Фуллерены и фуллериты реферат

Обновлено: 04.07.2024

Электрооптические материалы – технические природные и синтетические материалы, прозрачные в том или ином диапазоне электромагнитных волн. Оптические материалы используют для изготовления элементов оптических систем, работающих в разных областях спектра электромагнитных волн.

К примерам таких материалов можно отнести: фуллерены, пористые структуры различных веществ (к примеру Si), жидкие кристаллы, оксид Ge, тетрахлорид Ge, GaAs и т.д. Оптоэлектроника является одним из наиболее динамично развивающихся научно – технических направлений в связи с резким расширением области применения и способностью решать задачи нетрадиционными методами. В связи с широким кругом применений в системах получения информации, ее обработки, хранения, передачи и отображения, а также разнообразием используемых материалов встает вопрос о целой гамме оптоэлектронных технологий, включая индикаторные системы, формирователи сигналов изображения, волоконно – оптические линии передачи, преобразователи солнечной энергии, оптическую вычислительную технику.

Интереснейшим материалов в оптоэлектронике являются фуллерены.

Фуллерены – устойчивые многоатомные кластеры углерода от нескольких десятков и выше были открыты в 1985 г. группой исследователей,которые при изучении масс-спектров паров графита наблюдали пики, соответствующие массам 720 и 840 а. е. [1]. Исследователи назвали данные молекулы, представляющие собой новую форму углерода, фуллеренами – по имени американского архитектора Бакминстера Фуллера, использующего своеобразную структуру, напоминающую футбольный мяч, в своих строительных композициях. Поэтому в зарубежных научных публикациях часто используется термин “buckminsterfullerene” (пишется одним словом). В 1996 г. первооткрывателям фуллеренов была присуждена Нобелевская премия по химии.

При облучении лазером молекулы фуллерена переходят в возбужденное состояние. За счет существенного увеличения поглощения молекул фуллерена с возбужденного состояния, фуллерены способны поглощать лазерное излучение большой интенсивности. Коэффициент поглощения этих молекул увеличивается с ростом интенсивности излучения, что дает возможность использовать данные системы в лазерной физике и оптоэлектронике, поскольку позволяет создавать нелинейные абсорберы (поглотители, ограничители, фильтры) широко спектрального и энергетического диапазонов.

1. Основные сведения о симметрии фуллеренов

Каркас молекулы С60 состоит из 12 правильных пятиугольников (пентагонов) и 20 немного искаженных шестиугольников (гексагонов). Диаметр молекулы составляет 0.71 нм. Группа симметрии икосаэдра состоит из 120 элементов симметрии, включая 6 осей симметрии пятого порядка (через центры пентагонов), 10 осей третьего порядка (через центры гексагонов) и 15 осей второго порядка (перпендикулярно ребру между гексагонами). В икосаэдрической структуре молекулы С60 все атомы углерода эквивалентны, каждый атом принадлежит двум шестиугольникам и одному пятиугольнику и связан с ближайшими соседями двойной и двумя одиночными ковалентными связями. Непланарность молекул приводит к сильным напряжениям, вследствие чего фуллерены термодинамически менее стабильны, чем графит. Энергия на­пряжения забирает 80 % теплоты формирования.


Рисунок1. Молекула фуллерена С60 в стандартных ориентациях А и В

относительно кристаллографических осей.


Рисунок 1а. Основные типы молекул фуллеренов


Рисунок 1б. Структура “Нить жемчуга” на основе С60

Для рассмотрения вопроса о длине связей в молекуле фуллерена вспомним понятие гибридизации атомных орбит. Электронная оболочка атома углерода содержит четыре валентных электрона конфигурации s 2 p 2 . Валентные электроны атома находятся на разных орбитах, отличающихся друг от друга распределением электронного облака в пространстве. На основании этого можно было бы предположить наличие связей, не равноценных ни по направлению, ни по прочности: p-орбиты должны создавать более прочные связи, чем s-орбиты. Однако, по данным, например, рентгеноструктурного анализа, молекула ВСl3(хлорид бора) содержит совершенно эквивалентные связи. Для объяснения подобных фактов было предположено, что валентные электроны формируют связи не за счет чистых s,p,d,f-орбит, а за счет смешанных, гибридных орбит. При гибридизации обеспечивается гораздо большее перекрытие электронных облаков вдоль линии, соединяющей центры атомов, чем в случае негибридизированных волновых функций. Благодаря этому происходит понижение энергии всей молекулы и упрочнение связей. При sp 3 -гибридизации углам между направлениями, вдоль которых гибридные волновые функции имеют максимумы, соответствуют тетраэдрические значения 109°28'. Гибридизация d 2 sp 3 дает октаэдр. В конфигурации алмаза каждый из четырех валентных электронов углерода принадлежит тетрагонально направленной sp 3 -гибридной орбитали, которая создает прочную сигма-связь с соседним атомом. В случае графита каждый из трех валентных электронов принадлежит тригонально направленной sp2-гибридной орбитали, участвующей в формировании сильных внутреслойных сигма-связей, а четвертый электрон находится на орбитали pп, направленной перпендикулярно сигма-плоскости. Эта орбиталь формирует слабые, делокализованные пи-связи со своими соседями, при этом пи-связь часто называют ненасыщенной связью. Для графита расстояние между атомами в узлах гексагональной сетки равно 0.142 нм, а между сетками (слоями) 0.335 нм. Для простоты принято говорить, что углеродные атомы фуллереновой клетки имеют sp 2 -гибридизацию. Однако это не совсем так, поскольку это возможно только для планарных структур, а отклонение приводит к частичной регибридизации. Для С60 примешивание сигма-связей приводит к состоянию sp 2 . Связи, которыми соединяются 2 гексагона ((6,6)-связь, 0.139 нм), двойные и они короче, чем одиночные связи на границе пентагона и гексагона ((5,6)-связь, 0.145 нм). Различия в длине связей ослабевают для С60 -6 и исчезают для С60^-12. Для К6С60 длины связей равны 0.142 и 0.145 нм, в то время как для Li12С60 (6,6)-связь становится длиннее (5,6)-связи: 0.145 и 0.144 нм. Следовательно, причина чередования связей — в заселенности молекулярных орбиталей.


Открытие фуллеренов - новой формы существования одного из самых распространенных элементов на Земле – углерода, признано одним из удивительных и важнейших открытий в науке XX столетия. Сегодня я расскажу вам о том, как и где применяются фуллерены на сегодняшний день. Фуллерен

Итак, что же такое – фуллерен?

Фуллерен - молекулярное соединение, принадлежащее классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Своим названием фуллерены обязаны инженеру и дизайнеру Ричарду Бакминстеру Фуллеру, чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани.

В противоположность алмазу, графиту и карбину, фуллерен является новой формой углерода по существу. Молекула С60 содержит фрагменты с пятикратной симметрией (пентагоны), которые запрещены природой для неорганических соединений. Поэтому следует признать, что молекула фуллерена является органической молекулой, а кристалл, образованный такими молекулами (фуллерит) - это молекулярный кристалл, являющийся связующим звеном между органическим и неорганическим веществом.

Первые фуллерены выделяли из конденсированных паров графита, получаемых при лазерном облучении твёрдых графитовых образцов. Фактически, это были следы вещества.

Следующий важный шаг был сделан в 1990 году В. Кретчмером, Лэмбом, Д. Хаффманом и др., разработавшими метод получения граммовых количеств фуллеренов путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях. В процессе эрозии анода на стенках камеры оседала сажа, содержащая некоторое количество фуллеренов. Сажу растворяют в бензоле или толуоле и из полученного раствора выделяют в чистом виде граммовые количества молекул С60 и С70 в соотношении 3:1 и примерно 2 % более тяжёлых фуллеренов. Впоследствии удалось подобрать оптимальные параметры испарения электродов (давление, состав атмосферы, ток, диаметр электродов), при которых достигается наибольший выход фуллеренов, составляющий в среднем 3-12 % материала анода, что, в конечном счёте, определяет высокую стоимость фуллеренов.

Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С60 за последние 17 лет — с 10 тыс. до 10-15 долл. за грамм, что подвело к рубежу их реального промышленного использования.

В настоящее время предлагаются разные способы сборки молекулы фуллерена из фрагментов. Целью этих исследований является достижение понимания механизма образования сферических молекул из известной структуры графита и других органических соединений, используемых в качестве сырья при генерации фуллеренов. Знание механизма образования фуллеренов позволит исследователям, в свою очередь, целенаправленно создавать и варьировать способы и условия синтеза различных типов фуллеренов и их производных.

Основой для получения фуллеренов являются высокотемпературные пары углерода. Существует множество способов их получения: нагревание графитовых стержней электрическим током в вакууме, электродуговой разряд между графитовыми электродами в атмосфере гелия, лазерное испарение углерода, сжигание углеводородов и нафталина. В результате синтеза образуется сложная смесь, содержащая углеродную сажу, смесь фуллеренов различного состава и молекулы примесей, как правило, полиароматических углеводородов. Выделение фуллеренов проводят экстракцией органическими растворителями с последующим разделением на индивидуальные продукты.

Кристаллические фуллерены и пленки представляют собой полупроводники с шириной запрещенной зоны 1,2-1,9 эВ и обладают фотопроводимостью. При облучении видимым светом электрическое сопротивление кристалла фуллерита уменьшается. Фотопроводимостью обладают не только чистый фуллерит, но и его различные смеси с другими веществами. Было обнаружено, что добавление атомов калия в пленки С60 приводит к появлению сверхпроводимости при 19 К.

Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур. Обладая высокой электроотрицательностью, они выступают в химических реакциях как сильные окислители. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами. Так, недавно получены пленки полифуллерена, в которых молекулы С60 связаны между собой не ван-дер-ваальсовским, как в кристалле фуллерита, а химическим взаимодействием. Эти плёнки, обладающие пластическими свойствами, являются новым типом полимерного материала. Интересные результаты достигнуты в направлении синтеза полимеров на основе фуллеренов. При этом фуллерен С60 служит основой полимерной цепи, а связь между молекулами осуществляется с помощью бензольных колец. Такая структура получила образное название "нить жемчуга".[4]

Разнообразие физико-химических и структурных свойств соединений на основе фуллеренов позволяет говорить о химии фуллеренов как о новом перспективном направлении органической химии.

В молекулах фуллеренов атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов -фуллерен (C60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч. Так как каждый атом углерода фуллерена С60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13С - он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1.39 А, а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1.44 А. Кроме того, связь первого типа двойная, а второго - одинарная, что существенно для химии фуллерена С60.

Перспективы применения фуллеренов обусловлены спецификой их физико-химических характеристик. Добавка небольшого их количества способна существенно изменить свойства модифицированного материала.

По мнению многих экспертов особенно выражены преимущества фуллеренов в следующих практических приложениях:

Материалы, модифицируемые фуллеренами

Создание новых конструкционных материалов с уникальными свойствами для использования в строительстве инженерно-технических сооружениях и в изготовлении средств индивидуальной защиты.

Тканые материалы специального назначения (ленты, полотна, паруса, канаты, сверхпрочные нити) на основе полимерных молекул, модифицированные фуллеренами;

Бетонополимеры повышенной прочности и влагостойкости;

Легкие волокнистые структуры, модифицированные фуллеренами и наноструктурами, как упрочненные уплотняющие материалы;

Сверхпрочные (выше твердости алмаза) насадки специального инструмента.

Улучшение эксплуатационных характеристик транспортных средств и других специальных механизмов.

Присадки к маслам и смазкам, резко повышающие износоустойчивость пар трения в машинах и механизмах;

Антизадирные составы для узлов, работающих в условиях повышенных нагрузок;

Материалы для снижения износа в условиях сухого трения;

Смазывающе-охлаждающие технологические составы, увеличивающие жизнеспособность инструмента.

Получение новых композиционных материалов электротехнического назначения.

Композиционные материалы скользящих сильноточных электрических контактов с повышенным ресурсом работы;

Термомодифицированные материалы электродов для химических источников тока;

Элементы сверхпроводящих конструкций на основе фуллереновых интеркалятов.

Получение новых композиционных материалов для оптического и радиоэлектронного противодействия.

Материалы защитных экранов антилазерного назначения;

Материалы для стелс-технологий различного назначения;

Материалы устройств для корреляции лазерного изображения в системах наблюдения и обработки спутниковой информации (высокоразрешающие динамические голограммы);

Материалы дифракционных ветвителей в волоконно-оптических сетях.

Создание материалов и микроэлектронных изделий специального назначения.

Материалы новейших микросенсоров;

Тонкопленочные защитные покрытия высокой стойкости;

Неорганические резисты субмикронного разрешения;

Электрооптические модуляторы света, в том числе многоканальные, и модуляторы на эффекте “свет-свет”.

Разработка новых технологий в медицине.

Следует учесть, что возможные области применения фуллеренов не исчерпываются указанными выше, а постоянно расширяются.

В настоящее время преобладающая часть научных исследований связана с химией фуллеренов. На основе фуллеренов уже синтезировано более 3 тысяч новых соединений. Столь бурное развитие химии фуллеренов связано с особенностями строения этой молекулы и наличием большого числа двойных сопряженных связей на замкнутой углеродной сфере. Комбинация фуллерена с представителями множества известных классов веществ открыла для химиков-синтетиков возможность получения многочисленных производных этого соединения.

Перспективы применения фуллеренов обусловлены спецификой их физико-химических характеристик. Они являются перспективными наноматериалами для создания новых видов продукции с улучшенными свойствами, которые могут найти свое применение во множестве отраслей промышленности: энергетике, электронике, медицине, фармацевтике, машиностроении и др.Главным препятствием для широкомасштабного применения и производства фуллеренов является несовершенство методов его синтеза.


Обзор

Автор
Редакторы


Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Мячи для нанофутболистов

Молекула фуллерена очень похожа на футбольный мяч

Рисунок 1. Молекула фуллерена очень похожа на футбольный мяч, только забивать им голы сможет лишь футболист наноскопического размера

Физики и химики нашли фуллеренам множество применений: их используют при синтезе новых соединений в оптике и при производстве проводников. О биологических же свойствах фуллеренов долгое время поступали неоднозначные данные: биологи то объявляли их токсичными [4], то обнаруживали антиоксидантные свойства фуллеренов и предлагали использовать их в лечении таких серьезных заболеваний, как бронхиальная астма [5].

Крысы-долгожители

Продление жизни подопытных мышей

Почему же фуллерены оказались столь эффективными в борьбе со старением?

Схема строения митохондрии

Рисунок 3а. Схема строения митохондрии

Перенос протонов органическими кислотами

Моделирование in silico: что сделали физики

Биологи подтверждают гипотезу?

Светящиеся бактерии

Рисунок 5. Светящиеся бактерии на чашке Петри (слева) и принцип действия биосенсоров (справа)

Такие модифицированные штаммы разрабатываются в ГосНИИ Генетики [19] и широко применяются в генетической токсикологии [20] при изучении механизмов действия излучений и окислительного стресса [21], действия антиоксидантов (в частности, SkQ1 [22]), а также для поиска новых перспективных антиоксидантов среди синтезируемых химиками веществ [23].

Первые же результаты показали, что водная суспензия фуллерена C60, для более эффективного растворения обработанная ультразвуком, при добавлении к культуре биосенсоров увеличивала их устойчивость к повреждению ДНК активными формами кислорода. Уровень таких повреждений в опыте был на 50–60% ниже, чем в контроле.


Фуллерен — это сравнительно недавно открытая материальная частица с размером около трети нанометра. Несмотря на недавние открытие фуллеренов, фуллерены активно используются в промышленности. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами.

Фуллерен — это молекулярное соединение, принадлежащее классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. В противоположность алмазу, графиту и карбину, фуллерен по существу является новой формой углерода. Молекула С60 содержит фрагменты с пятикратной симметрией (пентагоны), которые запрещены природой для неорганических соединений. Поэтому следует признать, что молекула фуллерена является органической молекулой, а кристалл, образованный такими молекулами (фуллерит) — это молекулярный кристалл, являющийся связующим звеном между органическим и неорганическим веществом. Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур.

В настоящее время в научной литературе обсуждаются вопросы использования фуллеренов для создания фотоприемников и оптоэлектронных устройств, катализаторов роста, алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также в качестве красителей для копировальных машин. Фуллерены применяются для синтеза металлов и сплавов с новыми свойствами.

Цель исследования: изучить строение С60 и аллотропных форм углеводородов.

В связи с поставленной целью определяются следующие задачи:

– описать строение С60 и С70 (построить их модели в бумажном виде);

– сравнить химические и физические свойства фуллеренов, однослойных и многослойных нанотрубок.

С давних пор известны такие формы углерода, как графит и алмаз. Графит, и алмаз — это один и тот же химический элемент — углерод (С). Отличаются графит и алмаз расположением атомов углерода в кристаллической решетке. В 1967 году в Институте элементоорганических соединений СССР была синтезирована третья форма углерода — карбин, состоящая из линейных, палочкоообразных молекул углерода. Это три структуры бесконечной протяженности имеют различное строение: сетчатое (алмаз), слоистое (графит) и линейное (карбин).

Фуллерен в отличие от известных трех форм углерода растворим в органических растворителях (бензол, гексан, сероуглерод). Из растворов фуллерен кристаллизуется в виде мелких темно-коричневых кристаллов. Увидеть молекулу фуллерена удалось только после того, как был получен хорошо кристаллизующийся продукт взаимодействия фуллерена с тетраоксидом осмия OsO4.

1) Фуллерен гидрируется до С60Н36.

2) Галогенируется подобно олефинам.

3) Продукты галогенирования легко вступают в реакции нуклеофильного замещения.

4) При окислении кислородом образуется оксид фуллерена.

5) Фуллерен арилируется в присутствии AlCl3.

Фуллерены активно используются в создании новых конструкционных материалов (тканых, радиозащитных и термомодифицированных материалов электродов для химических источников тока; материалов дифракционных ветвителей в волоконно-оптических сетях; материалов эффективного диализа применительно к сильнодействующим ядовитым веществам в полевых условиях).

Нанотрубка — это молекула из более миллиона атомов углерода, представляющая собой трубку с диаметром около нанометра и длиной несколько десятков микрон. В стенках трубки атомы углерода расположены в вершинах правильных шестиугольников. Углеродные нанотрубки образуются при термическом распылении графитового электрода в плазме дугового разряда, горящей в атмосфере гелия.

Основные термины (генерируются автоматически): атом углерода, форма углерода, молекула, нанотрубка, графит, свойство.

Читайте также: