Гуминовые вещества и их функции в биосфере реферат

Обновлено: 05.07.2024

Есть огромный класс природных органических веществ, о котором химики надолго и совершенно незаслуженно забыли. Между тем с точки зрения химии будущего их возможности безграничны, а область их возможного применения очень велика. Речь о гуминовых веществах.

Что такое гуминовые вещества?

Образование гуминовых веществ, или гумификация, — это второй по масштабности процесс превращения органического вещества после фотосинтеза. В результате фотосинтеза ежегодно связывается около 50·10 9 т атмосферного углерода, а при отмирании живых организмов на земной поверхности оказывается около 40·10 9 т углерода. Часть отмерших остатков минерализуется до СO2 и Н2O, остальное превращается в гуминовые вещества. По разным источникам, ежегодно в процесс гумификации вовлекается 0,6–2,5·10 9 т углерода.

В отличие от синтеза в живом организме, образование гуминовых веществ не направляется генетическим кодом, а идет по принципу естественного отбора — остаются самые устойчивые к биоразложению структуры. В результате получается стохастическая, вероятностная смесь молекул, в которой ни одно из соединений не тождественно другому. Таким образом, гуминовые вещества — это очень сложная смесь природных соединений, не существующая в живых организмах.

Надо сказать, что к началу XX века интерес химиков к гуминовым веществам резко упал. Понятно почему — было достоверно установлено, что это не индивидуальное соединение, а сложная смесь макромолекул переменного состава и нерегулярного строения (рис. 1), к которой неприменимы законы классической термодинамики и теории строения вещества.

Чтобы хоть как-то упростить систему, исследователи предложили способ классификации гуминовых веществ, основанный на их растворимости в кислотах и щелочах. Согласно этой классификации, гуминовые вещества подразделяют на три составляющие: гумин — неизвлекаемый остаток, не растворимый ни в щелочах, ни в кислотах; гуминовые кислоты — фракция, растворимая в щелочах и нерастворимая в кислотах (при рН 3 . Однако в сапропеле гораздо больше минеральных примесей, чем в торфе и угле, и он существенно разнообразнее по химическому составу, поэтому нужны более сложные технологии его переработки. С другой стороны, для производства сырья на месте и этот вариант может оказаться полезным. Тем более что в сапропеле нередко уже содержатся различные микроэлементы, которые нужны в качестве удобрений и кормовых добавок. Параллельно при добыче сапропеля удается очистить заиливающиеся озера.

Основной метод, которым выделяют гуминовые вещества, — щелочная экстракция растворами аммиака или гидроксидами калия или натрия. Такая обработка переводит их в водорастворимые соли — гуматы калия или натрия, обладающие высокой биологической активностью. Метод практически безотходный, поэтому его широко используют и в России, и за рубежом. Альтернативный способ предполагает механическое измельчение бурого угля с твердой щелочью, в результате чего получается твердый, растворимый в воде гумат калия и натрия.

Где их использовать

Сначала надо рассказать о той важной роли, которую гуминовые вещества выполняют в биосфере. Они участвуют в структурообразовании почвы, накоплении питательных элементов и микроэлементов в доступной для растений форме, регулировании геохимических потоков металлов в водных и почвенных экосистемах.

К концу XX века, одной из основных проблем которого стало химическое загрязнение окружающей среды, гуминовые вещества, как уже говорилось, начали выполнять роль естественных детоксикантов. Гумусовые кислоты связывают в прочные комплексы ионы металлов и органические экотоксиканты в воде и почве (рис. 3). Известно, что наиболее активен свободный токсикант, связанное вещество не так опасно, поскольку теряет биодоступность.

Во всех моделях биогеохимических циклов загрязняющих веществ, которые создают для того, чтобы оценить опасность, скорость накопления и время жизни ядов в окружающей среде, обязательно надо учитывать их взаимодействие с гумусовыми кислотами. Оно коренным образом меняет и химическое, и токсикологическое поведение вредных веществ. В свое время это дало новый импульс исследованиям — надо же было получить количественные характеристики взаимодействия гумусовых кислот с экотоксикантами.

В каких областях сегодня применяют гуминовые вещества? Чаще всего — в растениеводстве как стимуляторы роста или микроудобрения. В отличие от аналогичных синтетических регуляторов роста, гуминовые препараты не только влияют на обмен веществ растений.

При систематическом их использовании улучшается структура почвы, ее буферные и ионообменные свойства, становятся активнее почвенные микроорганизмы. Особого внимания заслуживают адаптогенные свойства — гуминовые препараты повышают способность растений противостоять болезням, засухе, переувлажнению, переносить повышенные дозы солей азота в почве. Преимущества гуминовых препаратов заключаются также в том, что они повышают усваивание питательных веществ, а значит, нужно меньше минеральных удобрений без ущерба для урожая.

В последнее время перспективными считают органо-минеральные микроудобрения, содержащие гуматы калия и/или натрия с добавкой Fe, Cu, Zn, Mn, Mo, Co и B в хелатной форме. Особенно они хороши на карбонатных почвах, где, несмотря на высокие концентрации микроэлементов, содержание их в доступной для растений форме невелико. Надо сказать, что обычно для этих же целей применяют микроудобрения на основе синтетических лигандов (ЭДТА, ДТПА, ЭДДГА). Они эффективны, но в их промышленном производстве используют и монохлоруксусную кислоту, и этилендиамин, получаемые из хлорированных углеводородов. Конечно, такое производство небезопасно для человека и окружающей среды. Кроме того, если регулярно вносить удобрения с синтетическими лигандами, то они накапливаются в почве, а это ухудшает ее свойства. Поэтому создание и использование удобрений на основе гуминовых препаратов — куда более безопасная альтернатива.

Другое интересное применение гуминовых веществ — рекультивация загрязненных почв и вод. Их пытаются также применять для очистки и рекультивации территорий, загрязненных органическими веществами и нефтепродуктами, а также тяжелыми металлами. Уже разработаны и используются твердые сорбенты на основе гуминовых веществ.

Наряду со связывающими свойствами гуминовые вещества имеют ярко выраженные поверхностно-активные свойства. Поэтому их добавляют для лучшей растворимости гидрофобных органических веществ (например, нефтепродуктов). Гуминовые вещества входят в состав буровых растворов, а также служат основой растворов, предназначенных для промывания водоносных горизонтов, загрязненных ароматическими веществами. Также для этих целей используют синтетические ПАВ, но, в отличие о них, гуминовые вещества совершенно безопасны для природы.

Другие способы их применения пока остаются экзотикой. Основная причина — та самая гетерогенность структуры, которая, с одной стороны, дает чрезвычайно широкий спектр свойств, а с другой — неспецифичность действия.

Как уйти от этой неспецифичности, создать гуминовые вещества более направленного действия? Например, для рекультивации сред, загрязненных гидрофобными органическими соединениями, нужны гуминовые препараты, обладающие повышенным сродством по отношению к загрязняющим веществам, то есть тоже гидрофобные. А вот при создании микроудобрений на гуминовой основе они, наоборот, должны быть гидрофильными и прекрасно растворяться в воде. Поэтому, чтобы повысить эффективность применения гуминовых препаратов в конкретной области и расширить спектр их применения, надо научиться направленно менять их свойства. Причем получающийся продукт должен быть стабильным, а его свойства воспроизводимыми.

Дизайн гуминовых материалов

Итак, цель — получение гуминовых производных с заданными свойствами (рис. 4, 5). То есть надо найти такой способ их модификации, после которого усиливаются уже имеющиеся положительные свойства и появляются новые. Желательно вдобавок, чтобы такой способ можно было использовать в промышленном масштабе. При решении этой сложной химической проблемы надо, с одной стороны, максимально сохранить гуминовый каркас после серии реакций — в этом залог нетоксичности и устойчивости к биоразложению, а с другой стороны, максимально модифицировать в нужном направлении активные группы. Скажем несколько слов о предлагаемых методах и подходах. Чтобы увеличить растворимость комплексов с металлами в воде, на Химическом факультете МГУ мы провели сульфирование гуминовых веществ. Дело в том, что, когда речь идет о микроудобрениях с гуминовыми кислотами, растворимость комплексов гуминовых веществ с металлами ниже, чем у синтетических аналогов. Чтобы решить эту задачу, мы ввели дополнительные сульфогруппы, после чего, как показали эксперименты, растворимость гуматов железа действительно увеличилась.

Для решения другой задачи — увеличения гидрофобности гуминовых веществ — мы провели кислотный гидролиз гуминовых веществ. Напомним, что гуминовые молекулы состоят из двух строительных блоков, различающихся по химической природе: ароматического каркаса и углеводно-пептидной периферии. При этом известно, что в зависимости от того, какой фрагмент преобладает — гидрофобный ароматический или гидрофильная периферия, — будут сильно изменяться поверхностная активность и способность гуминовых веществ к гидрофобным взаимодействиям. Наши эксперименты подтвердили, что если разложить гуминовые вещества на составляющие, то, например, каркасные фрагменты на 20% лучше связывают пирен, чем исходные препараты.

Следующий наш шаг — получение гуминовых производных с повышенной сорбционной способностью на минеральных матрицах (рис. 7). Зачем это нужно? Основное, что останавливает применение гуминовых веществ в природоохранных технологиях: после того как детоксикант вносят в почву и он адсорбирует металл, непонятно, как предотвратить его дальнейшее передвижение. Идеальным решением проблемы было бы заставить гуминовые вещества необратимо прилипать к минеральным поверхностям (например, к песку или глинам). Учитывая, что основная составляющая природных минералов — это кремнезем, то самый удобный способ — создать связь Si—О—Si между гуминовым веществом и минеральной матрицей. Тогда можно получить порошок с поверхностно-активными группами, которые после растворения в водоеме будут прилипать к минеральной поверхности. Вопрос только в том, как это сделать? Казалось бы, все просто: нужно ввести силанольный фрагмент в гуминовый каркас — и дело с концом. Но такие гуминовые вещества в воде будут полимеризоваться, и ничего хорошего из этого не выйдет.

Мы обратились за помощью к коллегам в лабораторию элементоорганических соединений Института синтетических полимерных материалов (ИСПМ) РАН. И решение было найдено: нужно вводить не силанольную группу, а алкоксисилильную. Такое вещество в воде будет гидролизоваться и высвобождать гуминовые вещества с силанольными группами. Сказано — сделано: были получены гуминовые производные (рис. 7), которые с успехом сели на силикагель (модель минеральной поверхности) из водного раствора. Оказалось, что, изменяя степень модификации гуминовых веществ, можно управлять и свойствами, которыми будет обладать гуминовая пленка. По экспериментальным данным, новый препарат сорбирует плутоний почти на 95%.

Конечно, невозможно охватить в одной статье и даже в книге все накопленные данные по существующим способам и перспективам использования гуминовых веществ. Публикации последних лет содержат большое количество оригинальных предложений по новым областям применения гуминовых препаратов. Наряду с растениеводством их все больше используют в медицине, животноводстве и других областях.

1. Понятие гуминовых веществ, их природное происхождение и биосферные функции.

2. Химическая структура гуминовых веществ.

Список использованной литературы.

Тема настоящего реферата находится в предметной области сразу нескольких наук. Изучением гуминовых веществ занимается органическая химия, химия почв, биогеохимия, почвоведение, агрономия, экология и охрана биосферы, теория минерального питания растений др.

История открытия гуминовых веществ (ГВ) берет свое начало в 18 веке. Первые результаты исследований в данной области связаны с работой Ф.Ахарда, который действием раствора щелочи на почву и на торф получил темно-бурый раствор. Десятью годами позже Л.Вокелен выделил аналогичное вещество из ствола старого вяза. Т.Томсон в 1807 г. назвал это вещество ульмином (от ulmus – вяз). Много внимания гуминовым веществам уделил великий шведский химик Я. Берцелиус[1] .

В последние полвека значительный вклад в изучение гуминовых веществ внесли русские и советские ученые, преимущественно почвоведы: И.В. Тюрин, М.М. Кононова, С.С. Драгунов, Л.Н. Александрова, многие исследователи зарубежных стран, в их числе В. Фляйг (ФРГ), Ф. Дюшофур (Франция), Т. Хаяси (Япония), М. Шнитцер (Канада), Ф. Стевенсон (США), М.Х.Б. Хейес (Англия) и др. В 1981 году было принято решение о создании Международного общества по изучению гуминовых веществ (International Humic Substances Society - IHSS).

К настоящему времени разработаны методы выделения ГВ из различных природных объектов, определены их химический состав, все важнейшие свойства, изучено влияние на почвы, растения, микроорганизмы, рыб, животных. Выявлены возможности использования ГВ в промышленном производстве и сельском хозяйстве. Первые работы по гуминовым удобрениям принадлежат Л.А. Христевой (Днепропетровск), С.С. Драгунову, другим ученым.

Среди ученых, предметно занимавшихся и занимающихся исследованием гуминовых веществ в последние 10-15 лет следует назвать имя Дмитрия Сергеевича Орлова, заведующего кафедрой химии почв факультета почвоведения Московского государственного университета им. М.В. Ломоносова, доктора биологических наук, заслуженного профессора МГУ, заслуженного деятеля науки РФ, дважды лауреата Ломоносовской премии, премии им. академика В.Р. Вильямса, удостоенного золотой медали им. академика К.К. Гедройца, премии правительства РФ в области науки и техники за 1995 год, автора более 500 научных работ.

Содержательная часть настоящего реферата и построена главным образом на анализе научных результатов, полученных данным ученым, его коллегами и учениками.

Целевая установка реферата состоит в раскрытии природного происхождения, биологических функций и химического состава гуминовых веществ.

1. Понятие гуминовых веществ, их природное происхождение и биосферные функции.

Как известно, биосфера включает в себя 3 основных компонента: живое вещество ; биогенное вещество (органо-минеральные и органические продукты, созданные живым веществом); биокосное вещество (минеральные вещества, образующиеся в результате взаимодействия живых организмов с неживой природой)[2] .

Важнейшим компонентом биосферы является почвенный покров . Набор входящих в состав почв органических веществ очень велик (рис. 1). Все органические вещества по своему происхождению, характеру и функциям четко делятся на 2 большие группы: органические остатки и гумус . Первую из них составляют отмершие части живых организмов, еще не утратившие своего анатомического строения. Эти компоненты подвергаются в почве первичному процессу гумификации , сущность которого заключается в формировании особых гуминовых веществ .

Гумус (перегной) – совокупность всех органических соединений, находящихся в почве, но не входящих в состав живых организмов.

Гуминовые вещества находятся в составе гумуса. Это – более или менее темноокрашенные, азотосодержащие высокомолекулярные соедине-ния, образующиеся в почвах, торфах, углях, других природных телах. Они накапливают элементы питания и энергию, участвуют в миграции катионов, снижают негативное действие токсичных веществ, влияют на развитие организмов и тепловой баланс планеты. Они устойчивы, высокомолекулярны, полидисперсны, содержат различные функциональные группы, аминокислоты, полисахариды, бензоидные фрагменты.

Гуминовые вещества представлены гумусовыми кислотами, прогуминовыми веществами и гумином.

Гумусовые кислоты представляют собой азотосодержащие высокомолекулярные оксикарбоновые кислоты с интенсивной темно-бурой окраской[3] .

Гумусовые кислоты по растворимости разделяют на гуминовые кислоты, гиматомелановые кислоты и фульвокислоты.


Рис. 1. Номенклатурная схема разделения органических веществ почвы

Гуминовые кислоты – сложная смесь природных органических соединений, образующихся при разложении отмерших растений и их гумификации (биохимического превращения продуктов разложения органических остатков в гумус при участии микроорганизмов, влаги и кислорода атмосферы). В сухом состоянии – неплавкий аморфный темно-бурый порошкообразный продукт[4] .

На планете Земля общее количество органического углерода в биосфере оценивается величиной 2-3 . 10 12 т. Большая часть органического углерода приходится на сушу, и в первую очередь на почвенный гумус. В результате фотосинтеза ежегодно связывается около 50 . 10 9 т углерода из атмосферы, а при отмирании организмов в виде опада на поверхность почвы поступает около 40 . 10 9 т. Часть опада минерализуется до СО2 и Н2 О, но его значительная доля превращается в гуминовые вещества (ГВ) - по разным источникам, от 0,6 до 2,5 . 10 9 т углерода в год. Образование гуминовых веществ не просто утилизация органических остатков, которая необходима в биосфере. Важнее то, что при этом возникает новый класс природных соединений, не существующих в живых организмах, но необходимых для существования и обеспечения непрерывности современных жизненных форм.

Гуминовые вещества выполняют в биосфере множество функций , из которых важнейшие следующие.

1. Аккумулятивная функция. Она заключается в накоплении химических элементов и энергии, необходимых живым организмам. В составе гуминовых веществ найдено от 40 до 60% С, 3-5% N, 30-40% О, а также водород, сера, фосфор, многие металлические катионы, в том числе так называемые микроэлементы. Не случайно темно-серые и черные по цвету почвы в народе всегда считали плодородными и называли, хотя и не всегда правильно, черноземами. Окраску таким почвам придают ГВ.

Гуминовые вещества отдают живым организмам необходимые им элементы питания постепенно, по мере их потребления, сохраняя тем самым необходимый запас этих элементов для последующих поколений. Этим они существенно отличаются от многих минеральных соединений, которые могут снабжать растения элементами питания, но представлены, как правило, легкорастворимыми веществами, которые быстро расходуются или вымываются из почвы. В то же время часть минеральных элементов входит в кристаллическую решетку алюмосиликатов, они недоступны живым организмам и только после разрушения минералов потребляются растениями.

Азот – важнейший элемент питания растений. Соединения азота играют большую роль в процессах фотосинтеза, обмена веществ, образования новых клеток. Основные запасы азота на Земле находятся в атмосфере. В почве его всего 3-5%. Но главным источником азота в почве является гумус[5] .

2. Транспортная функция. Она заключается в формировании геохимических потоков минеральных и органических веществ, преимущественно в водных средах, за счет образования устойчивых, но сравнительно легкорастворимых комплексных соединений гумусовых кислот с катионами металлов или гидроксидами. Транспортная функция до некоторой степени противоречит аккумулятивной функции, поскольку их результаты прямо противоположны, но противоречивость действия обеспечивает многообразие влияния гуминовых веществ на минеральные компоненты почв и горных пород.

3. Регуляторная функция . Эта функция объединяет множество различных явлений и процессов и относится к почвам, водам и другим природным телам. В регуляторной функции гуминовых веществ можно выделить несколько главных составляющих: формирование почвенной структуры и водно-физических свойств почв; регулирование реакций ионного обмена между твердыми и жидкими фазами; влияние на кислотно-основные и окислительно-восстановительные режимы; регулирование условий питания живых организмов путем изменения растворимости минеральных компонентов; регулирование теплового режима почв и атмосферы, включая проявления парникового эффекта.

4. Протекторная функция , которая заключается в способности гуминовых веществ связывать в малоподвижные или труднодиссоциирующие соединения токсичные и радиоактивные элементы, а также соединения, негативно влияющие на экологическую ситуацию в природе, в том числе они могут инкорпорировать некоторые пестициды, углеводороды, фенолы. Защитная функция гуминовых веществ настолько велика, что богатые ими почвы могут полностью предотвратить поступление в грунтовые воды ионов свинца и других токсичных веществ.

5. Физиологическая функция . Многими исследователями было установлено, что различные гуминовые вещества, особенно гуминовые кислоты и их соли, могут стимулировать прорастание семян, активизировать дыхание растений, повышать продуктивность крупного рогатого скота, птицы. Более того, было показано, что некоторые препараты гуминовых веществ сдерживают развитие злокачественных опухолей, повышают устойчивость организмов к различного рода воспалительным процессам.

Наверное, здесь перечислены далеко не все функции, которые выполняют гуминовые вещества в природных средах, но приведенных примеров достаточно, чтобы подчеркнуть не только исключительно важную, но и поистине незаменимую роль гуминовых веществ в биосфере.

2. Химическая структура гуминовых веществ.

По химической структуре гуминовые вещества – высокомолекулярные (молекулярная масса 1300-1500) конденсированные ароматические соединения, в которых установлено наличие фенольных гидроксилов, карбоксильных, карбонильных и ацетогрупп, простых эфирных связей и др[6] .

О способе выделения гуминовой кислоты из торфа в свое время писал Ф. Ахард. И этот способ применяют практически до сих пор для выделения ГВ из любых природных тел. Реакции извлечения ГВ сводятся к следующим простым уравнениям:

ГК-COONa + ГМК-СООNa + ФК-СООNa,

где: П - почва или иное природное образование, содержащее гуминовые вещества; ГК - радикал гуминовой кислоты; ФК - фульвокислоты, ГМК - гиматомелановой кислоты.

Если к полученному щелочному экстракту добавить какой-либо кислоты до рН 1-2, то выпадет осадок гуминовой и гиматомелановой кислот, а фульвокислоты останутся в растворе:

ГК-СООNa + ГМК-СООNa + ФК-СООNa + + 3НCl ГК-СООН+ + ГМК-СООН+ + + ФК-СООН + 3NaCl.

Осадки гуминовой и гиматомелановой кислот легкоотделимы, их высушивают и получают темно-бурые или почти черные порошки. Чтобы в чистом виде получить фульвокислоты, кислый раствор пропускают через активированный уголь, промывают водой и ацетоном, затем снова растворяют адсорбированные кислоты раствором щелочи. После анализа или пропускания через Н-катионит и высушивания получают красивые темно-красные игольчатые (но не кристаллические) фульвокислоты. Схема в целом проста, хотя во многих случаях ее усложняют, чтобы получить не только суммарные количества ГВ, но и их фракции, различающиеся по характеру связей с Са2 +, Fe3 +, алюмосиликатами.

Из любого природного тела полностью извлечь все ГВ не удается никакими приемами. Остающуюся нерастворимой часть ГВ называют гумином; свойства последнего очень похожи на свойства гуминовых кислот.

Хорошо изучено содержание различных химических элементов в этих веществах. Содержание углерода в массовых долях колеблется от 40 до 60 % в зависимости от происхождения и источника ГВ. Азот есть всегда, это доказал еще русский ученый Р. Германн в середине прошлого века, но его мало - 3-5 %. Водорода обычно содержится 3-6 %, а кислорода - 33-37%. Обязательно входят сера - до 0,7-1,2 % и фосфор - до 0,5 %. Всегда есть разные металлы, хотя пока трудно сказать, обязательны ли они для ГВ или просто являются примесью, поскольку очистить ГВ нелегко.

Состав природных ГВ весьма нестабилен. Важнейшая особенность ГВ - их разнообразие в природе, о чем можно судить не только по элементному составу, но и по набору функциональных групп и другим свойствам.

Любые ГВ содержат большой набор функциональных групп, они полифункциональны. Их молекулы содержат карбоксильные группы -СООН, фенольные -ОН, хинонные =С=О, аминогруппы -NH2 и др. Их количество, во-первых, велико, во-вторых, они распределены неравномерно по молекулам различного размера, и даже молекулы одного размера могут различаться по содержанию функциональных групп. Более того, молекулы ГВ различаются по количеству входящих в их состав остатков аминокислот (всего их 17-20), по количеству углеводных остатков и характеру их расположения.

Содержание функциональных групп, выраженное в ММ колеблется в гуминовых кислотах в следующих пределах: -СООН - 1500-5700, кислые -ОН - 2100-5700, слабокислые и спиртовые -ОН - 200-4900, хиноидные -С=О - 100-5600, кетонные -С=О - около 1700, -ОСН3 - 300-800. Кроме того, большую роль играют группы -NН2 . Разнообразие кислых функциональных групп очень велико

Чтобы составить ясное представление о построении молекул ГВ , необходимо определить, из каких фрагментов они построены и что лежит в их основе. Для этого прибегают к дроблению больших молекул на составные части, что возможно двумя способами:[7]

1) относительно мягкий - гидролиз растворами кислот или щелочей;

2) жесткий - окисление ГВ растворами марганцевокислого калия или окисью меди.

При гидролизе в раствор переходят, отделившись от молекулы ГВ, низкомолекулярные фрагменты, аминосахара и моносахариды. Аминокислот бывает от 17 до 22, все они альфа-аминокислоты, те же, что есть в растениях, бактериальной плазме, причем примерно в тех же соотношениях.

В составе аминокислот (в порядке убывания) чаще всего встречаются аспарагиновая кислота НООС-СН2-СНNН2-СООН, глютаминовая НООС-СН2-СН2-CHNH2-СООН, глицин НООС-СН2NH2 , аланин Н3C-CHNH2-СООН, валин (Н3С)2-СН-СНNН2-СООН, изолейцин Н3ССН2-СН(Н3С)-CHNH2-COOH, лейцин (Н3С)2-СН-СН2-СНNН2-СООН, фенилаланин С6Н5-СН2-CHNH2-COOH, пролин (СН2)2-СН2--NН-СН-СООН, серин НО-СН2-CHNH2--СООН, треонин Н3С-СН(ОН)-CHNH2-СООН, метионин СН3-S-(СН2)2-СНNН2-СООН, тирозин НО-С6Н4-СН2-CHNH2 -СООН, цистин S2-(СН2)2-(CHNH2СООН)2 , лизин Н2N-(СН2)4--СНNН2-СООН, гистидин NH-(CH)2=NC--CH2-CHNH2-COOH, аргинин H2N(HN)C-NH--(CH2)3-CHNH2-COOH. Массовая доля аминокислот в ГВ составляет 6-10%.

В числе моносахаридов в составе гидролизатов ГВ идентифицированы глюкоза, галактоза, манноза, ксилоза, арабиноза, рибоза, рамноза, фукоза, фруктоза и др. Всего они могут составлять до 25% массы ГВ, а в составе моносахаридов на долю глюкозы приходится до 20%.

Все ГВ можно считать высокомолекулярными соединениями, хотя дискуссии о размерах молекулярных масс (ММ) продолжаются до последнего времени. Исторически в этом отношении выявляются несколько этапов. На ранних этапах гуминовым кислотам приписывали низкие и постоянные величины ММ. 80-90 лет назад их считали равными 1400 атомных единиц массы (а.е.м.), затем возобладало мнение, что ГВ полидисперсны, поэтому к ним неприменимы понятия ММ. После развития химии высокомолекулярных соединений и появления новой аналитической техники стали считать, что ММ фульвокислот близки к 10-15 тыс. а.е.м., а гуминовых кислот - от 20-30 тыс. до 100-150 тыс. а.е.м.

Точных молекулярных формул для любых ГВ не существует, все предложенные варианты имеют характер схем, они гипотетичны, поскольку учитывают только состав соединений и некоторые их свойства, тогда как расположение атомов и атомных групп остается при этом неизвестным. Несмотря на это, попыток составления молекулярных формул ГВ в истории науки было немало: сейчас насчитывается не один десяток таких формул, часть которых имеет только характер блок-схем, а часть отражает более или менее реально состав и свойства гуминовых кислот. Негативные результаты при попытках составления структурных формул ГВ объясняются тем, что последние не образуют кристаллов, имеют переменный состав и полидисперсны даже в наиболее однородных препаратах. Получить мономолекулярные фракции ГВ пока не удалось. Поэтому к ним оказались неприменимыми те методы и приемы, которые обычно используют для создания формул природных и высокомолекулярных биоорганических молекул[8] .

Гумификация - процесс превращения органических остатков в ГВ - величайшее изобретений природы. Если бы не было такого механизма, то можно было бы ожидать одного из двух прямо противоположных процессов: 1) полной минерализации органических остатков до оксидов - тогда не было бы основы для существования непрерывной жизни на Земле; 2) полной сохранности таких остатков, тогда Земля бы ими полностью покрылась.

Практическое значение ГВ чрезвычайно велико. В первую очередь – в сельском хозяйстве. Эффективное плодородие почв коррелятивно связано с содержанием в них гумуса. Почвенный гумус – это природная кладовая запасов азота и фосфора[9] . Это – запасы удобрений, от которых зависит продуктивность современного сельского хозяйства. Их удельный вес в в системе мер повышения урожаев достигает от 41% (по оценке специалистов США) до 70% (по оценке специалистов Франции)[10] .

Знание ГВ необходимо не только специалистам или агрономам, но буквально каждому человеку, поскольку с гуминовыми веществами тесно связана экологическая ситуация в любых регионах, от них зависит устойчивость наземных и водных ландшафтов, почв и биоценозов.

Список использованной литературы.

1. Горовая А.И., Орлов Д.С., Щербенко О.В. Гуминовые вещества. -Киев: Наук. думка, 1995. - 304 с.

2. Гуминовые вещества в биосфере / Под ред. Д.С. Орлова.- М.: Наука, 1993. - 238 с.

3. Гуминовые удобрения. Теория и практика их применения / Отв. ред. В.П. Попов. – Киев: Гос.изд. с/х лит., 1962. – 649с.

4. Лозановская И.Н. и др. Экология и охрана биосферы при химическом загрязнении. – М.: Высшая школа, 1998. – 287с.

5. Орлов Д.С., Безуглова О.С. Биогеохимия. Учебник. – Р-н-Д.: ФЕНИКС, 2000. – 317с.

6. Орлов Д.С., Гришина Л.А. Практикум по химии гумуса. - М.: Изд-во МГУ, 1981. - 272 с.

8. Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. - М.: Изд-во МГУ, 1990. - 325 с.

9. Орлов Д.С. Химия почв. – М.: МГУ, 1992. – 400с.

10. Садовникова Л.К. и др. Экология и охрана биосферы при химическом загрязнении. – М.: Высшая школа, 2002. – 334с.

11. Тейт Р. Органическое вещество почвы. - М.: Мир, 1991. - 400 с.

[1] Орлов Д.С. Химия почв. – М.: МГУ, 1992. – С.7.

[2] Орлов Д.С., Безуглова О.С. Биогеохимия. Учебник. – Р-н-Д.: ФЕНИКС, 2000. – С.42.

[3] Орлов Д.С. Химия почв. – М.: МГУ, 1992. – С.190.

[5] Садовникова Л.К. и др. Экология и охрана биосферы при химическом загрязнении. – М.: Высшая школа, 2002. – С.60.

[9] Гуминовые удобрения. Теория и практика их применения / Отв. ред. В.П. Попов. – Киев: Гос.изд. с/х лит., 1962. – С.33.

[10] Лозановская И.Н. и др. Экология и охрана биосферы при химическом загрязнении. – М.: Высшая школа, 1998. – С.32.

На планете Земля общее количество органического углерода в биосфере оценивается величиной 2-3 х 10 12 т. Большая часть органического углерода приходится на сушу, и в первую очередь на почвенный гумус. В результате фотосинтеза ежегодно связывается около 50 х 10 9 т углерода из атмосферы, а при отмирании организмов в виде опада на поверхность почвы поступает около 40 х 10 9 т. Часть опада минерализуется до СО2 и Н2О, но его значительная доля превращается в гуминовые вещества (ГВ) - по разным источникам, от 0,6 до 2,5 х 10 9 т углерода в год. Образование гуминовых веществ не просто утилизация органических остатков, которая необходима в биосфере. Важнее то, что при этом возникает новый класс природных соединений, не существующих в живых организмах, но необходимых для существования и обеспечения непрерывности современных жизненных форм.

Гуминовые вещества (от лат. humus - земля, почва) были впервые выделены из торфа немецким ученым Ф. Ахардом (F. Achard) в 1786 году и уже более 200 лет изучаются учеными разных стран. Много внимания гуминовым веществам уделил великий шведский химик Я. Берцелиус, который в "Учебнике химии" ("Lehrbuch der Chemie", 1839) посвятил им несколько разделов, описав не только состав и происхождение этих соединений, конечно, в соответствии с воззрениями прошлого века, но и дал подробную характеристику их взаимодействия с катионами металлов. Характерно, что если в XIX веке классические химики много писали о гуминовых кислотах, гумине, креновых и апокреновых кислотах (последние теперь называют фульвокислотами), то в современных руководствах по органической химии и химии природных соединений о них практически не упоминается. В последние полвека большой вклад в изучение гуминовых веществ внесли русские и советские ученые, преимущественно почвоведы: И.В. Тюрин, М.М. Кононова, С.С. Драгунов, Л.Н. Александрова, многие исследователи зарубежных стран, в их числе В. Фляйг (ФРГ), Ф. Дюшофур (Франция), Т. Хаяси (Япония), М. Шнитцер (Канада), Ф. Стевенсон (США), М.Х.Б. Хейес (Англия) и др. В 1981 году было принято решение о создании Международного общества по изучению гуминовых веществ (International Humic Substances Society - IHSS), первым президентом общества был избран Р.Л. Малколм (R.L.Malcolm), США. Первая Международная конференция состоялась в 1983 году в штате Колорадо (США). Теперь такие встречи проходят регулярно. К настоящему времени разработаны методы выделения ГВ из различных природных объектов, определены их химический состав, все важнейшие свойства, изучено влияние на почвы, растения, микроорганизмы, рыб, животных. Выявлены возможности использования ГВ при производстве аккумуляторов, различных фильтров, для приготовления красителей, буровых растворов. В продаже появились растворы, пасты и порошки гуматов, которым приписывают высокую физиологическую активность. Источниками для получения такого рода препаратов служат почвы, торф, сапропели, бурые угли.

Первые работы по гуминовым удобрениям принадлежат, видимо, Л.А. Христевой (Днепропетровск), затем эти работы развили и продолжили С.С. Драгунов, М.М. Кононова, другие ученые. В последние годы во многих городах производят и продают различные удобрения: в Минске, Ашхабаде, Баку, Днепропетровске, Туле, Москве, Владимире. Производятся и продаются они и в ряде зарубежных стран. Разнообразие коммерческих препаратов велико, но преобладающая часть из них не прошла через химико-фармацевтическую комиссию, их действие не подтверждено необходимыми сертификатами, поэтому о качестве этих стимуляторов приходится судить уже только после их приобретения и попытки практического использования.

Различают несколько групп ГВ:

  1. гуминовые кислоты, растворимые только в щелочных растворах;
  2. гиматомелановые кислоты, извлекаемые из сырого остатка (геля) гуминовых кислот этиловым спиртом;
  3. фульвокислоты, растворимые в воде, щелочных и кислых растворах; в составе последних различают истинные фульвокислоты в понимании У. Форсита, которые отделяют из кислоторастворимой фракции на активированном угле, и в понимании И.В. Тюрина, согласно которому фульвокислотами называют все вещества, находящиеся в кислом фильтрате после осаждения и отделения гуминовых кислот;
  4. гумин - практически нерастворимое и неизвлекаемое из природных тел и компостов органическое вещество.

О всех этих группах гуминовых кислот обычно говорят во множественном числе (например, гуминовые кислоты), поскольку их состав и свойства меняются в зависимости от источника ГВ, но даже в препаратах, полученных из одного источника (одного типа почв, торфа, угля), они неоднородны, полидисперсны и представлены большим набором сходных по строению, но неидентичных молекул.

Все гуминовые вещества образуются в результате посмертного превращения органических остатков. Превращение органических остатков в гуминовые вещества получило название процесса гумификации. Процесс гумификации идет вне живых организмов как с их участием, так и путем чисто химических реакций окисления, восстановления, гидролиза, конденсации и др. В отличие от живой клетки, в которой синтез биополимеров осуществляется в соответствии с генетическим кодом, в процессе гумификации нет какой - либо установленной программы, поэтому могут возникать любые соединения, как более простые, так и более сложные, чем исходные биомолекулы. Образующиеся продукты вновь подвергаются реакциям синтеза или разложения, и такой процесс идет практически беспрерывно. В результате многочисленных реакций в природных телах накапливаются только наиболее устойчивые соединения, существующие более длительное время, чем лабильные вещества. Поэтому гуминовые вещества считают первой устойчивой формой органических соединений углерода вне живых организмов.

Гуминовые вещества выполняют в биосфере множество функций, из которых важнейшие следующие:

1. Аккумулятивная функция. Она заключается в накоплении химических элементов и энергии, необходимых живым организмам. Практически это означает, что гуминовые вещества ответственны за жизнеобеспечение почвенной биоты и гидробиоты, но поскольку они благодаря своей устойчивости сохраняются длительное время (сотни и тысячи лет), то тем самым гарантируют непрерывное снабжение растений и микроорганизмов энергией и строительным материалом. В составе гуминовых веществ найдены макроэлементы, водород, сера, многие металлические катионы, микроэлементы.

Гуминовые вещества отдают живым организмам необходимые им элементы питания постепенно, по мере их потребления, сохраняя тем самым необходимый запас этих элементов для последующих поколений. Этим они существенно отличаются от многих минеральных соединений, которые могут снабжать растения элементами питания, но представлены, как правило, легкорастворимыми веществами, которые быстро расходуются или вымываются из почвы.

2. Транспортная функция. Она заключается в формировании геохимических потоков минеральных и органических веществ, преимущественно в водных средах, за счет образования устойчивых, но сравнительно легкорастворимых комплексных соединений гумусовых кислот с катионами металлов или гидроксидами. Транспортная функция до некоторой степени противоречит аккумулятивной функции, поскольку их результаты прямо противоположны, но противоречивость действия обеспечивает многообразие влияния гуминовых веществ на минеральные компоненты почв и горных пород.

3. Регуляторная функция. Эта функция объединяет множество различных явлений и процессов и относится к почвам, водам и другим природным телам. В регуляторной функции гуминовых веществ можно выделить несколько главных составляющих:

формирование почвенной структуры и водно-физических свойств почв;

регулирование реакций ионного обмена между твердыми и жидкими фазами;

влияние на кислотно-основные и окислительно-восстановительные режимы;

регулирование условий питания живых организмов путем изменения растворимости минеральных компонентов;

регулирование теплового режима почв и атмосферы, включая проявления парникового эффекта.

4. Протекторная функция, которая заключается в способности гуминовых веществ связывать в малоподвижные или труднодиссоциирующие соединения токсичные и радиоактивные элементы, а также соединения, негативно влияющие на экологическую ситуацию в природе, в том числе они могут инкорпорировать некоторые пестициды, углеводороды, фенолы. Защитная функция гуминовых веществ настолько велика, что богатые ими почвы могут полностью предотвратить поступление в грунтовые воды ионов свинца и других токсичных веществ.

5. Физиологическая функция. Многими исследователями было установлено, что различные гуминовые вещества, особенно гуминовые кислоты и их соли, могут стимулировать прорастание семян, активизировать дыхание растений, повышать продуктивность крупного рогатого скота, птицы. Более того, было показано, что некоторые препараты гуминовых веществ сдерживают развитие злокачественных опухолей, повышают устойчивость организмов к различного рода воспалительным процессам.

Наверное, здесь перечислены далеко не все функции, которые выполняют гуминовые вещества в природных средах, но приведенных примеров достаточно, чтобы подчеркнуть не только исключительно важную, но и поистине незаменимую роль гуминовых веществ в биосфере.

ЗАКЛЮЧЕНИЕ

Приходится признать, что гумификация - процесс превращения органических остатков в гуминовые вещества - одно из величайших изобретений природы. Если бы не было такого механизма, то можно было бы ожидать осуществления двух прямо противоположных процессов:

Полной минерализации органических остатков до оксидов - тогда не было бы основы для существования непрерывной жизни на Земле.

Полной сохранности органических остатков, тогда Земля должна была бы ими полностью покрыться.

ГУМАТЫ И ЭКОЛОГИЯ.

В настоящее время во многих регионах Болгарии создалась напряженная экологическая ситуация. Растущий фон ионизирующей радиации и загрязнение окружающей среды пестицидами и другими экзотоксикантами, обладающими мутагенным и канцерогенным действием, уже сейчас представляют опасность для живых организмов и их потомства. В связи с этим весьма актуальна проблема изыскания и научного обоснования применения экологически чистых природных соединений для защиты организмов от повреждающего действия различных экзотоксикантов.

Наиболее перспективными в этом отношении являются препараты гуминовых веществ. Общепринято, что гуминовые вещества в биосфере выполняют ряд разнообразных функций: аккумулятивные, транспортные, регуляторные, протекторные и физиологические. Гуминовые вещества определяют основу плодородия почв.

В последние годы проявляется повышенный интерес к этому классу природных полимеров как к эффективному средству для решения ряда экологических проблем. Например, многочисленными исследователями показано, что гуминовые вещества довольно прочно связывают и фиксируют катионы тяжелых металлов и радиоактивных элементов, а также пестициды и детергенты. Это предупреждает поступление экзотоксикантов в пищевую цепь: растения – животные -человек и снимает их отрицательные воздействия. Показано, что инкорпорирование некоторых пестицидов гуминовыми кислотами приводит к выводу их из сферы прямых контактов с живыми организмами. При этом с течением времени в процессе трансформации самих гуминовых кислот происходит разрушение токсических соединений или они превращаются в неактивные и нетоксичные вещества. Гуминовые вещества способны предохранять не только растения и почву от загрязнений, но и почвенно-грунтовые воды, так как перенос токсичных веществ резко ограничивается в результате образования малоподвижных органических компонентов почвы. Важным является и то, что ограничивается вертикальная миграция и загрязнение питьевых вод не только тяжелыми металлами, радионуклидами и пестицидами, но и такими подвижными анионами, как нитрат-, нитрит- и хлорид-ионы.

Протекторная (защитная) функция относится к важнейшим биосферным функциям гуматов. Известно, что природные или внесенные в почву гуматы защищают или сохраняют почвенную биоту и растительный покров в случаях возникновения экстремальных ситуаций. Почвы, обогащенные гуматами, лучше противостоят засухе или переувлажнению, меньше подвержены эрозии и дефляции, дольше сохраняют удовлетворительные свойства при орошении, в том числе и при поливе повышенными дозами или минерализованными водами. Кроме того, гуминовые вещества довольно прочно связывают многие радионуклиды, детергенты, пестициды, тяжелые металлы. Они способны переводить их в неактивные формы, которые со временем распадаются на нетоксичные соединения и таким образом выводят их из сферы прямых контактов с живыми организмами, почвами, почвено-грунтовыми водами, атмосферой (Орлов, 1993).

Русские ученые отметили снижение накопления нитратов в кукурузе (224,1 мг/кг в контроле, 280,1 мг/кг при использовании атразина, 199,7 мг/кг при совместном внесении атразина и гумата натрия). Наблюдалось также положительное воздействие гумата на последующую культуру севооборота - ячмень в 1-ый и во 2-ой год внесения (последействие: более высокая всхожесть, лучший рост, меньшее поступление атразина в растения, накопление белка в зерне и т. п.) (Булгакова и др., 1983, 1990).

Сделаны интересные наблюдения: применение гумата вело к накоплению нитратов в растениях в начале вегетации и снижению их содержания в конце, что указывает на нормализацию процесса нитрификации на фоне внесения атразина; в почве отмечен аналогичный эффект, т.е. гумат нивелирует ингибирование денитрификации, вызванное атразином (Горовая, 1983, Ярчук, 1991).

Данных, подтверждающих высокую адаптогенную способность гуминовых веществ, накоплено достаточно. В последнее время, в связи с обострившейся экологической ситуацией, началось изучение их роли в адаптации различных компонентов экосистем к действию ионизирующей радиации. Исследованиями доказано, что в стрессовых ситуациях гуминовые вещества способствуют уменьшению лучевых и химических поражений, 50%-ный уровень ингибирования устраняется и полностью восстанавливается жизнедеятельность растений (Горовая, Хлызина 1988, 1993).

По эффективности действия гуминовые вещества не уступают витаминам группы В, РР, С и АТФ, причем их действие реализуется на протяжении всего онтогенеза, включая урожай. На клеточном уровне, лучевые и химические поражения могут проявляться по двум направлениям:

в снижении общего числа вступающих в митоз клеток или наоборот в патологическом возрастании их количества (ТМТД, ГХЦ, симтриазины, фентиурам, невысокие дозы излучения);

в хромосомных нарушениях (хлорорганические поллютанты пролонгированного действия, сильные радиационные поражения).

Выяснено, что гуминовые вещества способствуют уменьшению генетических и функциональных нарушений клеточного деления, восстанавливают нормальный клеточный цикл, участвуют в регенерации однонитевых разрывов ДНК. Хорошо иллюстрируют эти возможности опыты по изучению протекторных свойств гуминовых веществ в сравнении с другими адаптогенами при облучении и химических поражениях (Горовая 1984).

Перспективным направлением использования гуминовых веществ является также их применение для очистки почвы, грунтовых вод и атмосферы при загрязнении тяжелыми металлами, токсичными летучими веществами и фенолами. Установлено, что гуминовые вещества связывают их в нетоксичные, малоподвижные комплексы медь и никель, а при промышленных выбросах S-содержащих соединений и фенолов поглощают их, восстанавливают поврежденные листья вплоть до прекращения листопада в промышленных зонах, нормализуют состояние фотосинтетического аппарата, интенсифицируют азотный, фосфорный, калийный и углеводный обмен (Козюкина, 1983).

Промышленная и хозяйственная деятельность человека приводит к прогрессирующему загрязнению и деградации земель, разрушению поверхностного плодородного слоя почвы, насыщению его вредными для людей техногенными веществами, и соответственно, ухудшению условий окружающей среды. В наше время проблема рекультивация земель – неотъемлемый этап в гражданском и промышленном строительстве. Без нее не обойтись при проведении работ по обустройству и озеленению городских территорий, промышленных и придорожных зон, благоустройству зон отдыха, пригородных и приусадебных земельных участков. По подсчетам специалистов, доля таких земель, нуждающихся в реабилитации, весьма значительна и на ее естественное восстановление потребуются десятилетия.

1. Орлов Д. С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд - во МГУ, 1990.325 с.

2. Горовая А. И., Орлов Д. С., Щербенко О. В. Гуминовые вещества. Киев: Наук. думка, 1995.304 с.

3. Гуминовые вещества в биосфере/Под ред. Д. С. Орлова. М.: Наука, 1993.238 с.

4. Орлов Д. С., Гришина Л. А. Практикум по химии гумуса. М.: Изд - во МГУ, 1981.272 с.

Читайте также: