одного и того же объекта.

В педагогических исследованиях объектами изуче­ния могут служить учащиеся, учителя, администрация школ. При этом х i , у i могут быть, например, балловы­ми оценками, выставленными учителем за двукратное выполнение одной и той же или различных работ одной и той же группой учащихся до и после применения некоторого педагогическою средства.

Нулевая гипотеза формулируются следующим обра­зом: в состоянии изучаемого свойства нет значимых различий при первичном и вторичном измерениях. Альтернативная гипотеза: законы распределения величин X и У различны, т. е. состояния изучаемого свойства существенно раз­личны в одной и той же совокупности при первичном и вторичном измерениях этого свойства.

Ста­тистика критерия (Т) определяется следую­щим образом:

Нулевая гипотеза принимается на уровне значимости 0,05, если наблю­даемое значение T n - ta , где значение n - ta определя­ется из статистических таблиц для критерия знаков Приложения 2.

Пример 4. Учащиеся выполняли контрольную ра­боту, направленную на проверку усвоения некоторого понятия. Пятнадцати учащимся затем предложили электронное пособие, составленное с целью фор­мирования данного понятия у учащихся с низким уров­нем обучаемости. После изучения пособия учащиеся снова выполняли ту же контрольного работу, которая оценивалась по пятибалльной системе.

Результаты двукратного выполнения ра­боты представляют измерения по шкале по­рядка (пятибалльная шкала). В этих условиях возмож­но применение знакового критерия для выявления тенденции изменения состояния знаний учащихся после изучения пособия, так как выполняются все допуще­ния этого критерия.

Результаты двукратного выполнения работы (в бал­лах) 15 учащимися запишем в форме таблицы (см. табл. 1). [4]

Использование вероятностной модели для описания неопределенностей. Распределение Пирсона, Стьюдента и Фишера при статистической обработке данных. Использование "Хи-квадрата" при оценивании дисперсии, проверке гипотез согласия качественных переменных.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 02.02.2011
Размер файла 794,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию города Иркутска

Байкальский государственный университет экономики и права

Кафедра Информатики и Кибернетики

Распределение "хи-квадрат" и его применение

Колмыкова Анна Андреевна

студентка 2 курса

Содержание

  • Введение
  • 1. Распределение "хи-квадрат"
  • 2. "Хи-квадрат" в задачах статистического анализа данных
  • Приложение
  • Заключение
  • Список используемой литературы

Введение

Как подходы, идеи и результаты теории вероятностей используются в нашей жизни?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются, прежде всего, для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду, как нежелательные возможности (риски), так и привлекательные ("счастливый случай"). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя.

Вероятностная модель явления или процесса является фундаментом математической статистики. Используются два параллельных ряда понятий - относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, "находятся в головах исследователей", относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин "генеральная совокупность" используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют "анализ данных". По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик - вот суть вероятностно-статистических методов принятия решений.

1. Распределение "хи-квадрат"

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. Это распределения Пирсона ("хи - квадрат"), Стьюдента и Фишера.

Мы остановимся на распределении ("хи - квадрат"). Впервые это распределение было исследовано астрономом Ф.Хельмертом в 1876 году. В связи с гауссовской теорией ошибок он исследовал суммы квадратов n независимых стандартно нормально распределенных случайных величин. Позднее Карл Пирсон (Karl Pearson) дал имя данной функции распределения "хи - квадрат". И сейчас распределение носит его имя.

Благодаря тесной связи с нормальным распределением, ч2-распределение играет важную роль в теории вероятностей и математической статистике. ч2-распределение, и многие другие распределения, которые определяются посредством ч2-распределения (например - распределение Стьюдента), описывают выборочные распределения различных функций от нормально распределенных результатов наблюдений и используются для построения доверительных интервалов и статистических критериев.

Распределение Пирсона (хи - квадрат) - распределение случайной величины где X1, X2,…, Xn - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице.

Сумма квадратов

распределена по закону ("хи - квадрат").

При этом число слагаемых, т.е. n, называется "числом степеней свободы" распределения хи - квадрат. C увеличением числа степеней свободы распределение медленно приближается к нормальному.

Плотность этого распределения

Итак, распределение ч2 зависит от одного параметра n - числа степеней свободы.

Функция распределения ч2 имеет вид:

если ч2?0. (2.7.)

На Рисунок 1 изображен график плотности вероятности и функции ч2 - распределения для разных степеней свободы.

Рисунок 1 Зависимость плотности вероятности ц (x) в распределении ч2 (хи - квадрат) при разном числе степеней свободы.

Моменты распределения "хи-квадрат":

Распределение "хи-квадрат" используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных.

2. "Хи-квадрат" в задачах статистического анализа данных

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Современный этап развития статистических методов можно отсчитывать с 1900 г., когда англичанин К. Пирсон основал журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Распределение "хи-квадрат" является одним из наиболее широко используемых в статистике для проверки статистических гипотез. На основе распределения "хи-квадрат" построен один из наиболее мощных критериев согласия - критерий "хи-квадрата" Пирсона.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Критерий ч2 ("хи-квадрат") используется для проверки гипотезы различных распределений. В этом заключается его достоинство.

Расчетная формула критерия равна

где m и m' - соответственно эмпирические и теоретические частоты

рассматриваемого распределения;

n - число степеней свободы.

Для проверки нам необходимо сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты.

При полном совпадении эмпирических частот с частотами, вычисленными или ожидаемыми S (Э - Т) = 0 и критерий ч2 тоже будет равен нулю. Если же S ( Э - Т) не равно нулю это укажет на несоответствие вычисленных частот эмпирическим частотам ряда. В таких случаях необходимо оценить значимость критерия ч2, который теоретически может изменяться от нуля до бесконечности. Это производится путем сравнения фактически полученной величины ч2ф с его критическим значением (ч2st).Нулевая гипотеза, т. е. предположение, что расхождение между эмпирическими и теоретическими или ожидаемыми частотами носит случайный характер, опровергается, если ч2ф больше или равно ч2st для принятого уровня значимости (a) и числа степеней свободы (n).

Распределение вероятных значений случайной величины ч2 непрерывно и ассиметрично. Оно зависит от числа степеней свободы (n) и приближается к нормальному распределению по мере увеличения числа наблюдений. Поэтому применение критерия ч2 к оценке дискретных распределений сопряжено с некоторыми погрешностями, которые сказываются на его величине, особенно на малочисленных выборках. Для получения более точных оценок выборка, распределяемая в вариационный ряд, должна иметь не менее 50 вариантов. Правильное применение критерия ч2 требует также, чтобы частоты вариантов в крайних классах не были бы меньше 5; если их меньше 5, то они объединяются с частотами соседних классов, чтобы в сумме составляли величину большую или равную 5. Соответственно объединению частот уменьшается и число классов (N). Число степеней свободы устанавливается по вторичному числу классов с учетом числа ограничений свободы вариации.

Так как точность определения критерия ч2 в значительной степени зависит от точности расчета теоретических частот (Т), для получения разности между эмпирическими и вычисленными частотами следует использовать неокругленные теоретические частоты.

В качестве примера возьмем исследование, опубликованное на сайте, который посвящен применению статистических методов в гуманитарных науках.

Критерий "Хи-квадрат" позволяет сравнивать распределения частот вне зависимости от того, распределены они нормально или нет.

Под частотой понимается количество появлений какого-либо события. Обычно, с частотой появления события имеют дело, когда переменные измерены в шкале наименований и другой их характеристики, кроме частоты подобрать невозможно или проблематично. Другими словами, когда переменная имеет качественные характеристики. Так же многие исследователи склонны переводить баллы теста в уровни (высокий, средний, низкий) и строить таблицы распределений баллов, чтобы узнать количество человек по этим уровням. Чтобы доказать, что в одном из уровней (в одной из категорий) количество человек действительно больше (меньше) так же используется коэффициент Хи-квадрат.

Разберем самый простой пример.

Среди младших подростков был проведён тест для выявления самооценки. Баллы теста были переведены в три уровня: высокий, средний, низкий. Частоты распределились следующим образом:

Высокий (В) 27 чел.

Средний (С) 12 чел.

Низкий (Н) 11 чел.

Очевидно, что детей с высокой самооценкой большинство, однако это нужно доказать статистически. Для этого используем критерий Хи-квадрат.

Наша задача проверить, отличаются ли полученные эмпирические данные от теоретически равновероятных. Для этого необходимо найти теоретические частоты. В нашем случае, теоретические частоты - это равновероятные частоты, которые находятся путём сложения всех частот и деления на количество категорий.

В нашем случае:

(В + С + Н)/3 = (27+12+11)/3 = 16,6

Формула для расчета критерия хи-квадрат:

ч2 = ?(Э - Т)? / Т

Строим таблицу:

Находим сумму последнего столбца:

ч2= 9,64

Теперь нужно найти критическое значение критерия по таблице критических значений (Таблица 1 в приложении). Для этого нам понадобится число степеней свободы (n).

n = (R - 1) * (C - 1)

где R - количество строк в таблице, C - количество столбцов.

В нашем случае только один столбец (имеются в виду исходные эмпирические частоты) и три строки (категории), поэтому формула изменяется - исключаем столбцы.

n = (R - 1) = 3-1 = 2

Для вероятности ошибки p?0,05 и n = 2 критическое значение ч2 = 5,99.

Полученное эмпирическое значение больше критического - различия частот достоверны (ч2= 9,64; p?0,05).

Разберем более сложный пример.

К примеру, психолог хочет узнать, действительно ли то, что учителя более предвзято относятся к мальчикам, чем к девочкам. Т.е. более склонны хвалить девочек. Для этого психологом были проанализированы характеристики учеников, написанные учителями, на предмет частоты встречаемости трех слов: "активный", "старательный", "дисциплинированный", синонимы слов так же подсчитывались. Данные о частоте встречаемости слов были занесены в таблицу:

Для обработки полученных данных используем критерий хи-квадрат.

Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:

Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).

Итоговая таблица для вычислений будет выглядеть так:

ч2 = ?(Э - Т)? / Т

n = (R - 1), где R - количество строк в таблице.

В нашем случае хи-квадрат = 4,21; n = 2.

По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение ч2 = 5,99.

Полученное значение меньше критического, а значит принимается нулевая гипотеза.

Вывод: учителя не придают значение полу ребенка при написании ему характеристики.

Приложение

Критические точки распределения ч2

Заключение

Студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования", "Статистика" и др. - в случае студентов экономических специальностей), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате знаний у специалистов по прикладной статистике недостаточно.

Поэтому большое значение имеет курс "Прикладная статистика" в технических вузах, а в экономических вузах - курса "Эконометрика", поскольку эконометрика - это, как известно, статистический анализ конкретных экономических данных.

Теория вероятности и математическая статистика дают фундаментальные знания для прикладной статистики и эконометрики.

Они необходимы специалистам для практической работы.

Я рассмотрела непрерывную вероятностную модель и постаралась на примерах показать ее используемость.

И в конце своей работы я пришла к выводу, что грамотная реализация основных процедур математико-статического анализа данных, статическая проверка гипотез невозможна без знания модели "хи-квадрат", а также умения пользоваться ее таблицей.

Список используемой литературы

1. Орлов А.И. Прикладная статистика. М.: Издательство "Экзамен", 2004.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999. - 479с.

3. Айвозян С.А. Теория вероятностей и прикладная статистика, т.1. М.: Юнити, 2001. - 656с.

4. Хамитов Г.П., Ведерникова Т.И. Вероятности и статистика. Иркутск: БГУЭП, 2006 - 272с.

5. Ежова Л.Н. Эконометрика. Иркутск: БГУЭП, 2002. - 314с.

6. Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. М. : Наука, 1975. - 111с.

7. Мостеллер Ф. Вероятность. М. : Мир, 1969. - 428с.

8. Яглом А.М. Вероятность и информация. М. : Наука, 1973. - 511с.

9. Чистяков В.П. Курс теории вероятностей. М.: Наука, 1982. - 256с.

10. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000. - 543с.

11. Математическая энциклопедия, т.1. М.: Советская энциклопедия, 1976. - 655с.

Подобные документы

Суть понятия "критерии согласия". Критерии согласия Колмогорова и омега-квадрат в случае простой гипотезы. Критерии согласия Пирсона для простой гипотезы, Фишера для сложной гипотезы. Теоретическое обоснование и практическое применение критерия согласия.

курсовая работа [3,6 M], добавлен 18.11.2010

Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.

реферат [105,5 K], добавлен 01.01.2011

Закон больших чисел. Нахождение точечных оценок. Построение неизвестной дисперсии погрешности измерений. Выборочная функция распределения. Теорема Ляпунова и распределение Стьюдента. Вычисление доверительных интервалов. Построение интервальных оценок.

курсовая работа [4,3 M], добавлен 18.12.2011

Закон и свойства нормального распределения случайной величины. На основе критерия согласия Пирсона построение гистограммы, статистической функции и теоретической кривой и определение согласованности теоретического и статистического распределения.

курсовая работа [894,5 K], добавлен 30.10.2013

Определение, доказательство свойств и построение графика функции распределения. Вероятность попадания непрерывной случайной величины в заданный интервал. Понятие о теореме Ляпунова. Плотность распределения "хи квадрат", Стьюдента, F Фишера—Снедекора.

курсовая работа [994,4 K], добавлен 02.10.2011

Проведение проверки гипотезы о нормальности закона распределения вероятности результатов измерения случайной величины по критерию согласия Пирсона. Определение ошибок в массивах данных: расчет периферийных значений, проверка серии на равнорассеянность.

контрольная работа [1,8 M], добавлен 28.11.2011

Понятие вариационного ряда, статистического распределения. Эмпирическая функция и основные характеристики математического ожидания выборочной дисперсии. Точечные и интервальные оценки распределений. Теория гипотез - аналог теории доверительных интервалов.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют "анализ данных". По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

1. Распределение "хи-квадрат"С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. Это распределения Пирсона ("хи – квадрат"), Стьюдента и Фишера.

Мы остановимся на распределении("хи – квадрат"). Впервые это распределение было исследовано астрономом Ф.Хельмертом в 1876 году. В связи с гауссовской теорией ошибок он исследовал суммы квадратов n независимых стандартно нормально распределенных случайных величин. Позднее Карл Пирсон (Karl Pearson) дал имя данной функции распределения "хи – квадрат". И сейчас распределение носит его имя.

Благодаря тесной связи с нормальным распределением, χ2-распределение играет важную роль в теории вероятностей и математической статистике. χ2-распределение, и многие другие распределения, которые определяются посредством χ2-распределения (например - распределение Стьюдента), описывают выборочные распределения различных функций от нормально распределенных результатов наблюдений и используются для построения доверительных интервалов и статистических критериев.

Распределение Пирсона(хи - квадрат) – распределение случайной величиныгде X1, X2,…, Xn - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице.

Сумма квадратов распределена по закону("хи – квадрат").

При этом число слагаемых, т.е. n, называется "числом степеней свободы" распределения хи – квадрат. C увеличением числа степеней свободы распределение медленно приближается к нормальному. Плотность этого распределенияИтак, распределение χ2 зависит от одного параметра n – числа степеней свободы.

Функция распределения χ2 имеет вид: если χ2≥0. (2.7.)

На Рисунок 1 изображен график плотности вероятности и функции χ2 – распределения для разных степеней свободы.

Рисунок 1 Зависимость плотности вероятности φ (x) в распределении χ2 (хи – квадрат) при разном числе степеней свободы. Моменты распределения "хи-квадрат": M[χ2]=n

D[χ2]=2n Распределение "хи-квадрат" используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных.

2. "Хи-квадрат" в задачах статистического анализа данных

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и

До конца XIX века нормальное распределение считалась всеобщим законом вариации данных. Однако К. Пирсон заметил, что эмпирические частоты могут сильно отличаться от нормального распределения. Встал вопрос, как это доказать. Требовалось не только графическое сопоставление, которое имеет субъективный характер, но и строгое количественное обоснование.

Так был изобретен критерий χ 2 (хи квадрат), который проверяет значимость расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Это произошло в далеком 1900 году, однако критерий и сегодня на ходу. Более того, его приспособили для решения широкого круга задач. Прежде всего, это анализ категориальных данных, т.е. таких, которые выражаются не количеством, а принадлежностью к какой-то категории. Например, класс автомобиля, пол участника эксперимента, вид растения и т.д. К таким данным нельзя применять математические операции вроде сложения и умножения, для них можно только подсчитать частоты.

Наблюдаемые частоты обозначим О (Observed), ожидаемые – E (Expected). В качестве примера возьмем результат 60-кратного бросания игральной кости. Если она симметрична и однородна, вероятность выпадения любой стороны равна 1/6 и, следовательно, ожидаемое количество выпадения каждой из сторон равна 10 (1/6∙60). Наблюдаемые и ожидаемые частоты запишем в таблицу и нарисуем гистограмму.

Наблюдаемые и ожидаемые частоты

Нулевая гипотеза заключается в том, что частоты согласованы, то есть фактические данные не противоречат ожидаемым. Альтернативная гипотеза – отклонения в частотах выходят за рамки случайных колебаний, расхождения статистически значимы. Чтобы сделать строгий вывод, нам потребуется.

  1. Обобщающая мера расхождения между наблюдаемыми и ожидаемыми частотами.
  2. Распределение этой меры при справедливости гипотезы о том, что различий нет.

Начнем с расстояния между частотами. Если взять просто разницу О — E, то такая мера будет зависеть от масштаба данных (частот). Например, 20 — 5 =15 и 1020 – 1005 = 15. В обоих случаях разница составляет 15. Но в первом случае ожидаемые частоты в 3 раза меньше наблюдаемых, а во втором случае – лишь на 1,5%. Нужна относительная мера, не зависящая от масштаба.

Обратим внимание на следующие факты. В общем случае количество категорий, по которым измеряются частоты, может быть гораздо больше, поэтому вероятность того, что отдельно взятое наблюдение попадет в ту или иную категорию, довольно мала. Раз так, то, распределение такой случайной величины будет подчинятся закону редких событий, известному под названием закон Пуассона. В законе Пуассона, как известно, значение математического ожидания и дисперсии совпадают (параметр λ). Значит, ожидаемая частота для некоторой категории номинальной переменной Ei будет являться одновременное и ее дисперсией. Далее, закон Пуассона при большом количестве наблюдений стремится к нормальному. Соединяя эти два факта, получаем, что, если гипотеза о согласии наблюдаемых и ожидаемых частот верна, то, при большом количестве наблюдений, выражение

Важно помнить, что нормальность будет проявляться только при достаточно больших частотах. В статистике принято считать, что общее количество наблюдений (сумма частот) должна быть не менее 50 и ожидаемая частота в каждой группе должна быть не менее 5. Только в этом случае величина, показанная выше, имеет стандартное нормальное распределение. Предположим, что это условие выполнено.

У стандартного нормального распределения почти все значение находятся в пределах ±3 (правило трех сигм). Таким образом, мы получили относительную разность в частотах для одной группы. Нам нужна обобщающая мера. Просто сложить все отклонения нельзя – получим 0 (догадайтесь почему). Пирсон предложил сложить квадраты этих отклонений.

Это и есть статистика для критерия Хи-квадрат Пирсона. Если частоты действительно соответствуют ожидаемым, то значение статистики Хи-квадрат будет относительно не большим (отклонения находятся близко к нулю). Большое значение статистики свидетельствует в пользу существенных различий между частотами.

Как нетрудно заметить, величина хи-квадрат также зависит от количества слагаемых. Чем больше слагаемых, тем больше ожидается значение статистики, ведь каждое слагаемое вносит свой вклад в общую сумму. Следовательно, для каждого количества независимых слагаемых, будет собственное распределение. Получается, что χ 2 – это целое семейство распределений.

И здесь мы подошли к одному щекотливому моменту. Что такое число независимых слагаемых? Вроде как любое слагаемое (т.е. отклонение) независимо. К. Пирсон тоже так думал, но оказался неправ. На самом деле число независимых слагаемых будет на один меньше, чем количество групп номинальной переменной n. Почему? Потому что, если мы имеем выборку, по которой уже посчитана сумма частот, то одну из частот всегда можно определить, как разность общего количества и суммой всех остальных. Отсюда и вариация будет несколько меньше. Данный факт Рональд Фишер заметил лет через 20 после разработки Пирсоном своего критерия. Даже таблицы пришлось переделывать.

По этому поводу Фишер ввел в статистику новое понятие – степень свободы (degrees of freedom), которое и представляет собой количество независимых слагаемых в сумме. Понятие степеней свободы имеет математическое объяснение и проявляется только в распределениях, связанных с нормальным (Стьюдента, Фишера-Снедекора и сам Хи-квадрат).

Чтобы лучше уловить смысл степеней свободы, обратимся к физическому аналогу. Представим точку, свободно движущуюся в пространстве. Она имеет 3 степени свободы, т.к. может перемещаться в любом направлении трехмерного пространства. Если точка движется по какой-либо поверхности, то у нее уже две степени свободы (вперед-назад, вправо-влево), хотя и продолжает находиться в трехмерном пространстве. Точка, перемещающаяся по пружине, снова находится в трехмерном пространстве, но имеет лишь одну степень свободы, т.к. может двигаться либо вперед, либо назад. Как видно, пространство, где находится объект, не всегда соответствует реальной свободе перемещения.

Примерно также распределение статистики может зависеть от меньшего количества элементов, чем нужно слагаемых для его расчета. В общем случае количество степеней свободы меньше наблюдений на число имеющихся зависимостей.

Таким образом, распределение хи квадрат (χ 2 ) – это семейство распределений, каждое из которых зависит от параметра степеней свободы. Формальное определение следующее. Распределение χ 2 (хи-квадрат) с k степенями свободы — это распределение суммы квадратов k независимых стандартных нормальных случайных величин.

Далее можно было бы перейти к самой формуле, по которой вычисляется функция распределения хи-квадрат, но, к счастью, все давно подсчитано за нас. Чтобы получить интересующую вероятность, можно воспользоваться либо соответствующей статистической таблицей, либо готовой функцией в Excel.

Интересно посмотреть, как меняется форма распределения хи-квадрат в зависимости от количества степеней свободы.

С увеличением степеней свободы распределение хи-квадрат стремится к нормальному. Это объясняется действием центральной предельной теоремы, согласно которой сумма большого количества независимых случайных величин имеет нормальное распределение. Про квадраты там ничего не сказано )).

Проверка гипотезы по критерию Хи квадрат Пирсона

Вот мы и подошли к проверке гипотез по методу хи-квадрат. В целом техника остается прежней. Выдвигается нулевая гипотеза о том, что наблюдаемые частоты соответствуют ожидаемым (т.е. между ними нет разницы, т.к. они взяты из той же генеральной совокупности). Если этот так, то разброс будет относительно небольшим, в пределах случайных колебаний. Меру разброса определяют по статистике Хи-квадрат. Далее либо полученную статистику сравнивают с критическим значением (для соответствующего уровня значимости и степеней свободы), либо, что более правильно, рассчитывают наблюдаемый p-value, т.е. вероятность получить такое или еще больше значение статистики при справедливости нулевой гипотезы.

Схема проверки гипотезы по методу хи-квадрат

Т.к. нас интересует согласие частот, то отклонение гипотезы произойдет, когда статистика окажется больше критического уровня. Т.е. критерий является односторонним. Однако иногда (иногда) требуется проверить левостороннюю гипотезу. Например, когда эмпирические данные уж оооочень сильно похожи на теоретические. Тогда критерий может попасть в маловероятную область, но уже слева. Дело в том, что в естественных условиях, маловероятно получить частоты, практически совпадающие с теоретическими. Всегда есть некоторая случайность, которая дает погрешность. А вот если такой погрешности нет, то, возможно, данные были сфальсифицированы. Но все же обычно проверяют правостороннюю гипотезу.

Вернемся к задаче с игральной костью. Рассчитаем по имеющимся данным значение статистики критерия хи-квадрат.

Расчет критерия хи-квадрат

Теперь найдем критическое значение при 5-ти степенях свободы (k) и уровне значимости 0,05 (α) по таблице критических значений распределения хи квадрат.

Табличное значение критерия хи-квадрат

То есть квантиль 0,05 хи квадрат распределения (правый хвост) с 5-ю степенями свободы χ 2 0,05; 5 = 11,1.

Сравним фактическое и табличное значение. 3,4 (χ 2 ) 2 0,05; 5). Расчетный значение оказалось меньшим, значит гипотеза о равенстве (согласии) частот не отклоняется. На рисунке ситуация выглядит вот так.

Проверка гипотезы на диаграмме распределения хи-квадрат

Если бы расчетное значение попало в критическую область, то нулевая гипотеза была бы отклонена.

Более правильным будет рассчитать еще и p-value. Для этого нужно в таблице найти ближайшее значение для заданного количества степеней свободы и посмотреть соответствующий ему уровень значимости. Но это прошлый век. Воспользуемся ЭВМ, в частности MS Excel. В эксель есть несколько функций, связанных с хи-квадрат.

Ниже их краткое описание.

ХИ2.ОБР – критическое значение Хи-квадрат при заданной вероятности слева (как в статистических таблицах)

ХИ2.ОБР.ПХ – критическое значение при заданной вероятности справа. Функция по сути дублирует предыдущую. Но здесь можно сразу указывать уровень α, а не вычитать его из 1. Это более удобно, т.к. в большинстве случаев нужен именно правый хвост распределения.

ХИ2.РАСП – p-value слева (можно рассчитать плотность).

ХИ2.РАСП.ПХ – p-value справа.

ХИ2.ТЕСТ – по двум диапазонам частот сразу проводит тест хи-квадрат. Количество степеней свободы берется на одну меньше, чем количество частот в столбце (так и должно быть), возвращая значение p-value.

Давайте пока рассчитаем для нашего эксперимента критическое (табличное) значение для 5-ти степеней свободы и альфа 0,05. Формула Excel будет выглядеть так:

Результат будет одинаковым – 11,0705. Именно это значение мы видим в таблице (округленное до 1 знака после запятой).

Рассчитаем, наконец, p-value для 5-ти степеней свободы критерия χ 2 = 3,4. Нужна вероятность справа, поэтому берем функцию с добавкой ПХ (правый хвост)

Значит, при 5-ти степенях свободы вероятность получить значение критерия χ 2 = 3,4 и больше равна почти 64%. Естественно, гипотеза не отклоняется (p-value больше 5%), частоты очень хорошо согласуются.

А теперь проверим гипотезу о согласии частот с помощью теста хи квадрат и функции Excel ХИ2.ТЕСТ.


Никаких таблиц, никаких громоздких расчетов. Указав в качестве аргументов функции столбцы с наблюдаемыми и ожидаемыми частотами, сразу получаем p-value. Красота.

Представим теперь, что вы играете в кости с подозрительным типом. Распределение очков от 1 до 5 остается прежним, но он выкидывает 26 шестерок (количество всех бросков становится 78).

Отклонение гипотезы о согласованности частот

p-value в этом случае оказывается 0,003, что гораздо меньше чем, 0,05. Есть серьезные основания сомневаться в правильности игральной кости. Вот, как выглядит эта вероятность на диаграмме распределения хи-квадрат.

Отклонение нулевой гипотезы

Статистика критерия хи-квадрат здесь получается 17,8, что, естественно, больше табличного (11,1).

Надеюсь, мне удалось объяснить, что такое критерий согласия χ 2 (хи-квадрат) Пирсона и как с его помощью проверяются статистические гипотезы.

Напоследок еще раз о важном условии! Критерий хи-квадрат исправно работает только в случае, когда количество всех частот превышает 50, а минимальное ожидаемое значение для каждой группы не меньше 5. Если в какой-либо категории ожидаемая частота менее 5, но при этом сумма всех частот превышает 50, то такую категорию объединяют с ближайшей, чтобы их общая частота превысила 5. Если это сделать невозможно, или сумма частот меньше 50, то следует использовать более точные методы проверки гипотез. О них поговорим в другой раз.

Ниже находится видео ролик о том, как в Excel проверить гипотезу с помощью критерия хи-квадрат.

Читайте также: