Гликозиды реферат по химии

Обновлено: 02.07.2024

Сердечные гликозиды - сложные безазотистые соединения растительного происхождения, обладающие кардиотонической активностью. Они издавна применялись в народной медицине как противоотечные средства. Более 200 лет назад было установлено, что они избирательно влияют на сердце, усиливая его деятельность, нормализуя кровообращение, в силу чего и обеспечивается противоотечный эффект.

Сердечные гликозиды содержатся во многих растениях: наперстянка, горицвет весенний, ландыш майский, желтушник и др., произрастающих на территории России, а также в строфанте, родиной которого является Африка.

В структуре сердечных гликозидов можно выделить две части: сахаристую (гликон) и несахаристую (агликон или генин). Агликон в своей структуре содержит стероидное (циклопентапергидрофенантреновое) ядро с пяти- или шестичленным ненасыщенным лактонным кольцом. Кардиотоническое действие сердечных гликозидов обусловлено агликоном. Сахаристая часть влияет на фармакокинетику (степень растворимости сердечных гликозидов, их всасываемость, проникновение через мембрану, способность связываться с белками крови и тканей).

Фармакокинетические параметры сердечных гликозидов разных растений существенно отличаются. Гликозиды наперстянки за счет липофильности почти полностью всасываются из желудочно-кишечного тракта (на 75-95%), тогда как гликозиды строфанта, обладающие гидрофильностью, всасываются лишь на 2-10% (остальная часть разрушается), что предполагает парентеральный путь их введения. В крови и тканях гликозиды связываются с белками: следует отметить прочную связь гликозидов наперстянки, что в конечном итоге обусловливает длительный латентный период и способность к кумуляции. Так, в первые стуки выделяется всего лишь 7% дозы введенного дигитоксина. Инактивация сердечных гликозидов осуществляется в печени путем энзиматического гидролиза, после чего агликон с желчью может выделяться в просвет кишечника и повторно реабсорбироваться; особенно характерен этот процесс для агликона наперстянки. Большинство гликозидов выделяется через почки и желудочно-кишечный тракт. Скорость экскреции зависит от длительности фиксации в тканях. Прочно фиксируется в тканях, а следовательно, обладает высокой степенью кумуляции - дигитоксин; гликозиды, не образующие прочных комплексов с белками, действующие непродолжительно и мало кумулирующие - строфантин и коргликон. Промежуточное положение занимают дигоксин и целанид.

Сердечные гликозиды являются основной группой лекарственных препаратов, применяемых для лечения острой и хронической недостаточности сердца, при которой ослабление сократительной способности миокарда приводит к декомпенсации сердечной деятельности. Сердце начинает расходовать больше энергии и кислорода для совершения необходимой работы (снижается КПД), нарушается ионное равновесие, белковый и липидный обмен, ресурсы сердца исчерпываются. Падает ударный объем с последующим нарушением кровообращения, вследствие чего повышается венозное давление, развивается венозный застой, нарастает гипоксия, что способствует учащению сердечных сокращений (тахикардия), замедляется капиллярный кровоток, возникают отеки, уменьшается диурез, появляется цианоз и одышка.

Фармакодинамические эффекты сердечных гликозидов обусловлены их влиянием на сердечно-сосудистую, нервную системы, почки и другие органы.

Механизм кардиотонического действия связывают с влиянием сердечных гликозидов на обменные процессы в миокарде. Они взаимодействуют с сульфгидрильными группами транспортной Na + , К + -АТФазы мембраны кардиомиоцитов, снижая активность фермента. Изменяется ионный баланс в миокарде: снижается внутриклеточное содержание ионов калия и повышается концентрация ионов натрия в миофибриллах. Это способствует увеличению содержания в миокарде свободных ионов кальция за счет освобождения их из саркоплазматического ретикулума и повышению обмена ионов натрия с внеклеточными ионами кальция. Увеличение содержания свободных ионов кальция в миофибриллах способствует образованию сократительного белка (актомиозина), необходимого для сердечного сокращения. Сердечные гликозиды нормализуют метаболические процессы и энергетический обмен в сердечной мышце, повышают сопряженность окислительного фосфорилирования. Как результат - значимо усиливается систола.

Усиление систолы приводит к увеличению ударного объема, из полости сердца в аорту выбрасывается больше крови, повышается артериальное давление, раздражаются прессо- и барорецепторы, рефлекторно возбуждается центр блуждающего нерва и замедляется ритм сердечной деятельности. Важным свойством сердечных гликозидов является их способность к удлинению диастолы - она становится более продолжительной, что создает условия для отдыха и питания миокарда, восстановления энергозатрат.

Сердечные гликозиды способны тормозить проведение импульсов по проводящей системе сердца, вследствие чего удлиняется интервал между сокращениями предсердий и желудочков. Устраняя рефлекторную тахикардию, возникающую вследствие недостаточного кровообращения (рефлекс Вейнбриджа), сердечные гликозиды также способствуют удлинению диастолы. В больших дозах гликозиды повышают автоматизм сердца, могут вызвать образование гетеротопных очагов возбуждения и аритмии. Сердечные гликозиды нормализуют гемодинамические показатели, характеризующие сердечную недостаточность, при этом устраняются застойные явления: исчезает тахикардия, одышка, уменьшается цианоз, снимаются отеки. увеличивается диурез.

Некоторые сердечные гликозиды оказывают седативный эффект на ЦНС (гликозиды горицвета, ландыша). Мочегонное действие сердечных гликозидов в основном обусловлено улучшением работы сердца, однако имеет значение и их прямое стимулирующее влияние на функцию почек.

Основными показаниями к назначению сердечных гликозидов являются острая и хроническая сердечная недостаточность, мерцание и трепетание предсердий, пароксизмальная тахикардия. Абсолютным противопоказанием является интоксикация гликозидами.

При длительном назначении гликозидов возможна передозировка (учитывая медленное выведение и способность к кумуляции). сопровождаемая следующими симптомами. Со стороны желудочно- кишечного тракта - боль в эпигастрии, тошнота, рвота: кардиальные симптомы - брадикардия, тахиаритмия, нарушение атриовентрикулярной проводимости; боль в сердце; в тяжелых случаях - нарушение функции зрительного анализатора (нарушение цветового зрения - ксантопсия, макропсия, микропсия). Снижается диурез, нарушаются функции нервной системы (возбуждение, галлюцинации и др.). Лечение интоксикации начинают с отмены гликозида. Назначают препараты калия (калия хлорид, панангин, калия оротат), так как гликозиды снижают содержание ионов калия в сердечной мышце. В качестве антагонистов сердечных гликозидов по влиянию на транспортную АТФазу в комплексной терапии используют унитиол и дифенин. Поскольку сердечные гликозиды увеличивают количество ионов кальция в миокарде, можно назначать препараты, связывающие эти ионы: динатриевую соль этилен-диаминтетрауксусной кислоты или цитраты. Для устранения возникающих аритмий применяются лидокаин, дифенин, пропранолол и другие противоаритмические средства.

В медицинской практике используются различные препараты из растений, содержащих сердечные гликозиды: галеновые, неогаленовые, но наиболее широко - химически чистые гликозиды, для которых отпадает необходимость биологической стандартизации. Сердечные гликозиды, получаемые из разных растений, отличаются друг от друга по фармакодинамике и фармакокинетике (всасыванию, способности связываться с белками плазмы крови и миокарда, скорости обезвреживания и выведения из организма).

Препараты горицвета весеннего (адонизид) растворяются в липидах и в воде, всасываются из желудочно-кишечного тракта не полностью, обладают меньшей активностью, действуют быстрее (через 2-4 ч) и короче - (1-2 сут), так как в меньшей степени связываются с белками крови. Учитывая выраженный успокаивающий эффект, препараты горицвета назначают при неврозах, повышенной возбудимости (микстура Бехтерева).

Препараты строфанта очень хорошо растворимы в воде, плохо всасываются из желудочно-кишечного тракта, поэтому прием их внутрь дает слабый, ненадежный эффект. Они непрочно связываются с белками плазмы крови, концентрация свободных гликозидов в крови весьма высока. При парентеральном введении они действуют быстро и мощно, не задерживаются в организме. Гликозид строфанта строфантин вводят обычно внутривенно (возможно подкожное и внутримышечное введение). Действие наблюдается через 5-10 мин, длительность эффекта до 2 сут. Применяется строфантин при острой сердечной недостаточности, возникающей при декомпенсированных пороках сердца, инфаркте миокарда, инфекциях, интоксикациях и т.д.

Препараты ландыша по фармакодинамике и фармакокинетике близки к препаратам строфанта. Коргликон содержит сумму гликозидов ландыша, применяется внутривенно при острой сердечной недостаточности (как строфантин). Галеновый препарат - настойка ландыша при приеме внутрь оказывает слабое стимулирующее действие на сердце и успокаивающее на ЦНС, может увеличить активность и токсичность сердечных гликозидов.

Назначаются внутрь или внутривенно (струйно или капельно).

Выпускается в таблетках по 0,00025 г, в ампулах по 1 мл 0,025% раствора.

Вводится внутривенно (на изотоническом растворе натрия хлорида) и внутримышечно.


Гликози́ды — органические соединения, молекулы которых состоят из двух частей: углеводного (пиранозидного или фуранозидного) остатка и неуглеводного фрагмента (т. н. агликона). В качестве гликозидов в более общем смысле могут рассматриваться и углеводы, состоящие из двух или более моносахаридных остатков. Преимущественно кристаллические, реже аморфные вещества, хорошо растворимые в воде и спирте.

Гликозиды представляют собой обширную группу органических веществ, встречающихся в растительном (реже в животном) мире и/или получаемых синтетическим путём. При кислотном, щелочном, ферментативном гидролизе они расщепляются на два или несколько компонентов — агликон и углевод (или несколько углеводов). Многие из гликозидов токсичны или обладают сильным физиологическим действием, например гликозиды наперстянки, строфанта и другие.

Содержание

Своё название гликозиды получили от греческих слов glykys — сладкий и eidos — вид, поскольку они при гидролизе распадаются на сахаристую и несахаристую компоненты. Чаще всего гликозиды встречаются в листьях и цветах растений, реже в других органах. В их состав входят углерод, водород, кислород, реже азот (амигдалин) и только некоторые содержат серу (синальбин, мирозин).

История изучения

Растения, содержащие гликозиды, привлекали к себе внимание ещё со времён глубокой древности. Так, египтяне и римляне применяли морской лук (Scilla maritima) для возбуждения сердечной деятельности. Препараты из семян и коры строфанта (Strophantus hispidus) использовались не только для возбуждения сердечной деятельности, но и для отравления стрел. Применение наперстянки (Digitalis purpurea) для лечения водянки было известно уже в 1785 году, когда В. Уитеринг впервые внедрил ее в практическую медицину.

Первые попытки изучения веществ, выделенных из листьев наперстянки, относятся к 1809 г. В 1841 году из той же наперстянки была выделена смесь веществ, названная дигиталином; ещё ранее из миндаля П. Робике (1830 г.) выделил амигдалин.

В 1869 г. Нативелл выделил из наперстянки достаточно чистый дигитоксин. В 1889—1892 г. Е. А. Шацкий опубликовал ряд работ, относящихся к гликозидам и алкалоидам. Особое развитие химия гликозидов, однако, получила с 1915 г., когда были опубликованы исследования Виндауса, Джекобса, Штоля и Чеше и др. в области сердечных гликозидов. Из российских работ известны исследования Н. Н. Зинина о масле горьких миндалей, Лемана о периплоцине, Куррота о ряде гликозидов, А. Е. Чичибабина, впервые получившего в 1913 г. синтетический амигдалин.

Химические и физические свойства

С химической стороны гликозиды представляют собой эфиры сахаров, не дающие карбонильных реакций, из чего следует, что карбонильная группа сахаров у них связана с агликоном, аналогично алкилгликозидам синтетических гликозидов.

В молекулах гликозидов остатки сахаров связаны с агликоном, который является фармакологически активной частью гликозида, через атом О, N или S.

В состав агликонов входят большей частью гидроксильные производные алифатического или ароматического рядов. Строение многих природных гликозидов недостаточно изучено.

При взаимодействии сахаров со спиртами, меркаптанами, фенолами и другими веществами в присутствии соляной кислоты получены синтетические гликозиды. Такого рода соединения особенно легко образуются при взаимодействии гидроксильных или иных производных с ацетохлор- или ацетобромглюкозой.

В том случае, когда при гидролизе гликозидов образуется глюкоза, такие соединения принято называть глюкозидами, при образовании других сахаров — гликозидами.

Гликозиды представляют собой твердые, не летучие, большей частью хорошо кристаллизующиеся, реже аморфные вещества, легко растворимые в воде и в спирте. Водные растворы гликозидов имеют нейтральную реакцию.

Хотя расщепление их на сахара и агликоны происходит очень легко, известны и такие гликозиды (сапонины), которые не разлагаются даже разбавленными кислотами (H2SO4) при длительном нагревании. При расщеплении гликозидов ферментами наблюдается известная избирательность; только определенный фермент способен разлагать тот или иной гликозид. Реже один фермент расщепляет несколько гликозидов, например, эмульсин расщепляет не только амигдалин, но и салицин, эскулин, кониферин и некоторые другие гликозиды, но не расщепляет синигрина. Фермент дрожжей расщепляет амигдалин до прунозина, напротив, эмульсин разлагает его до бензальдегидциангидрина.

Гидролизующее действие ферментов тесно связано со строением молекулы гликозида и асимметрией углеродных атомов сахаров. Так, например, правовращающий α-метилглюкозид расщепляется инвертином, в то время как его левовращающий изомер при этом не изменяется, напротив, β-метил-глюкозид расщепляется эмульсином, не действуя на α-изомер. Природные гликозиды, расщепляемые эмульсином, обладают левым вращением.

Частичное расщепление гликозидов происходит отчасти в самом растении, поскольку энзим, находящийся в нем (хотя и в разных клетках), приходит иногда с ним контакт. То же, при известных обстоятельствах, происходит при высушивании растений или изолировании из них гликозидов. Поэтому часто гликозиды, полученные из высушенных растений, резко отличаются от гликозидов, находящихся в свежем растении. В высушенном растении ферменты обычно не проявляют своего гидролитического действия, но при увлажнении водой, особенно при 35-50 °С, происходит интенсивная реакция гидролиза. При низкой температуре, в присутствии влаги, действие ферментов замедляется, а при 0 °C почти не обнаруживается. Выше 70 °C, напротив, происходит инактивация и разрушение ферментов.

В близкой связи с глюкозидами, то есть эфирами глюкозы, находятся пентозиды или рамнозиды, которые при гидролизе, наряду с агликонами, образуют рамнозу (например, франгулин, кверцитин), рамноглюкозиды, которые при гидролизе образуют рамнозу, глюкозу и другие сахара (например, рутин, гесперидин).

Классификация гликозидов


Химическая классификация, основанная на природе наиболее характерных группировок агликонов:


  1. цианогенные или цианофорные гликозиды — образующие при гидролизе цианистоводородную кислоту; например амигдалин, пруназин;
  2. фенолгликозиды — содержащие фенольную группу, или образующие ее при гидролизе;
  3. гликозиды группы кумарина. Гликозиды эти широко распространены в природе; к ним относятся, к примеру, кумариновый гликозид, скиммин, эскулин, дафнин, фраксин. Все они при гидролизе распадаются на кумарин и сахар;
  4. оксиантрахиноновые гликозиды — широко распространены в природе; они большей частью окрашены в красный или желтый цвета. К ним относятся многие слабительные, например ревень, сенна, крушина, алоэ, содержащие производные оксиантрахинона. При гидролизе они распадаются на ди-, триоксиантрахиноны и сахар;
  5. гликосинапиды — гликозиды, содержащие серу. Большей частью они встречаются среди крестоцветных. При гидролизе они при участии фермента мирозина образуют горчичное (эфирное) масло; , содержащие в агликоне пергидроциклопентанофенантреновую структуру и характерный для данных гликозидов пятичленный (лактонный) цикл, наряду с ангулярной метильной или альдегидной группой при С10. , получаемые из мозгов животных; они являются d-галактозидами сфингозина;
  6. фитостеролины — являющиеся гликозидами стеринов (они широко распространены в природе, но мало исследованы).



Согласно другой классификации, в зависимости от природы атомов, формирующих связь с агликоном, различают:

В зависимости от химической природы агликона лекарственные О-гликозиды делятся на группы:

  • Цианогенные гликозиды (синильная кислота) (тритерпеновые и стероидные соединения)
  • Антрагликозиды (антрацен)

Образование гликозидов в растениях и их роль

Роль и значение гликозидов в растениях выяснена недостаточно. Хотя гликозиды обладают различным химическим составом, соединения с меньшим молекулярным весом значительно чаще встречаются в природе. Так, например, фазеолюнатин (или лимарин), содержащийся в фасоли, найден среди семейств лютиковых, лилейных, молочайных.



Под влиянием окислителей халкон способен циклизоваться с потерей двух атомов водорода и образованием флавонов. Последние в виде соединений с d-глюкозой или рамнозой встречаются в клеточном соке многих растений; они способны поглощать ультрафиолетовые лучи и предохранять хлорофилл в клетках растений от разрушения.



Что касается других гликозидов, то за исключением стероидных (сердечных гликозидов) их роль выяснена недостаточно. Среди однодольных найдены представители, обладающие токсическим действием, например авенеин — C14H10O8, акорин — C36H60O8; среди двудольных — гликозиды перца, водяного перца, некоторые из них, как, например, сем. Leguminosae, обладают токсическим действием.

Некоторые гликозиды, например семейства Loganiceae, содержат азот и представляют как бы переход к алкалоидам. В их состав входят пуриновые и пиримидиновые производные, играющие важную роль во внутритканевых дыхательных процессах; к ним относится и d-рибозид гуанина, известный под названием вернина. Он обнаружен в ростках различных растений, в соке сахарной свеклы, в пыльце лесного ореха и сосны.

Гликозиды не рассеяны беспорядочно, а подобно алкалоидам или эфирным маслам играют важную роль в жизнедеятельности растений. Исследование флавонов с этой точки зрения показало, что они ускоряют реакцию между перекисью водорода, пероксидазой и аскорбиновой кислотой, превращая последнюю в дегидроаскорбиновую кислоту.

Найдено, что флавоны катализируют реакцию окисления в 50 −100 раз энергичнее, нежели пирокатехин.

Выделяющаяся при дыхании растений энергия потребляется в различных эндотермических процессах синтеза; за счет этой энергии и происходит синтез органических кислот у суккулентов.

Что касается стероидных гликозидов, то, по мнению Розенгейма, они образуются из углеводов. Виланд, напротив, считает, что материнским веществом стеринов является олеиновая кислота, которая при биологических процессах превращается в цибетон, окисляющийся и одновременно формирующийся в диметилгексагидроцибетон. Робинзон связывает стерины со скваленом, который близок терпенам и каротиноидам. Нейберг допускает образование стеринов из углеводов; при биохимических расщеплениях из них выделен ликопин и продукты его моно- и бициклической конденсации. Поскольку асафрон, образующийся при расщеплении каротина при циклизации и гидрировании превращается в тетрациклическую кислоту, родственную холановой, можно допустить, что стерины действительно образуются из углеводов.

Выделение гликозидов из растений

Методы выделения гликозидов из растений весьма разнообразны и зависят от природы гликозидов и их отношения к растворителям. Часто выделение связано с большими трудностями ввиду их легкой разлагаемости. Обычно при выделении гликозидов исключают применение кислот и щелочей, а также ферментов, разлагающих гликозиды. Для этой цели растение подвергают обработке спиртом в присутствии щелочных агентов (соды, поташа и др.) и затем извлечению подходящими растворителями (водой, спиртом, эфиром, хлороформом, дихлорэтаном, этилацетатом и др.) при соответствующей температуре. Иногда гликозиды переводят в нерастворимые, легко поддающиеся очистке соединения и затем их разлагают с целью выделения в чистом виде.

Ввиду обычно малого содержания гликозидов в растениях, часто ограничиваются выделением не индивидуальных веществ, а их смесей в виде водных растворов, стандартизованных по биологическому действию на животных. Такие препараты получили название неогаленовых или новогаленовых. Обычно в 1 мл такого раствора содержится определенное количество гликозидов, выраженных в единицах действия (ЕД). Так, например, активность гликозидов сердечной группы выражают в лягушечьих (ЛЕД) или кошачьих (КЕД) единицах, характеризующих наименьшее количество вещества, проявляющее биологическое действие на животных. Естественно, в случае возможности выражения активности гликозидов в весовых единицах последние выражаются в граммах (или миллиграммах).

При дифференциальной экстракции производят последовательное извлечение растительного материала различными растворителями и химикатами и изучение каждого из экстрактов.

Качественные реакции гликозидов

Гликозиды различно относятся к химическим агентам. В отличие от алкалоидов они обычно не дают специфических реакций; они не восстанавливают ни раствора Фелинга, ни аммиачного раствора окиси серебра. Исключение составляют те гликозиды, агликоны которых содержат редуцирующие группы. После гидролиза гликозида кипячением водного раствора с разбавленным раствором серной кислоты образующийся сахар обнаруживают по редуцирующей способности раствором Фелинга.

Более общим является ферментативное расщепление, позволяющее не только установить присутствие гликозида, но и доказать идентичность его сравнением с заведомо известным. Чаще всего это производят с помощью фермента эмульсина. Все такие гликозиды обладают в водных растворах левым вращением, в то время как глюкоза, образующаяся в результате гидролиза, обладает правым вращением. На основании этих двух положений каждый гликозид характеризуют свойственным ему энзимолитическим индексом восстановления. Под этим индексом подразумевают содержание глюкозы, выраженное в миллиграммах в 100 мл испытуемого раствора, образующейся при расщеплении гликозида в количестве, требуемом для изменения вращения вправо на 1 °C в трубке длиной 20 см.

Цветные реакции гликозидов обычно пригодны лишь при отсутствии свободных сахаров. Так, многие гликозиды с очищенной бычьей желчью и серной кислотой дают красное окрашивание, равным образом спиртовой 20%-ный раствор α-нафтола с концентрированной серной кислотой дает синее, фиолетовое или красное окрашивание. Подобная окраска возникает и в случае применения β-нафтола или резорцина. Гликозиды, содержащие в качестве агликона фенол или соединения с фенольным гидроксилом, дают окраску с хлорным железом. С некоторыми гликозидами реакция протекает более отчетливо при применении спиртовых растворов реактива.

Гликозиды, агликоны которых содержат карбонильную группу, идентифицируют в виде гидразонов, семикарбазонов или оксимов. При осторожном ацетилировании уксусным ангидридом многие глюкозиды дают характерные ацетильные производные. Действие ацетилирующей смеси иногда используют и для открытия глюкозы как сахарного компонента гликозида. Открытие ее основано на превращении полученной при ацетилировании пентаацетилглюкозы в пентаацетилглюкозил-п-толуидид при действии п-толуидина. Это соединение не растворимо в спирте, имеет левое вращение и обладает резкой температурой плавления.

Методы количественного определения гликозидов

Количественное определение гликозидов имеет значение при исследовании растительного материала и главным образом лекарственного сырья.

Определение гликозидов весовым путем после извлечения его растворителями весьма затруднительно, так как необходимо предварительное его выделение из растительного материала в достаточно чистом виде. Поэтому в ряде случаев целесообразно определение количества агликона, образующегося при гидролизе. Так, количество синигрина в горчице или горчичниках определяется аргентометрически или йодометрически по количеству отщепленного и отогнанного аллилгорчичного масла.

Гликозиды, содержащие цианистый водород, также могут быть определены по количеству последнего после расщепления и отгонки.

Во многих случаях количество гликозида может быть определено на основании изменения угла вращения после ферментативного расщепления.

В некоторых случаях определяют флуоресценцию, характерную для того или иного гликозида, путем сравнения с заведомо известным гликозидом.

Гликозиды – производные моносахаров, имеющие в полуацетальном гидроксиле вместо водорода сложный заместитель неуглеводного характера. Этот заместитель называется агликоном (греческая приставка “а” обозначает отрицание, поэтому “агликон” можно перевести как “не сахар”) или генином:

Гликозиды общая формула гликозидов

Впервые понятие о гликозидах было введено в первой половине XIX века немецкими фармацевтами Либихом и Велером. Однако изучение химической структуры гликозидов подвигалось очень медленно в силу их многообразия и легкой разлагаемости. В конце XIX века вышла в свет первая монография о гликозидах. Ее автор – магистр фармации Е.А. Шацкий. Несколько позже, в начале XX века, появились монографии голландского ученого Ван-Рийна и российского магистра фармации Ф.А. Куррота. В изучении углеводного компонента гликозидов наиболее известны работы немецкого химика Э. Фишера, относящиеся к первой половине XX века.

Гликозиды. Химическая структура.

Прежде, чем характеризовать химическую структуру гликозидов, уместно напомнить, что представляет собой полуацетальный гидроксил.
Большинство моносахаров в растворах существуют в виде двух таутомерных взаимопревращающихся форм – альдегидной и циклической (или полуацетальной) формы. Циклические формы представляют собой “внутренние” полуацетали, образовавшиеся в результате реакции альдегидной и спиртовой групп в пределах одной молекулы:

альдегидная форма, полуацетальная форма

Таким образом, если у альдегидной формы глюкозы все гидроксилы являются одинаковыми спиртовыми гидроксилами, то у циклических форм есть один гидроксил по свойствам резко отличающийся от других – это гидроксил, образовавшийся из альдегидной группы. Он то и носит название “полуацетального” или “гликозидного” гидроксила.

Полуацетальный гидроксил отличается гораздо большей реакционной способностью, чем остальные спиртовые гидроксилы. Поэтому он легко взаимодействует с гидроксильными функциональными группами других соединений с образованием гликозидов:

Полуацетальный гидроксил, гликозид

Эфирноподобная (но не эфирная) связь, возникающая в результате замещения атома водорода в полуацетальном гидроксиле радикалом спирта, называется гликозидной.
Физико-химические свойства гликозидов во многом определяются особенностями этой связи: в отличие от простых эфиров гликозиды довольно устойчивы к воздействию гидроксидов щелочных металлов, но легко гидролизуются с образованием сахара и агликона ферментами и разбавленными кислотами.
По характеру конфигурации полуацетального гидроксила, участвующего в образовании гликозидной связи, различают альфа- и бета-гликозиды:


Большинство природных гликозидов имеют бета-конфигурацию.

Гликозиды отличаются большим разнообразием. Это разнообразие обусловлено, с одной стороны, природой агликона, с другой – характером сахара. Углеводными компонентами гликозидов могут быть моносахариды, дисахариды и олигосахариды. Гликозиды соответственно называются монозидами, биозидами и олигозидами. При этом из моносахаридов в составе гликозидов наиболее часто встречаются гексозы и пентозы (D-глюкоза, D-галактоза, L-рамноза и т.д.) и уроновые кислоты, например D-галактуроновая.

Иногда встречаются специфические сахара, присущие только одной группе гликозидов и не встречающиеся в других. Из изучаемых нами веществ гликозидной природы такой группой являются сердечные гликозиды, которые наряду с вышеуказанными сахарами имеют специфические дезоксисахара, т.е. сахара, обедненные кислородом – бета-D-дигитоксозу, бета-D-цимарозу и другие:

бета-D-дигитоксоза, бета-D-цимароза

Полуацетальный гидроксил сахаров может образовывать гликозидные связи не только со спиртовым гидроксилом агликона, но и с амино- или тиогруппировками, содержащимися в агликоне. Иногда гликозидные связи возникают между атомом углерода, содержащимся в сахаре, и каким либо углеродом агликона. В связи с этим среди гликозидов выделяют О-, N-, S- и С-гликозиды.

Гликозиды. Классификация.

В зависимости от химической структуры агликона растительные гликозиды делятся на следующие группы:

1. Производные антрацена. В основе агликонов лежит ядро производных антрацена:

Антрацен

В растениях антраценпроизводные встречаются как в свободном виде, т.е. в только форме агликонов, так и в виде гликозидов. В последнем случае такие антраценпроизводные называются антрагликозидами. Сахарный компонент может быть представлен глюкозой, ксилозой, рамнозой и арабинозой.
Большинство антрагликозидов относятся к О-гликозидам, при этом сахарный компонент может быть присоединен к агликону в альфа- и бета- положениях.

2. Дубильные вещества гидролизуемой группы – галлотанины, эллаготанины и несахарные эфиры галловой кислоты. Галлотанины представляют собой гликозиды галловой кислоты. Агликоном эллаготанинов служит эллаговая кислота.

галловая кислота, эллаговая кислота

Как правило, эти виды гликозидов являются О-монозидами, в которых сахаром выступает -D-глюкоза.

3. Иридоидные (горькие) гликозиды. Агликоны являются производными циклопентаноидных монотерпенов:

Как правило к агликону присоединен один остаток бета-D-глюкозы.

4. Сапонины. В растениях всегда находятся в виде гликозидов. Их агликонами (сапогенинами) служат либо стероидные структуры – производные циклопентанпергидрофенантрена (1), либо тритерпеновые (II):

Сапонины

Чаще всего к тритерпеновому агликону углеводная часть присоединена в положении С-3, реже – С-28; к стероидному – в положении С-3. Наиболее богаты сахарами тритерпеновые сапонины: их углеводная часть может содержать 10 и более остатков моносахаров. Сахарная часть стероидных сапонинов содержит, как правило, от 1 до 5 моносахаридных звеньев.
По количеству молекул моносахаров сапонины подразделяются на монозиды, биозиды, триозиды, тетра-, пента- и олигозиды – при числе моноз от 6 и выше.
Так как углеводная часть сапонинов чаще всего состоит из нескольких молекул моносахаридов, то гидролиз в определенных условиях может протекать ступенчато, с постепенным отщеплением сахаров. Образующиеся при этом продукты частичного гидролиза называются просапогенинами.
В состав углеводной части молекулы сапонинов входят такие сахара, как D-глюкоза, D-галактоза, L-рамноза, L-фруктоза и другие, а также D-глюкуроновая и D-галактуроновая кислоты. Многие сапонины содержат в углеводной части несколько остатков различных моносахаридов.
Некоторые тритерпеновые гликозиды имеют разветвленную углеводную цепь.
Среди растительных сапонинов встречаются гликозиды с двумя углеводными цепями при одном агликоне – в этом случае их называют дигликозидами.

5. Сердечные гликозиды – агликонами являются производные циклопентанпергидрофенантрена:

Сердечные гликозиды

Сахарные компоненты всегда присоединяются к агликону в положении С-3. Длина сахарной цепочки у различных гликозидов разная – от одной молекулы до нескольких.
В составе сердечных гликозидов обнаружено до 30 различных сахаров, причем большинство из них, кроме глюкозы, фруктозы и рамнозы, сахара, специфичные для сердечных гликозидов, и в других биологически активных веществах растительного происхождения не встречаются. Это 6-дезокси- и 2,6-дезоксигексозы, которые, кроме того, часто содержат метоксильные или ацетильные группы (дигитоксоза, цимароза).
Углеводные компоненты сердечных гликозидов построены линейно, причем к агликону обязательно сначала присоединяются дезоксисахара, а концевым (терминальным) моносахаридом служит глюкоза.

6. Фенольные гликозиды – форма фенольных соединений (преимущественно производных бензойной кислоты и фенолоспиртов), у которых гидроксильная группа связана, как правило, с одной молекулой бета-D-глюкозы.

арбутин

7. Флавоноиды. В растениях встречаются как в свободном виде, так и в виде гликозидов. Агликоном является производное бензо-гамма-пирона, в основе которого лежит фенилпропановый скелет:

Флавоноиды

В качестве сахаров встречаются D-глюкоза, D-галактоза, D-ксилоза и др., а также глюкуроновая кислота. Флавоноидные гликозиды делятся на 3 группы: О-гликозиды, С-гликозиды и так называемые комплексные гликозиды.
Для нас наибольший интерес представляют О-гликозиды, которые могут быть моногликозидами или дигликозидами (с одной или двумя углеводными цепями, расположенными, как правило у С-4 или С-6). Количество остатков моносахаров может быть различным – от 1 до 6 и более, причем сахара могут сочетаться как в прямые, так и в разветвленные цепи.

8. Тиогликозиды – относятся к S-гликозидам и являются производными циклических форм сахаров, у которых полуацетальный гидроксил замещен на алкилтио- или арилтиогруппу:

В качестве сахара почти всегда выступает 1 молекула -D-глюкозы.

9. Цианогенные гликозиды – гликозиды, образующие в процессе гидролиза синильную кислоту. Сахарный компонент представлен 1 или 2 остатками -D-глюкозы.

10. Гликозиды различного состава.

Гликозиды. Физико-химические свойства

По физико-химическим свойствам гликозиды – как правило, кристаллические вещества, часто горького вкуса, бесцветные или окрашенные. В большинстве своем они легко растворимы в воде и спирте, плохо растворимы или нерастворимы в неполярных органических растворителях. Обладают оптической активностью.
Гликозиды широко распространены в растительном мире и могут содержаться во всех частях растений в растворенном виде в клеточном соке.

Важным свойством гликозидов является их способность к спонтантанному ферментативному гидролизу. В случае, если гликозид содержит несколько сахаров (три и более), то под действием эндогенных ферментов происходит ступенчатый гидролиз и из “первичного” гликозида при отщеплении концевого сахара возникает “вторичный”, затем “третичный” и т.д.

Тип фармакологического действия при этом не изменяется, так как он детерминирован структурой агликона, но могут существенно изменяться фармакокинетические параметры (скорость наступления эффекта). Это обусловлено тем, что сахарный компонент существенно влияет на растворимость, и, следовательно, на всасываемость гликозида в организме. Для некоторых групп гликозидов это обстоятельство не имеет существенного значения (например, ряда флавоноидов, антрагликозидов и др.), для других же (сердечные гликозиды), оно является весьма важным.

ГЛИКОЗИДЫ, группа углеводсодержащих веществ, образующихся при реакции конденсации циклических моно- и олигосахаридов со спиртами, фенолами, тиолами и аминами, широко представленных в живых организмах, особенно в растениях. Синтезировано также множество гликозидов, не имеющих природных аналогов. Для гликозидов характерна способность к гидролизу (т.е. расщеплению в реакции с водой) с образованием одного или нескольких остатков сахаров и вещества неуглеводной природы, так называемого агликона. Гидролиз осуществляется в теплой воде в присутствии специфических ферментов или при кипячении с разбавленными кислотами. Некоторые типы гликозидов гидролизуются также при нагревании с разбавленными растворами щелочей.

Общая классификация.

Обычно гликозиды классифицируют по типу агликона. Основные классы гликозидов перечислены ниже.

Тиольные гликозиды

(тиоцианатные, изотиоцианатные, сульфо- и неорганические агликоны) в основном встречаются в растениях семейства крестоцветных (Cruciferae): например, синигрин, выделенный из семян черной горчицы и корней хрена, синальбин из семян белой горчицы и глюкотропеолин из садовой настурции.

Цианогенные гликозиды

(циангидрин, синильная кислота) обнаружены в сотнях видов растений: амигдалин из горького миндаля, дуррин из сорго и лотузин из Lotus arabicus.

Фенольные гликозиды,

при гидролизе которых образуются различные типы фенолов: арбутин (образуется гидрохинон), салицин (орто-гидроксибензиловый спирт), хелицин и спиреин (салициловый альдегид), геин (эвгенол) и т.д.

Антрагликозиды,

которые включают гликозиды гидроксиантрахинонов и антрахинонов, встречаются во многих видах растений, применяемых как слабительное и в качестве сырья для получения красителей. Примерами служат барбалоин из алоэ, франгулин из коры крушины, полигонин из Polygonum sieboldi (горца), реохризин из корней китайского ревеня.

Пигментные гликозиды

объединяют гликозиды антоксантина, антоциана, флавона, флавонола и других пигментов растений: например, пуницин из плодов граната, мальвин из дикой мальвы (просвирника), генистеин из дрока красильного, идеин из клюквы.

Сердечные гликозиды

используются при лечении различных сердечных заболеваний. Наиболее важными среди них являются гликозиды из наперстянки (Digitalis) – дигитоксин, гитоксин и гиталин. Строфантины – гликозиды из семян растений рода Strophanthus – задолго до их использования в современной кардиологии применялись в неочищенном виде африканскими племенами как яды для стрел.

Сапониновые гликозиды

Сапонины действуют на организм характерным образом: 1) попадая на слизистую носа, вызывают чихание; 2) вызывают образование гематом (гемолиз); 3) являются смертельным ядом для рыб и низших животных; 4) заметно понижают поверхностное натяжение в жидкостях, которые служат им растворителем. Сапонины и сапонинсодержащие материалы широко применяются в фармации, медицине и технике. Они используются как моющие средства, особенно для шелка и других ценных тканей, как яды для рыб и насекомых, в огнетушителях (для стабилизации пены). Примерами сапонинов являются дигитонин из наперстянки, сарсапонин из сарсапарили (смилакс лекарственный или смилакс китайский) и триллин из триллиума (вороний глаз, растение из семейства лилейных).

Другие классы гликозидов

включают гликозиды галловой кислоты, стеринов, кумаринов, пуринов и пиримидинов (нуклеозиды), меркаптанов, алкалоидов, терпенов, сфингозинов (цереброзиды и ганглиозиды) и некоторых антибиотиков.

Распространенность.

Гликозиды встречаются в коре, плодах, корнях, клубнях, цветках и других частях растений. Иногда в одном растении содержится несколько разных гликозидов. Они образуются там, где активно идет биосинтез, например в листьях и зеленых стеблях, и в растворенном виде переносятся к местам накопления – корням и семенам. Большинство растительных пигментов – это гликозиды. Многие таннины также являются гликозидами. Первоначально предполагалось, что гликозиды образуются только в растениях, однако теперь известно, что они могут возникать и в организме животных в процессе пищеварения, когда некоторые вредные организму вещества, соединяясь с глюкуроновой кислотой (которая родственна глюкозе и играет ту же роль, что и глюкоза в растительных гликозидах), экскретируются с мочой.

Функции.

Из нескольких теорий, предложенных для объяснения роли гликозидов в физиологии растений, следующие три наиболее правдоподобны. 1) В незрелых фруктах гликозиды, благодаря их горькому вкусу, служат для защиты от поедания животными. По мере созревания фруктов бесцветные горькие гликозиды расщепляются, выделяя пигменты, придающие плодам привлекательный цвет, ароматические вещества, сообщающие им аромат, и сахара, делающие их сладкими. Все это привлекает различных животных, птиц и насекомых, что ведет к эффективному распространению семян. 2) Согласно другой теории, гликозиды являются средством удаления ядовитых веществ путем их связывания и превращения в инертные формы (детоксикация). 3) Третья теория утверждает, что гликозиды представляют собой форму сохранения сахаров как резерва питания. Их расщепление – быстрый путь обеспечения растения сахарами.

Физические свойства и экстракция.

Гликозиды проявляют нейтральные или слабокислотные свойства. Они растворимы в воде и разбавленном водном спирте и могут экстрагироваться этими растворителями. При экстракции нужно позаботиться об инактивации или разрушении ферментов, чтобы предупредить гидролиз гликозидов. Этого можно достичь, применяя горячие растворители. Для исключения возможности кислотного гидролиза поддерживают нейтральную реакцию, например, прибавляя мел.

Идентификация и количественное определение.

Гликозиды распознают, идентифицируя продукты их расщепления – сахара и агликоны. Для этого применяют обычные методы разделения и идентификации органических соединений: различные виды хроматографии, масс-спектрометрию, спектроскопию ядерного магнитного резонанса и т.п. Для количественной оценки содержания гликозидов в сырье проводится определение свободных сахаров до и после гидролиза: прирост количества свободных сахаров соответствует количеству разрушенных гидролизом гликозидных связей. Зная состав гликозидов, можно оценить их содержание в образце.
См. также СТЕРОИДЫ; ТАННИНЫ.

Бочков А.Ф. и др. Образование и расщепление гликозидных связей. М., 1978

Читайте также: