Энтропия законы термодинамики реферат

Обновлено: 30.06.2024

Оглавление
Введение…………………………………………………………………………. 3
1. Основные законы термодинамики…………………………………………….4
1.1. Первый закон термодинамики…………………………………………….4
1.2. Второй закон термодинамики……………………………………………..6
1.3. Третий закон термодинамики……………………………………………. 9
2. Применение в теплофизике…………………………………………………..11
Заключение……………………………………………………………………….12
Список литературы………….………………………………………………. 13

Введение
Термодинамика — раздел физики, изучающий наиболее общие свойства макроскопических систем [1] и способы передачи и превращения энергии в таких системах. Данный раздел занимается изучением состояний и процессов, которые определены разнообразными связями с температурой. Термодинамика во многом опирается на обобщение опытных фактов, то есть она является феноменологической наукой. Все термодинамические процессы описываются макроскопическими величинами. Основными из них являются следующие величины: температура, давление, концентрация компонентов. Они вводятся для описания систем, состоящих из большого количества частиц, при этом не применяются к отдельным составляющим вещества.
В данное время термодинамика относится к строгой теории, развивающейся на основе нескольких постулатов, которые имеют определенную связь со свойствами частиц и законами их взаимодействия. Это обусловлено не только процессами самой термодинамики, но и статической физикой. Именно статическая физика занимается выяснением границ применимости термодинамики [3].
Все законы термодинамики имеют общий характер и не зависят от определенных деталей строения вещества на молекулярном уровне, поэтому они применяются довольно-таки широком круге науки и техники, затрагивая самые разные области: энергетика, химия, теплотехника, машиностроение, материаловедение, инженерия и т.д. Для каждой области термодинамика имеет большое значение и находит свое применение в ней [2].
1. Основные законы термодинамики
1.1. Первый закон термодинамики
Закон о сохранении и превращении энергии для термодинамической системы является первым законом термодинамики. По его определению работа может совершаться за счет какого-либо существующего вида энергии, например теплоты. Поэтому работу и количество теплоты, как и энергию измеряют в одних единицах – Джоулях.
Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.
Первый закон термодинамики формулируется так: изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
ΔU = A + Q, где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.
Из (ΔU = A + Q) следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, то A = 0 и Q = 0, а, следовательно, и ΔU = 0.
При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.
Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:
Q = ΔU + Á, где A' — работа, совершаемая системой (A' = -A).
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.
Первый закон определяет собой невозможность существования вечного двигателя, который мог бы совершать работу исключительно за счет своей внутренней энергии, не используя сторонней.
Действительно, если к телу не поступает теплота (Q - 0), то работа A', согласно уравнению первый закон термодинамики, совершается только за счет убыли внутренней энергии А' = -ΔU. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.
Следует помнить, что как работа, так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится определенное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.
1.2. Второй закон термодинамики
Второй закон термодинамики указывает на существование энтропии [4] как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры. То есть второе начало определяет начало об энтропии, а также её свойствах и признаках. Важно отметить, что энтропия, находясь в изолированной системе, остается либо неизменной, либо возрастает (в условиях неравновесных процессов). Энтропия достигает своего максимума при установлении термодинамического равновесия. Это определено законом возрастания энтропии. Частым образом в литературных источниках встречаются разнообразные формулировки второго закона термодинамики, являясь следствиями закона возрастания энтропии.
Второй закон тесно связан с понятием энтропии (S). Она порождается буквально всеми процессами и связана с потерей способности системы совершать работу. Рост энтропии является стихийным процессом. Изменения в системе увеличения энтропии происходят в том случае, если объем и энергия системы не являются постоянными. В обратном случае (если объем и энергия непостоянны) энтропия подвержена уменьшению.
Чтобы можно было использовать энергию, необходимо иметь в системе области с высоким и низким уровнем энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.
Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:
где S – энтропия; L – путь, по которому система переходит из одного состояния в другое.
В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.
Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:
где k – постоянная Больцмана; w – термодинамическая вероятность (она определяет количество способов реализации макросостояния системы). Таким образом, второе начало термодинамики определяется статическим законом, непосредственно связанным с описанием закономерностей теплового движения молекул (при этом движение является хаотическим). Данное движение молекул и составляет систему термодинамики.
Второй закон термодинамики имеет другие формулировки. Из них можно выделить две основных – формулировка Кельвина и формулировка Клаузнуса.
Формулировка Кельвина звучит следующим образом: невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Данная формулировка позволяет сделать вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:
где Tn – температура нагревателя; Th — температура холодильника; (T_n > T_h).
Формулировка Клаузиуса имеет следующий вид: невозможно создать круговой процесс, в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.
Таким образом, второй закон термодинамики обуславливает огромное различие между двумя формами передачи энергии, а именно между работой и теплотой [5]. Данный закон позволяет сделать вывод о том, что переход упорядоченного перемещения тела является необратимым процессом. Притом такое перемещение может переходить в хаотическое движение без каких-либо дополнительных процессов.
1.3. Третий закон термодинамики
Третий закон термодинамики носит и другое название – теорема Нернста. Она основана на физическом принципе, который определяет энтропию при приближении температуры к абсолютному нулю. Закон определен обобщением значительного количества экспериментальных данных по термодинамике гальванических элементов [6]. Теорема сформулирована Вальтером Нернстом в 1906 году. Современная формулировка теоремы принадлежит Максу Планку.
Теорема Нернста утверждает, что всякий термодинамический процесс, протекающий при фиксированной температуре T в сколь угодно близкой к нулю не должен сопровождаться изменением энтропии S, то есть изотерма T=0 совпадает с предельной адиабатой S0.
Данная теорема имеет несколько эквивалентных между собой формулировок:
- энтропия любой системы при температуре, значение которой приближено к абсолютному нулю, является универсальной постоянной и не зависящей от различных переменных параметров;
- при приближении к абсолютному нулю энтропия стремится к конкретному пределу, который не зависит от конечного состояния системы;
- приращение энтропии при приближении к абсолютному нулю не может зависеть от различных значений параметров термодинамики, всегда стремится к конечному определенному пределу;
- при процессах, происходящих при абсолютном нуле, система способна переходить из одного состояния равновесия в другое, при этом энтропия совершенно не изменяется [7].
Данный закон позволяет находить абсолютное значение энтропии. Этого нельзя сделать в рамках первого и второго закона термодинамики, поскольку в них энтропия определяется с точностью до произвольной аддитивной постоянной S0. Это не мешает исследованию и изучению термодинамических процессов, разность энтропий измеряется в различных состояниях.
Третий закон термодинамики имеет определенные следствия:
- абсолютный нуль температур не может достигаться ни в каких конечных процессах, связанных с изменением энтропии. К нулю можно приближаться лишь асимптотически;
- стремление теплоемкости к нулю при постоянном давлении и объеме. К нулю стремятся также коэффициенты теплого расширения и другие аналогичные величины [8].
Справедливость третьего начала термодинамики одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при T=0) связаны с метастабильными состояниями вещества, которые нельзя считать термодинамически равновесными.
2. Применение в теплофизике
Каждый закон термодинамики имеет своё применение в теплофизике. Первый закон имеет практическое применение к различным процессам в физике. К примеру, благодаря ему можно вычислить идеальные параметры газа при самых разнообразных процессах, как тепловых, так и механических.
Применение второго закона имеет достаточно обширную область, поскольку относится ко всем процессам естествознания. Там, где встречается превращение нестройных видов энергии молекул и атомов в более стройную форму механической или электрической энергии, второй закон термодинамики проводит свою линию. Именно на его основах стоит физическая и теоретическая химия, а вместе с этим спектральный анализ и большая часть астрофизики.
Третий закон термодинамики иначе называется постулатом Нернста. В свою очередь его формулировка звучит следующим образом: с помощью конечного числа процессов нельзя достигнуть абсолютного нуля. Это говорит о том, что никаким способом невозможно остановить молекулы и атомы веществ. Этот процесс обусловлен постоянным теплообменом с окружающей средой. Рассмотрев закон, можно сказать, что уменьшение энтропии заключается в движении к абсолютному нулю. Данный вывод можно использовать в различных областях, применяя его во многих ситуациях. К примеру, для перевода парамагнетиков в ферромагнитное состояние при охлаждении.
Таким образом, применение трех законов термодинамики распространено во многих областях науки и жизни человека в целом. Во многом термодинамика упрощает жизнь, позволяет совершать новые открытия.
Заключение
Термодинамика в физике обусловлена существованием трех законов, каждый из которых имеет свою определенную формулировку. Она во многом имеет общую связь с процессами энтропии и её основными свойствами. Термодинамика играет большую роль в различных областях и сферах жизни человека. Её правила и закономерности оставляют след в следующих областях: теплотехника, энергетика, биология, машиностроение и другие. Кроме того термодинамика позволяет совершать новые открытия человечества. Это было бы невозможно без основных законов, открытых великими учеными в прошлом.
Таким образом, изучив и рассмотрев основные аспекты данной темы, можно сказать, что термодинамические процессы в физике являются немаловажными и играют большую роль в науке. Такой раздел физики, как термодинамика, всегда будет актуальным, поскольку он позволяет совершенствовать существующие аспекты науки и формировать новые.
Список литературы
Базаров И. П. Термодинамика. — М.: Высшая школа, 1991. — 376 с.
Воронин Г. Ф. Основы термодинамики. — М.: Изд-во Моск. ун-та, 1987. — 192 с.
Гиббс Дж. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. — Изд. 2, сущ. перераб. и доп.. — М.: Едиториал УРСС, 2002. — 240 с.
Киттель Ч. Статистическая термодинамика. — М.: Наука, 1977. — 336 с.
Кубо Р. Термодинамика. М.: Мир, 1970.
Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с.
Ферми Э., Термодинамика. Харьков: Изд-во Харьковского ун-та, 1969. — 140 с.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Основные положения второго закона термодинамики его формулировки и математическое выражение. Понятие об энтропии. Энтропия как критерий направленности и равновесия процессов в изолированных системах. Свободная энергия Гельмгольца, энергия Гиббса.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 31.08.2017
Размер файла 195,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

на тему: Второй закон термодинамики и его приложения. Фундаментальные уравнения термодинамики

1. Второй закон термодинамики, формулировки, математическое выражение

2. Понятие об энтропии. Энтропия как критерий направленности и равновесия процессов в изолированных системах

3. Свободная энергия Гельмгольца, энергия Гиббса

1. Второй закон термодинамики, формулировки, математическое выражение

Основными положениями первого закона термодинамики являются утверждения о постоянстве количества внутренней энергии, содержащейся в изолированной системе, об эквивалентности различных форм энергии, а также соотношения, связывающие изменения внутренней энергии системы с количеством поступившей теплоты и произведённой работы. При этом первый закон не касается характера, возможности и направления тех процессов, при которых могут или будут происходить те или иные превращения энергии.

Второй закон определяет прежде всего, какие из процессов в рассматриваемой системе при заданных температуре, давлении, концентрации и прочих параметрах могут протекать самопроизвольно (т.е. без затраты работы извне), какое количество работы может быть получено при этом, каков предел возможного самопроизвольного протекания процесса. Второй закон термодинамики даёт возможность определить какими должны быть внешние условия, чтобы интересующий нас процесс мог происходить в нужном направлении и в требуемой степени. Для процессов, требующих затраты энергии извне, с помощью второго закона можно оценить количество работы, необходимое для определенного процесса, и зависимость этого количества от внешних условий. Второй закон термодинамики применим лишь к системам с большим числом частиц, т.е. таким, поведение которых может быть выражено законами статистики.

Все термодинамические процессы делятся на:

Процессы, протекающие самопроизвольно, называются положительными. Например, опускание груза с высокого на более низкий уровень, взаимная нейтрализация сильной кислоты и сильного основания, любая химическая реакция, используемая в работающем элементе, сгорание углеводородов, ржавление железа и др.

Самопроизвольные процессы в природе - это необратимые процессы. Они идут без затраты энергии, наоборот с их помощью можно совершать работу. Положительные процессы приближают систему к состоянию равновесия.

Процессы, обратные положительным, называются отрицательными. Они протекают только при затрате энергии извне. В результате отрицательного процесса система удаляется от состояния равновесия.

Равновесные процессы являются пограничными между положительными и отрицательными, так как они идут через непрерывный ряд равновесных состояний системы.

Первый закон термодинамики не позволяет предсказать, будет ли данный процесс положительным или отрицательным. Например, сам переход теплоты от холодного тела к горячему не противоречит первому закону, также как и разложение СО2 или Н2О при комнатной температуре.

На вопросы о том, пойдет ли данный процесс (химическая реакция) самопроизвольно, какими параметрами будет характеризоваться система, когда в ней установится термодинамическое равновесие, можно получить ответ с помощью второго закона термодинамики. Второй закон термодинамики - критерий, определяющий принципиальную возможность и направление протекания процесса.

Рис. Схема циклического процесса в простейшей тепловой машине

В 1824 г. французский инженер С. Карно установил зависимость между исчезающей теплотой и возникающей работой. Он показал, что получение работы за счет запаса теплоты происходит только благодаря переносу теплоты от более нагретого к менее нагретому телу.

В любой тепловой машине теплота превращается в работу. Схема циклического процесса, который происходит в тепловой машине, показана на рисунке 2.1. Рабочее тело получает от нагревателя (теплоотдатчика) с температурой Т1 теплоту Q1 и совершает работу А. При этом только часть теплоты превращается в работу, а остальная часть Q2 переходит к холодильнику с температурой Т2 и рассеивается в окружающую среду (причем Т2 ) ? к неравновесному процессу. Данное неравенство Клаузиуса - аналитическое выражение второго закона термодинамики через энтропию, отражает невозможность самопроизвольного переноса теплоты от холодного тела к горячему.

Объединенное уравнение первого и второго законов термодинамики имеет вид:

dU+ pdV TdS или dU TdS ? pdV. (2.10)

Для любой термодинамической системы, при данных условиях её существования, всегда имеется некоторый общий критерий, которым характеризуется возможность, направление и предел самопроизвольного протекания термодинамических процессов. Для изолированных систем таким критерием служит энтропия S.

Второй закон термодинамики постулирует, что в изолированных системах самопроизвольно могут совершаться только такие процессы, при которых энтропия системы возрастает, и процесс может идти самопроизвольно только до такого состояния, при котором энтропия обладает максимальным для данных условий значением.

Это не означает, что осуществление процессов в обратном направлении невозможно, но такие (обратные) процессы не могут совершаться самопроизвольно и для их проведения требуется затрата работы извне. Мы можем переводить теплоту от одного тела к другому и в том случае, если эти тела обладают вначале одинаковой температурой. Взаимодействие водорода и кислорода с образованием воды может в определённых условиях происходить самопроизвольно, и осуществление этой реакции даёт возможность получать соответствующее количество работы. Но, затрачивая работу, можно осуществить и обратную реакцию - разложение воды Н2О на водород Н2 и кислород О2 ? например, путём электролиза.

Второй закон термодинамики постулирует, что при самопроизвольном протекании процесса в изолированной системе её энтропия возрастает. В этом случае внутренняя энергия и объем сохраняются постоянными, нет теплообмена с окружающей средой (дQ=0). Тогда соотношение

Самопроизвольный процесс протекает до тех пор, пока энтропия не достигнет максимально возможного значения при данных условиях, а система придет в равновесное состояние. При протекании равновесного процесса S изолированной системы - величина постоянная.

Необратимыми в термодинамическом смысле называются такие процессы, после протекания которых систему уже нельзя вернуть в начальное состояние без того, чтобы не осталось каких-нибудь изменений в ней самой или в окружающей среде.

В любых изолированных системах (в них могут совершаться только адиабатные процессы) энтропия S системы сохраняет постоянное значение (?S=0) если в системе совершаются только обратимые процессы, и возрастает (?S>0) при всяком необратимом процессе. Следовательно, в изолированных системах всякий самопроизвольно протекающий процесс сопровождается возрастанием энтропии.

3. Свободная энергия Гельмгольца, энергия Гиббса

Из цикла Карно известно, что з

Для равновесной реакции (V,Т= const) работа расширения равна нулю Арасш=0, следовательно максимальная работа равна полезной Амакс= А', тогда

Критерием самопроизвольности изохорно-изотермического процесса являются неравенства ?FV,T 0. При ?FV,T > 0 и 0; при ? GР,Т > 0 и A? 0.

Таким образом, по итогам рассмотрения первого и второго законов термодинамики мы имеем четыре функции состояния, которые носят общее название - термодинамические потенциалы (U. H, G, F). Значения этих функций для элементарного процесса могут быть оценены следующим образом:

Подобные документы

История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.

реферат [21,5 K], добавлен 26.02.2012

Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.

реферат [136,5 K], добавлен 23.01.2012

История развития термодинамики, ее законы. Свойства термодинамических систем, виды основных процессов. Характеристика первого и второго законов термодинамики. Примеры изменения энтропии в системах, принцип ее возрастания. Энтропия как стрела времени.

реферат [42,1 K], добавлен 25.02.2012

Использование энергии топлива в работе различных машин, аппаратов, энергетических и технологических установок. Определения термодинамики: второй закон, энтропия, расчет ее изменения. Абсолютная энтропия, постулат Планка; необратимость тепловых процессов.

курсовая работа [520,7 K], добавлен 08.01.2012

Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.

Первый закон термодинамики – закон сохранения тепловых процессов, устанавливающий связь между количеством теплоты Q и изменением ∆ U внутренней энергии и работой А , совершенной над внешними телами:

Исходя из закона, энергия не может быть создана или уничтожена: производится процесс передачи от одной системы к другой, принимая другую форму. Еще не было получено процессов, нарушающих первый закон термодинамики. Рисунок 3 . 12 . 1 показывает устройства, противоречащие первому закону.

Рисунок 3 . 12 . 1 . Циклически работающие тепловые машины, запрещаемые первым законом термодинамики: 1 – вечный двигатель 1 рода, совершающий работу без потребления энергии извне; 2 – тепловая машина с коэффициентом полезного действия η > 1 .

Обратимый и необратимый процессы

Первый закон термодинамики не устанавливает направления тепловых процессов. Опыты показывают, что большинство тепловых процессов протекают в одном направлении. Их называют необратимыми.

Если имеется тепловой контакт двух тел с разными температурами, тогда направление теплового потока направляется от теплого к холодному. Самопроизвольной передачи тепла от тела с низкой температуры к телу с высокой не наблюдается. Отсюда следует, что теплообмен с конечной разностью температур считается необратимым.

Обратимым процессом называется переход системы из одного равновесного расстояния в другое, которые возможно проводить в обратном направлении в той же последовательности промежуточных равновесных состояний. Она вместе с окружающими телами возвращаются к исходному состоянию.

Если система находится в состоянии равновесия во время процесса, она называется квазистатической.

Когда рабочее тело тепловой машины контактирует с тепловым резервуаром, температура которого неизменна во время всего процесса, то только изотермический квазистатический процесс считается обратимым, так как протекает с бесконечно малой разницей температур рабочего резервуара. Если имеется два резервуара, причем с разными температурами, тогда обратимым путем можно провести процессы на двух изотермических участках.

Так как адиабатический процесс проводится в обоих направлениях (сжатие и расширение), наличие кругового процесса с двумя изотермами и двумя адиабатами (цикл Карно) говорит о том, что это и есть единственный обратимый круговой процесс, где рабочее тело контактируется с двумя тепловыми резервуарами. Остальные при наличии 2 тепловых резервуаров считаются необратимыми.

Превращение механической работы во внутреннюю энергию считаются необратимыми при наличии силы трения, диффузии в газах и жидкостях, а процесс перемешивания по причине начальной разности давлений и так далее. Все реальные процессы считаются необратимыми, даже если значения будут максимально приближены к обратимым. Обратимые рассматриваются как пример реальных процессов.

Первый закон термодинамики не различает их. Правило требует от термодинамического процесса определенного энергетического баланса, но не говорит о том, возможен ли он. Установка направления прохождения процесса определяется вторым законом термодинамики. Его формулировка может звучать как запрет на определенные термодинамические процессы.

Второй закон был трактован У. Кельвином в 1851 .

В циклически действующей тепловой машине невозможно прохождение процесса, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Предположительно, машина с такими процессами могла бы получить название вечного двигателя второго рода.

При земных условиях могла бы быть отбита энергия Мирового океана и полностью превратилась бы в ее работу. Масса воды Мирового океана – 10 21 к г . Для его охлаждения хотя бы на 1 градус потребуется огромное количество энергии ≈ 10 24 Д ж , которое сравнимо с сжиганием 10 17 к г угля. Вырабатываемая энергия на Земле за год в 10 4 раз меньше. Отсюда и вывод о том, что вечный двигатель второго рода мало вероятен, как и двигатель первого, потому как оба они недопустимы, исходя из первого закона термодинамики.

Второй закон термодинамики

Формулировка 2 -го закона термодинамики была дана физиком Р. Клаузиусом.

Невозможно прохождение процесса, единственным результатом которого была бы передача энергии при помощи теплообмена от тела с низкой температуры к телу с более высокой.

Рисунок 3 . 12 . 2 объясняет процессы, которые запрещены вторым законом, но разрешены согласно первому. Они соответствуют трактовкам второго закона термодинамики.

Рисунок 3 . 12 . 2 . Процессы, не противоречащие первому закону термодинамики, но запрещаемые вторым законом: 1 – вечный двигатель второго рода; 2 – самопроизвольный переход тепла от холодного тела к более теплому (идеальная холодильная машина).

Формулировки обоих законов считаются эквивалентными.

Когда тело без помощи внешних сил переходит при теплообмене от холодного к горячему, то возникает мысль о возможности создания вечного двигателя второго рода. Если такая машина получит количество теплоты Q 1 от нагревателя и отдаст холодильнику Q 2 , тогда совершается работа A = Q 1 - Q 2 . Если бы Q 2 самопроизвольно перешло к нагревателю, то конечный результат тепловой машины и идеальной холодильной машины выглядело бы таким образом Q 1 - Q 2 . Причем сам переход происходил бы без изменений холодильника. Отсюда вывод – комбинация тепловой машины и идеальной холодильной машины равноценна двигателю второго рода.

Прослеживается связь между вторым законом термодинамики и необратимостью реальных тепловых процессов. Энергия теплового движения молекул отлична от механической, электрической и так далее. Она способна превратиться в другой вид энергии только частично. Поэтому при наличии энергии теплового движения молекул любой процесс считается необратимым, так как полностью в обратном направлении он не осуществим.

Свойство, относящееся к необратимым процессам, говорит о том, что они проходят в термодинамически неравновесной системе, а результат получается в виде замкнутой системы, приближающейся к состоянию термодинамического равновесия.

Теоремы Карно

Имеются теоремы Карно, которые могут быть доказаны, исходя из второго закона термодинамики.

КПД тепловой машины, работающей при данных значениях температур нагревателя холодильника, не может иметь значение больше, чем КПД действия машины, работающей согласно обратимому циклу Карно с теми же значениями температур нагревателя и холодильника.

КПД действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а только от температур нагревателя и холодильника.

Отсюда следует, что КПД действия машины с циклом Карно считается максимальным.

η = 1 - Q 2 Q 1 ≤ η m a x = η К а р н ю = 1 - T 2 T 1 .

Знак равенства данной записи говорит об обратимости процесса. Если машина работает по циклу Карно, тогда:

Q 2 Q 1 = T 2 T 1 или Q 2 T 2 = Q 1 T 1 .

Знаки Q 1 и Q 2 всегда отличаются независимо от направления цикла. Поэтому получаем:

Q 1 T 1 + Q 2 T 2 = 0 .

Рисунок 3 . 12 . 3 говорит о том, что данное соотношение обобщается и представляется в виде последовательности малых изометрических и адиабатических участков.

Рисунок 3 . 12 . 3 . Произвольный обратимый цикл как последовательность малых изотермических и адиабатических участков.

Полный обход замкнутого обратимого цикла имеет вид:

∑ ∆ Q i T i = 0 (обратимый цикл).

Откуда ∆ Q i = ∆ Q 1 i + ∆ Q 2 i – количество теплоты, полученное рабочим телом на двух изотермических участках с температурой T i . Чтобы данный цикл провести наоборот, нужно рабочее тело сконтактировать со многими тепловыми резервуарами с T i .

Энтропия

Отношение Q i T i получило название приведенного тепла. Формула показывает, что полное приведенное тепло на любом обратимом цикле равно нулю. Благодаря ей вводится еще одно понятие – энтропия, обозначаемая S . Ее открыл Р. Клаузиус в 1865 году.

При переходе из одного равновесного состояние в другое изменяется и ее энтропия. Разность энтропий двух состояний равняется приведенному теплу, полученному системой во время обратного перехода состояния.

∆ S = S 2 - S 1 = ∑ ( 1 ) ( 2 ) ∆ Q i о б р T .

Если рассматривается адиабатический процесс ∆ Q i = 0 , тогда энтропия S не изменяется.

Изменение энтропии ∆ S во время перехода в другое состояние фиксируется как формула:

∆ S = ∫ ( 1 ) ( 2 ) d Q о б р T .

Определение энтропии достаточно точное. Разность ∆ S двух состояний системы подразумевает физический смысл. Если имеется необратимый переход, а необходимо найти энтропию, тогда нужно придумать обратимый процесс, который свяжет начальное и конечное состояние. После этого перейти к нахождению приведенного тепла, полученного системой.

Энтропия

Рисунок 3 . 12 . 4 Модель энтропии и фазовых переходов.

Рисунок 3 . 12 . 5 показывает необратимый процесс расширения шага с отсутствием теплообмена. Равновесными считаются начальное и конечное значение, изображаемые на диаграмме p , V . Точки a и b соответствуют состояниям и располагаются на одной изотерме. Чтобы найти ∆ S , следует перейти к рассмотрению обратимого изотермического перехода из a в b . При изопроцессе газ получает определенное количество теплоты окружающих тел Q > 0 , тогда при необратимом расширении энтропия возрастет до ∆ S > 0 .

Еще одним примером необратимого процесса считается теплообмен при конечной разности температур. Рисунок 3 . 12 . 6 и показывает два тела, заключенные в адиабатическую оболочку, где начальные температуры обозначаются как T 1 и T 2 T 1 . Течение процесса теплообмена способствует выравниванию температур. Очевидно, что теплое тело отдает, а холодное принимает. Холодное тело превосходит по модулю приведенное тепло, отдаваемое горячим. Отсюда вывод – изменение энтропии в замкнутой системе необратимого процесса ∆ S > 0 .

Рисунок 3 . 12 . 6 . Теплообмен при конечной разности температур: a – начальное состояние; b – конечное состояние системы. Изменение энтропии Δ S > 0 .

Все самопроизвольно протекающие процессы в изолированных термодинамических процессах характеризуются ростом энтропии.

Обратимые процессы имеют постоянную энтропию ∆ S ≥ 0 . Соотношение называют законом возрастания энтропии.

При любых процессах, протекающих в термодинамических изолированных системах, энтропия либо не меняется, либо возрастает.

Наличие энтропии говорит о самопроизвольно протекающем процессе, а ее рост – приближение всей системы к термодинамическому равновесию, где S принимает максимальное значение. Возрастание энтропии можно трактовать как формулировку второго закона термодинамики.

В 1878 году Л. Больцман дал вероятностное определение понятию энтропии, так как было предложено рассматривать ее в качестве меры статистического беспорядка замкнутой термодинамической системы. Все самопроизвольно протекающие процессы в таких системах приближают ее к равновесному состоянию, так как сопровождаются ростом энтропии, и направляют в сторону увеличения вероятности состояния.

Если состояние макроскопической системы содержит большое число частиц, то его реализация может предусматривать несколько способов.

Термодинамическая вероятность W системы – это количество способов, которыми реализуется данное состояние макроскопической системы, макросостояний, осуществляющих его.

Из определения имеем, что W ≫ 1 .

При наличии 1 м о л ь газа в емкости существует число N способов размещения молекулы по двум половинам емкости: N = 2 N А , где N А - число Авогадро. Каждое из них – это микросостояние.

Одно из них соответствует случаю с молекулами, собранными в одной половине сосуда. Вероятность такого события приравнивается к нулю. Большое количество состояний соответствует такому, где молекулы распределяются равномерно по всей площади емкости.

Тогда равновесное состояние является наиболее вероятным.

Равновесное состояние считается состоянием наибольшего беспорядка в термодинамической системе с максимальной энтропией.

Исходя из трактовок Больцмана, энтропия S и термодинамическая вероятность W связаны:

S = k · ln W , где k = 1 , 38 · 10 - 23 Д ж / К является постоянная Больцмана. Отсюда следует, что определение энтропии определяется логарифмом числа микросостояний. Именно они способствуют реализации данного макросостояния. Тогда энтропия может быть рассмотрена в качестве меры вероятности состояния термодинамической системы.

Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Их называют флуктуациями.

В системах с большим числом частиц отклонения от состояния равновесия имеют достаточно малую вероятность на существование.

Гост

ГОСТ

Обычно любой физический процесс, при котором система постепенно переходит из одного состояния в другое, протекает по-разному, поэтому провести это явление в обратное состояние практически невозможно. Для этого необходимо использовать показатели промежуточного времени в окружающих определенную среду телах. Это напрямую связано с тем, что в процессе часть энергетического потенциала рассеивается путем постоянного трения и излучения.

Рисунок 1. Термодинамическая энтропия. Автор24 — интернет-биржа студенческих работ

Согласно законам термодинамики, практически все явления в природе необратимы. В любом физическом процессе часть энергии постепенно теряется. Для характеристики и описания рассеяния энергии вводится определение энтропии, объясняющее тепловое состояние концепции и определяющее вероятность возникновения нового состояния тела. Чем более вероятно это состояния, тем больше показатель энтропии. Все естественные ситуации в обычной жизни сопровождаются ростом данного элемента, который остается постоянным только в случае идеализированного процесса, наблюдаемого в замкнутой системе.

Энтропия – это универсальная функция состояния конкретной системы, незначительное изменение которой в обратимой ситуации равно отношению ничтожно малого количества введенной в данный процесс теплоты при соответствующей начальному состоянию температуре.

Поскольку энтропия есть основная функция состояния физического тела, то свойством интеграла выступает его самостоятельность и независимость от формы контура, по которому он вычисляется таким образом:

Готовые работы на аналогичную тему

  • в любом обратимом физическом явлении изменения энтропии приравниваются нулю;
  • в термодинамике доказывается, что системы необратимой цикл возрастает с равными промежуточными параметрами;
  • энтропия замкнутой системы может либо возрастать, либо оставаться в стабильном состоянии.

Следовательно, указанная термодинамическая функция обладает особенностями аддитивности: энтропия каждой системы равна сумме энтропий материальных тел, входящих в систему: $S = S_1 + S_2 + S_3 + …$ Существенным отличием теплового движения элементарных частиц от других форм движения является их беспорядочность и хаотичность. Поэтому для описания теплового движения изначально нужно ввести количественный уровень молекулярной нестабильности. Если рассмотреть данное макроскопическое состояния вещества с любыми средними значениями параметров, то оно представляет собой ни что иное, как систематическая смена близко расположенных микросостояний, которые отличаются друг от друга распределением молекул в различных частях объема.

Статистическое определение энтропии: принцип Больцмана

Рисунок 2. Статистический смысл энтропии. Автор24 — интернет-биржа студенческих работ

Комплексность предъявляет к ученым требования исследовать только те микросостояния, для которых:

  • месторасположения всех движущихся частей расположены в пределах сосуда;
  • для получения общего энергетического потенциала кинетические энергии газа в итоге суммируются;
  • затем тепловая константа определяет количество микросостояний, которые возможны в имеющемся состоянии (статистический вес состояния).

Такой постулат, известный в науке как принцип Больцмана, возможно охарактеризовать в виде начала статистической механики, описывающего подробно главные термодинамические системы и использующего для своих целей принципы классической и квантовой физики.

Закон Больцмана связывает в термодинамике все микроскопические свойства системы с одним из её динамических свойств.

Согласно определению исследователя, энтропия является просто дополнительной функцией состояния, параметры которой могут быть только натуральным числом.

Понимание энтропии как меры беспорядка

Рисунок 3. Возрастание энтропии. Автор24 — интернет-биржа студенческих работ

Подобное определение беспорядка и хаотичности термодинамической системы как основного параметра возможностей конфигурирования концепции практически дословно соответствует формулировке энтропии в виде микросостояний.

Проблемы начинаются в двух конкретных случаях:

  • когда физики начинают смешивать разные понимания беспорядка, в результате чего энтропия становится мерой беспорядка в целом;
  • когда определение энтропии используется для систем, изначально не являющихся термодинамическими.

В вышеуказанных случаях применение понятия энтропии в термодинамике абсолютно неправомерно.

Значение энтропии для живых организмов

Все трансформации и превращения внутренней энергии описываются в физике законами термодинамики, которые при адекватных физических моделях и грамотно сформулированных физических ограничениях вполне применимы и для жизненных нестабильных процессов. Уменьшение показателя энтропия (появление отрицательной энергии по Шрёдингеру) в живом организме при тесном взаимодействии его с окружающей средой автоматически приводит к росту свободного энергетического потенциала.

Для живых микроорганизмов, как главных открытых систем, с научной точки зрения акт возникновения живого будет характеризоваться спонтанной трансформацией тепловой энергии необратимых функций в механическую целенаправленную работу создания высокоразвитой системы. Все это возможно осуществить посредством наличия свободной энергии. Следовательно, термодинамическая неравновесность существующих живых систем свидетельствует об их обязательной упорядоченности, так как полноценное равновесие соответствует хаосу и это в итоге приводит к смерти живого организма, когда его энтропия находится на максимальном уровне.

В целом, энтропия выступает как мера неопределенности и нестабильности, усреднения поведения физических объектов, установления правильного состояния и даже определенного единообразия. Жизнедеятельность биологических систем доказывает, что они не хотят подчиняться закону термодинамики для изолированной среды.

Читайте также: