Элементы ядерной физики реферат

Обновлено: 03.07.2024

Как известно, все в мире состоит из молекул, которые представляют собой сложные комплексы взаимодействующих атомов. Молекулы - это наименьшие частицы вещества, сохраняющие его свойства. В состав молекул входят атомы различных химических элементов.

Химические элементы состоят из атомов одного типа. Атом, мельчайшая частица химического элемента, состоит из "тяжелого" ядра и вращающихся вокруг электронов.

Ядро элемента X обозначают как или X-A, например уран U-235 - ,

где Z - заряд ядра, равный числу протонов, определяющий атомный номер ядра, A - массовое число ядра, равное суммарному числу протонов и нейтронов.

Ядра элементов с одинаковым числом протонов, но разным числом нейтронов называются изотопами (например, уран имеет два изотопа U-235 и U-238); ядра при N=const, z=var - изобарами.

1.2 Ядерные реакции

Ядра водорода, протоны, а также нейтроны, электроны (бета-частицы) и одиночные ядра гелия (называемые альфа-частицами), могут существовать автономно вне ядерных структур. Такие ядра или иначе элементарные частицы, двигаясь в пространстве и приближаясь к ядрам на расстояния порядка поперечных размеров ядер, могут взаимодействовать с ядрами, как говорят участвовать в реакции. При этом частицы могут захватываться ядрами, либо после столкновения - менять направление движения, отдавать ядру часть кинетической энергии. Такие акты взаимодействия называются ядерными реакциями. Реакция без проникновения внуть ядра называется упругим рассеянием.

После захвата частицы составное ядро находится в возбужденном состоянии. "Освободиться" от возбуждения ядро может несколькими способами - испустить какую-либо другую частицу и гамма-квант, либо разделиться на две неравные части. Соответственно конечным результатам различают реакции - захвата, неупругого рассеяния, деления, ядерного превращения с испусканием протона или альфа-частицы.

Дополнительная энергия, освобождаемая при ядерных превращениях, часто имеет вид потоков гамма-квантов.

Вероятность реакции характеризуется величиной "поперечного сечения" реакции данного типа

Радиоактивность вошла в сознание человечества всего лишь примерно 100 лет тому назад. Лишь в 1986 году А. Бекерель обнаружил некие х-лучи, засвечивавшие фотопластинки. Затем было установлено, что радиоактивность - это свойство испускать потоки заряженных aльфа, бета и нейтральных гамма частиц. Усилиями многих ученых было обнаружено,что aльфа-частицы представляют собой ядра гелия, бета-частицы - электроны, а гамма-частицы - поток квантов света. Было установлено, что многие вещества являются естественными излучателями частиц, из которых некоторые, как например радий, оказались очень интенсивными источниками радиации.

Различные комбинации нуклонов в ядрах управляются законами ядерных взаимодействий, взаимное положение и движения внутри ядер определяется действием короткодействующих ядерных сил. Известно,что существует некоторая зависимость между числом протонов и нейтронов в ядрах, в рамках которой реализуется стабильность ядер. Эта зависимость для устойчивых ядер имеет вид:


Различные виды радиоактивных превращений можно описать:

nuclear ractions


,
где X * - составное ядро, A=A1+A2, Z=Z1+Z2, E - выделенная энергия.

Дочерние продукты радиоактивных процессов могут также претерпевать распад - так возникают цепочки радиоактивных превращений. Важной разновидностью радиоактивных превращений является т.н. спонтанное деление тяжелых ядер, открытое Флеровым и Петржаком в 1942 году. Радиоактивный распад это процесс статистический, т.е. управляемый вероятностными законамиi. Однако, в среднем, за времена большие времен характерных внутренних процессов - это вполне детерминированное явление. Так, можно записать уравнение радиоактивного распада, имеющее вид

или


где Аi- число ядер изотопа Аi в единице обьема,
- константа радиоактивного распада изотопа Аi.


Величина определяет другую, часто используемую характеристику радиоактивного распада изотопов - период полураспада T1/2:


-

время в течение которого количество вещества за счет радиоактивного распада уменьшается в два раза.

Интенсивность радиоактивного распада измеряется в единицах, называемых "беккерель" (1 Бк = 1 распад / 1 сек). Важная единица интенсивного радиоактивного распада - кюри (1 кюри = 3,7*10 10 Бк = 37 ГБк)

nuclear

Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.

После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.

Дифференциальное уравнение превращений осколков деления можно записать в виде:


где Ai - число ядер изотопа i в единице объема ,
Q(t) - число актов деления в единице объема в единицу времени в момент t,
- выход изотопов Ai в акте деления,
- константа радиоактивного распада изотопа Ai,
- плотность потока нейтронов,
- сечение поглощения нейтронов ядрами изотопа Ai ,
- константа перехода к-того изотопа в i-тый.

Для решения этой системы уравнений нужно задать начальные условия, знать схемы и константы всех радиоактивных переходов. Суммируя по группам изотопов, имеющих тот или иной тип радиоактивности, можно определить интенсивность радиоактивного распада в функции времени. В [3] представлены детали и результаты таких расчетов.

Наиболее значимые осколки деления - Kr, Cs, I, Xe, Ce, Zr и др.

В Таблице 1 [ ] даны некоторые характеристики осколков деления

Период полураспада
Е , дни

Количество радиоактивности
в реакторе мощностью 3412 МВт,
работавшего три года, млн. кюри

Для многих задач определенный интерес представляют данные об активности топливных элементов после некоторой выдержки их вне реактора.

Для нас важно отметить сейчас, что осколки деления обладают значительной радиационной способностью. Так 1 грамм осколков деления обладает активностью ~0,3 кюри. Эта активность медленно уменьшается по закону

E=2,66*t -1,2 MeV/дел.сек, где t - время в сек.

2 Элементы нейтронной физики 2.1 Ядерный реактор

Ядерный реактор - это техническая установка, в которой осуществляется самоподдерживающаяся цепная реакция деления тяжелых ядер с освобождением ядерной энергии. Ядерный реактор состоит из активной зоны и отражателя, размещенных в защитном корпусе.Активная зона содержит ядерное топливо в виде топливной композиции в защитном покрытии и замедлитель. Топливные элементы обычно имеют вид тонких стержней. Они собраны в пучки и заключены в чехлы. Такие сборные композиции называются сборками или кассетами.

Вдоль топливных элементов двигается теплоноситель, который воспринимает тепло ядерных превращений. Нагретый в активной зоне теплоноситель двигается по контуру циркуляции за счет работы насосов либо под действием сил Архимеда и, проходя через теплообменник, либо парогенератор, отдает тепло теплоносителю внешнего контура. Перенос тепла и движения его носителей можно представить в виде простой схемы:

Размножение нейтронов является основой самоподдерживающейся цепной реакции деления ядер.

Цикл размножения нейтронов начинается с акта захвата нейтрона ядром тяжелых (U-235, Pu-239 и других "делящихся") элементов. Интенсивность захватов, т.е. число актов захватов нейтронов в единице объема в единицу времени есть


где n - плотность нейтронов,
v - их скорость,
- плотность ядер поглотителя,
- вероятность поглощения нейтрона, т.н. сечение поглощения. Индекс c означает "capture", т.е. захват.
Величина nv= - называется потоком нейтронов,
- макроскопическим сечением поглощения.

При каждом акте деления ядер тяжелых "делящихся" элементов испускается 2-3 новых, "быстрых" нейтронов. Это число обозначают vf. Пересчитывая на один акт захвата нейтрона, это число следует умножить на вероятность деления относительно деления и радиационного захвата, т.е. отношение и . Произведение обозначают vc.

Это число вторичных быстрых нейтронов на один акт захвата нейтрона ураном-235, равно примерно 2. Учитывая что топливо реакторов содержит большую долю неделящегося изотопа урана-238, число новых нейтронов на один акт захвата в уране топлива составляет


Число новых нейтронов, родившихся в единице объема топлива в единицу времени есть



Эти нейтроны сталкиваясь с ядрами окружающего топлива могут произвести дополнительные акты деления ядер топлива, произвести как говорят "размножение на быстрых нейтронах". Это умножение поколения нейтронов обозначают буквой . Далее нейтроны, сталкиваясь с ядрами замедлителя,теплоносителя и конструктивных элементов теряют свою энергию, "замедляются". При этом некоторая их доля поглощается (без деления) на резонансах сечения поглощения тяжелых элементов и выбывает из игры, а некоторая диффундирует во внешнее пространство и тем самым также теряется.

Долю нейтронов "избежавших резонансный захват" обозначают через , а долю избежавших "утечку"при замедлении - через . Тогда число "замедлившихся" нейтронов в единицу времени в единице объема, ставших "тепловыми", т.е. потерявших свою энергию рождения (~ 2 Мev) есть


,

где - геометрический параметр, - "возраст" нейтронов.

Эти нейтроны, "дифундируя" в среде, могут потеряться за счет утечки и поглощения в материалах активной зоны. Долю нейтронов, избежавших утечку при диффузии в тепловой области энергии (~kT ev) обозначают через , а долю нейтронов поглощенных в тяжелых элементах относительно полного поглощения во всех материалах активной зоны через . Число нейтронов прошедших весь нейтронный цикл на один нейтрон, поглощенный в тяжелых элементах, т.е. прошедших цикл размножения, замедления, диффузии в тепловой области есть


= keff

Произведение называют коэффициентом размножения нейтронов в бесконечной среде - k "бесконечное", а - эффективным коэффициентом размножения нейтронов в конечной среде, k - "эффективное".

Реактор называется критическим, если число новых нейтронов при каждом акте их захвата ядрами урана, избежавших резонансный захват в уране-238 и утечку из реактора при замедлении и диффузии, точно равно числу поглощенных. Это состояние cоответствует равенству keff=1 Величина 1-keff/keff=r называется реактивностью. Эта величина определяет темп разгона реактора при r>0 .

"Ядерная физика",
пер. с англ., Москва, изд. "Иностранная литература", 1951 г.

"Ядерная физика",
Москва, Атомиздат, 1975 г.

3. А.С. Герасимов, Т.С. Зарицкая, А.П. Рудик

"Справочник по образованию нуклидов в ядерных реакторах",
Москва, Энергоатомиздат, 1989 г.

4. В.Д. Сидоренко, В.М. Колобашкин, П.М. Рубцов, П.А. Ружанский

"Радиационные характеристики облученного ядерного топлива",
справочник, Москва, Энергоатомиздат, 1983 г.

Раздел: Математика
Количество знаков с пробелами: 13149
Количество таблиц: 5
Количество изображений: 4

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Реферат

на тему: Элементы ядерной физики

1.1 Строение атомов, ядер

Как известно, все в мире состоит из молекул, которые представляют собой сложные комплексы взаимодействующих атомов. Молекулы - это наименьшие частицы вещества, сохраняющие его свойства. В состав молекул входят атомы различных химических элементов.

Химические элементы состоят из атомов одного типа. Атом, мельчайшая частица химического элемента, состоит из "тяжелого" ядра и вращающихся вокруг электронов.

Кликните мышкой в картину, чтобы посмотреть анимированную версию.
Кликните мышкой в картину, чтобы посмотреть анимированную версию.

Ядра атомов образованы совокупностью положительно заряженных протонов и нейтральных нейтронов. Эти частицы, называемые нуклонами, удерживаются в ядрах короткодействующими силами притяжения, возникающими за счет обменов мезонами, частицами меньшей массы.

Ядро элемента X обозначают как или X-A, например уран U-235 - ,

где Z - заряд ядра, равный числу протонов, определяющий атомный номер ядра, A - массовое число ядра, равное суммарному числу протонов и нейтронов.

Ядра элементов с одинаковым числом протонов, но разным числом нейтронов называются изотопами (например, уран имеет два изотопа U-235 и U-238); ядра при N=const, z=var - изобарами.

1.2 Ядерные реакции

Ядра водорода, протоны, а также нейтроны, электроны (бета-частицы) и одиночные ядра гелия (называемые альфа-частицами), могут существовать автономно вне ядерных структур. Такие ядра или иначе элементарные частицы, двигаясь в пространстве и приближаясь к ядрам на расстояния порядка поперечных размеров ядер, могут взаимодействовать с ядрами, как говорят участвовать в реакции. При этом частицы могут захватываться ядрами, либо после столкновения - менять направление движения, отдавать ядру часть кинетической энергии. Такие акты взаимодействия называются ядерными реакциями. Реакция без проникновения внуть ядра называется упругим рассеянием.

После захвата частицы составное ядро находится в возбужденном состоянии. "Освободиться" от возбуждения ядро может несколькими способами - испустить какую-либо другую частицу и гамма-квант, либо разделиться на две неравные части. Соответственно конечным результатам различают реакции - захвата, неупругого рассеяния, деления, ядерного превращения с испусканием протона или альфа-частицы.

Дополнительная энергия, освобождаемая при ядерных превращениях, часто имеет вид потоков гамма-квантов.

Вероятность реакции характеризуется величиной "поперечного сечения" реакции данного типа

1.3 Радиоактивность

Радиоактивность вошла в сознание человечества всего лишь примерно 100 лет тому назад. Лишь в 1986 году А. Бекерель обнаружил некие х-лучи, засвечивавшие фотопластинки. Затем было установлено, что радиоактивность - это свойство испускать потоки заряженных aльфа, бета и нейтральных гамма частиц. Усилиями многих ученых было обнаружено,что aльфа-частицы представляют собой ядра гелия, бета-частицы - электроны, а гамма-частицы - поток квантов света. Было установлено, что многие вещества являются естественными излучателями частиц, из которых некоторые, как например радий, оказались очень интенсивными источниками радиации.

Различные комбинации нуклонов в ядрах управляются законами ядерных взаимодействий, взаимное положение и движения внутри ядер определяется действием короткодействующих ядерных сил. Известно,что существует некоторая зависимость между числом протонов и нейтронов в ядрах, в рамках которой реализуется стабильность ядер. Эта зависимость для устойчивых ядер имеет вид:

Различные виды радиоактивных превращений можно описать:

,
где X * - составное ядро, A=A 1 +A 2 , Z=Z 1 +Z 2 , E - выделенная энергия.

Дочерние продукты радиоактивных процессов могут также претерпевать распад - так возникают цепочки радиоактивных превращений. Важной разновидностью радиоактивных превращений является т.н. спонтанное деление тяжелых ядер, открытое Флеровым и Петржаком в 1942 году. Радиоактивный распад это процесс статистический, т.е. управляемый вероятностными законамиi. Однако, в среднем, за времена большие времен характерных внутренних процессов - это вполне детерминированное явление. Так, можно записать уравнение радиоактивного распада, имеющее вид

где А i - число ядер изотопа А i в единице обьема,
- константа радиоактивного распада изотопа А i .

Величина определяет другую, часто используемую характеристику радиоактивного распада изотопов - период полураспада T1/2:

время в течение которого количество вещества за счет радиоактивного распада уменьшается в два раза.

Интенсивность радиоактивного распада измеряется в единицах, называемых "беккерель" (1 Бк = 1 распад / 1 сек). Важная единица интенсивного радиоактивного распада - кюри (1 кюри = 3,7*10 10 Бк = 37 ГБк)

1.4 Деление ядер

Кликните мышкой в картину, чтобы посмотреть анимированную версию.

Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.

После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.

Дифференциальное уравнение превращений осколков деления можно записать в виде:

где Ai - число ядер изотопа i в единице объема ,
Q(t) - число актов деления в единице объема в единицу времени в момент t,
- выход изотопов Ai в акте деления,
- константа радиоактивного распада изотопа Ai,
- плотность потока нейтронов,
- сечение поглощения нейтронов ядрами изотопа Ai ,
- константа перехода к-того изотопа в i-тый.

Для решения этой системы уравнений нужно задать начальные условия, знать схемы и константы всех радиоактивных переходов. Суммируя по группам изотопов, имеющих тот или иной тип радиоактивности, можно определить интенсивность радиоактивного распада в функции времени. В [3] представлены детали и результаты таких расчетов.

Наиболее значимые осколки деления - Kr, Cs, I, Xe, Ce, Zr и др.

В Таблице 1 [ ] даны некоторые характеристики осколков деления

Таблица 1. Характеристики некоторых радионуклидов и продуктов деления урана-235

Для многих задач определенный интерес представляют данные об активности топливных элементов после некоторой выдержки их вне реактора.

Для нас важно отметить сейчас, что осколки деления обладают значительной радиационной способностью. Так 1 грамм осколков деления обладает активностью ~0,3 кюри. Эта активность медленно уменьшается по закону

E=2,66*t -1,2 MeV/дел.сек, где t - время в сек.

2 Элементы нейтронной физики

2.1 Ядерный реактор

Ядерный реактор - это техническая установка, в которой осуществляется самоподдерживающаяся цепная реакция деления тяжелых ядер с освобождением ядерной энергии. Ядерный реактор состоит из активной зоны и отражателя, размещенных в защитном корпусе.Активная зона содержит ядерное топливо в виде топливной композиции в защитном покрытии и замедлитель. Топливные элементы обычно имеют вид тонких стержней. Они собраны в пучки и заключены в чехлы. Такие сборные композиции называются сборками или кассетами.

Вдоль топливных элементов двигается теплоноситель, который воспринимает тепло ядерных превращений. Нагретый в активной зоне теплоноситель двигается по контуру циркуляции за счет работы насосов либо под действием сил Архимеда и, проходя через теплообменник, либо парогенератор, отдает тепло теплоносителю внешнего контура. Перенос тепла и движения его носителей можно представить в виде простой схемы:

2.2 Размножение нейтронов

Размножение нейтронов является основой самоподдерживающейся цепной реакции деления ядер.

Цикл размножения нейтронов начинается с акта захвата нейтрона ядром тяжелых (U-235, Pu-239 и других "делящихся") элементов. Интенсивность захватов, т.е. число актов захватов нейтронов в единице объема в единицу времени есть

где n - плотность нейтронов,
v - их скорость,
- плотность ядер поглотителя,
- вероятность поглощения нейтрона, т.н. сечение поглощения . Индекс c означает "capture", т.е. захват.
Величина nv= - называется потоком нейтронов,
- макроскопическим сечением поглощения.

При каждом акте деления ядер тяжелых "делящихся" элементов испускается 2-3 новых, "быстрых" нейтронов. Это число обозначают vf. Пересчитывая на один акт захвата нейтрона, это число следует умножить на вероятность деления относительно деления и радиационного захвата, т.е. отношение и . Произведение обозначают vc.

Это число вторичных быстрых нейтронов на один акт захвата нейтрона ураном-235, равно примерно 2. Учитывая что топливо реакторов содержит большую долю неделящегося изотопа урана-238, число новых нейтронов на один акт захвата в уране топлива составляет

Число новых нейтронов, родившихся в единице объема топлива в единицу времени есть

Эти нейтроны сталкиваясь с ядрами окружающего топлива могут произвести дополнительные акты деления ядер топлива, произвести как говорят "размножение на быстрых нейтронах". Это умножение поколения нейтронов обозначают буквой . Далее нейтроны, сталкиваясь с ядрами замедлителя,теплоносителя и конструктивных элементов теряют свою энергию, "замедляются". При этом некоторая их доля поглощается (без деления) на резонансах сечения поглощения тяжелых элементов и выбывает из игры, а некоторая диффундирует во внешнее пространство и тем самым также теряется.

Долю нейтронов "избежавших резонансный захват" обозначают через , а долю избежавших "утечку"при замедлении - через . Тогда число "замедлившихся" нейтронов в единицу времени в единице объема, ставших "тепловыми", т.е. потерявших свою энергию рождения (~ 2 Мev) есть

где - геометрический параметр, - "возраст" нейтронов.

Эти нейтроны, "дифундируя" в среде, могут потеряться за счет утечки и поглощения в материалах активной зоны. Долю нейтронов, избежавших утечку при диффузии в тепловой области энергии (~kT ev) обозначают через , а долю нейтронов поглощенных в тяжелых элементах относительно полного поглощения во всех материалах активной зоны через . Число нейтронов прошедших весь нейтронный цикл на один нейтрон, поглощенный в тяжелых элементах, т.е. прошедших цикл размножения, замедления, диффузии в тепловой области есть

Произведение называют коэффициентом размножения нейтронов в бесконечной среде - k "бесконечное", а - эффективным коэффициентом размножения нейтронов в конечной среде, k - "эффективное".

Реактивность

Реактор называется критическим, если число новых нейтронов при каждом акте их захвата ядрами урана, избежавших резонансный захват в уране-238 и утечку из реактора при замедлении и диффузии, точно равно числу поглощенных. Это состояние cоответствует равенству k eff =1 Величина 1-k eff /k eff =r называется реактивностью . Эта величина определяет темп разгона реактора при r>0 .

3 Литература

"Ядерная физика",
пер. с англ., Москва, изд. "Иностранная литература", 1951 г.

"Ядерная физика",
Москва, Атомиздат, 1975 г.

А.С. Герасимов, Т.С. Зарицкая, А.П. Рудик

"Справочник по образованию нуклидов в ядерных реакторах",
Москва, Энергоатомиздат, 1989 г.

В.Д. Сидоренко, В.М. Колобашкин, П.М. Рубцов, П.А. Ружанский

"Радиационные характеристики облученного ядерного топлива",
справочник, Москва, Энергоатомиздат, 1983 г.

Энергия связи ядра. Виды радиоактивности: естественная и искусственная. Ядерные реакции и законы сохранения. Образование элементарных частиц, образующих ядра (нейтроны и протоны). Сохранение зарядового числа. Изучение ядерной цепной реакций в физике.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 09.09.2017
Размер файла 67,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ЭЛЕМЕНТЫ ЯДЕРНОЙ ФИЗИКИ

Атомное ядро состоит из нейтронов и протонов. Элементарные частицы, образующие ядра (нейтроны и протоны), называются нуклонами. Протон (ядро атома водорода) обладает положительным зарядом, равным заряду электрона. Его масса в 1836 раз больше массы электрона. Нейтрон электрически нейтральная частица с массой примерно равной 1839 масс электрона.

Количество протонов Z в ядре нейтрального атома равно числу электронов в его электронной оболочке и определяет его заряд, равный +Ze. Число Z называется зарядовым числом. Оно определяет порядковый номер химического элемента периодической системы Менделеева. N число нейтронов в ядре. A массовое число, равное суммарному количеству протонов Z и нейтронов N в ядре. Ядро атома обозначается тем же символом, что и химический элемент, снабжаясь двумя индексами, из которых верхний обозначает массовое, а нижний -- зарядовое число, т.е. где Х -- символ химического элемента. Например, .

Изотопами называются ядра с одним и тем же зарядовым числом, и различными массовыми числами. Например, водород имеет три изотопа: протий (), дейтерий () и тритий ().Изотопы обладают одинаковыми химическими свойствами и почти одинаковыми физическими свойствами. Исключение составляют, например, изотопы водорода, кальция и др.

Атомные ядра представляют собой устойчивые образования, несмотря на то, что между протонами существует сильное отталкивание. Устойчивость ядер свидетельствует, что между нуклонами в ядре действуют силы притяжения, превосходящие силы электростатического отталкивания протонов. Их назвали ядерными силами. Эти силы обладают рядом особенностей:

1) Они являются только силами притяжения и значительно сильнее электростатического отталкивания протонов.

2) Эти силы короткодействующие. Расстояние, на котором ещё действуют ядерные силы, называют радиусом действия этих сил. Он равен примерно 1,510 м.

3) Ядерные силы являются зарядово-независимыми. Это означает, что взаимодействие двух нуклонов совсем не зависит от того, обладают или не обладают они зарядом. Ядерные силы между двумя протонами, или двумя нейтронами, или протоном и нейтроном одинаковы

Для расщепления ядра на составляющие его нуклоны, необходимо затратить определённую энергию, называемую энергией связи ядра.

Оценим энергию связи атомных ядер. Пусть масса покоя нуклонов, из которых образуется ядро, равна m1. Согласно специальной теории относительности, ей соответствует энергия, рассчитываемая по формуле m1c 2 , где c скорость света в вакууме. После образования ядро обладает энергией ?? = Mc 2 . Здесь M масса ядра. Измерения показывают, что масса покоя ядра всегда меньше, чем масса покоя частиц в свободном состоянии, составляющих данное ядро. Разность этих масс называют дефектом массы. Поэтому при образовании ядра происходит выделение энергии ?1 ?2 = (m1 M)c 2 = ?mc 2 . Из закона сохранения энергии можно заключить, что такая же энергия должна быть затрачена на расщепление ядра на протоны и нейтроны. Поэтому энергия связи ?св равна ?св = ?mc 2 . Если ядро с массой M образовано из Z протонов с массой mp и из N = A - Z нейтронов с массой mn, то дефект массы равен

энергия ядро физика нейрон

m = Z mp + (A - Z) mn M.(1)

С учётом этого энергия связи находится по формуле

св = [Z mp + (A - Z) mn M]c2.(2)

Процесс самопроизвольного распада атомных ядер называют радиоактивностью. Радиоактивный распад ядер сопровождается превращением одних нестабильных ядер в другие и испусканием различных частиц. Было установлено, что эти превращения ядер не зависят от внешних условий: освещения, давления, температуры и т.д. Существует два вида радиоактивности: естественная и искусственная. Естественная радиоактивность наблюдается у химических элементов, находящихся в природе. Как правило, она имеет место у тяжёлых ядер, располагающихся в конце таблицы Менделеева, за свинцом. Однако имеются и лёгкие естественно-радиоактивные ядра: изотоп калия , изотоп углерода и другие. Искусственная радиоактивность наблюдается у ядер, полученных в лаборатории с помощью ядерных реакций. Однако принципиального различия между ними нет.

Известно, что естественная радиоактивность тяжёлых ядер сопровождается излучением, состоящим из трёх видов: лучи - это поток ядер гелия , обладающих большой энергией. ?-лучи поток электронов, ?-лучи электромагнитные волны с очень малой длиной волны.

Радиоактивность широко используется в научных исследованиях и технике. Разработан метод контроля качества изделий или материалов гамма-дефектоскопия. Она позволяет установить глубину залегания и правильность расположения арматуры в железобетоне, выявить раковины, пустоты или участки бетона неравномерной плотности, случаи неплотного контакта бетона с арматурой. По степени поглощения ?-лучей высокой энергии судят о влажности материалов. Построены радиоактивные приборы для измерения состава газа, причём источником излучения в них является очень небольшое количество изотопа, дающего ?-лучи. Радиоактивный сигнализатор позволяет определить наличие небольших примесей газов, образующихся при горении любых материалов. Он подаёт сигнал тревоги при возникновении пожара в помещении.

Пусть радиоактивное вещество к данному моменту времени t содержит N ядер. Экспериментально установлено, что за малый промежуток времени dt убыль dN ядер пропорциональна числу этих ядер и этому промежутку времени, т.е. dN = -?Ndt, где ?? постоянная распада, определяющая его скорость. Интегрируя это уравнение и учитывая, что при t = 0 число атомов равнялось N0, получаем:

Соотношение (3) представляет собой закон радиоактивного распада. Для количественной характеристики быстроты распада вводится физическая величина, называемая периодом полураспада, т.е. время Т, за которое начальное число атомов радиоактивного вещества уменьшается в два раза. Найдём связь периода полураспада и постоянной распада . По истечении времени, равным периоду полураспада, т.е. при t = T, число будет равно N = N0 /2. Подставляя эти выражения в (3), находим: ?T = ln 2; Для различных ядер период полураспада T меняется в широких пределах -- от 10 с до миллиардов лет.

Превращения атомных ядер, обусловленные их взаимодействиями друг с другом или с элементарными частицами, называются ядерными реакциями. Ядерные реакции осуществляются за счёт бомбардировки ядер атомов ?-частицами и протонами, обладающими большой кинетической энергией вследствие того, что они разгоняются в ускорителе. В качестве примера приведём первую ядерную реакцию, осуществленную Резерфордом при бомбардировке ядер азота (ядра-мишени) ядрами гелия (ядра-снаряды): . Все ядерные реакции подчиняются следующим общим законам:

1. Сохранение зарядового числа. Сумма зарядовых чисел частиц и ядер, вступающих в реакцию, равна сумме этих чисел продуктов реакции. Например, в приведённой выше ядерной реакции имеем следующее равенство: 2 + 7 = 1 + 8.

2. Сохранение массового числа. Сумма массовых чисел частиц и ядер до и после реакции равны друг другу. Например, для той же реакции 4 + 14 = 1 + 17.

3. Сохранение массы-энергии. Для изолированной системы полная масса-энергия неизменна.

Для протекания ядерной реакции ядра должны сблизиться на столь малое расстояние, чтобы между ними начали действовать ядерные силы.

Установлено, что при бомбардировке ядер урана нейтронами происходит распад ядра на две примерно равные части. Отметим три важные особенности таких реакций:

1. Легко делятся ядра одного из изотопов урана .

2. В результате реакции деления высвобождается огромное количество энергии. Это связано с тем, что масса ядра урана больше суммарной массы осколков деления. Образующийся дефект массы и приводит к выделению энергии.

3. Важной особенностью рассматриваемой ядерной реакции является то, что при делении ядра урана выделяется 2 или 3 нейтрона. Физики поняли, что нейтроны, испускаемые в каждом акте деления, можно использовать для осуществления цепной реакции: один нейтрон делит одно ядро урана, два или три образовавшихся нейтрона вызовут дополнительные деления и таким образом процесс лавинообразно нарастает, как показано на рис. 2 для трёх нейтронов. На этом рисунке не показаны новые ядра, возникающие после распада ядер урана. Чтобы цепная реакция проходила, масса урана должна превышать некоторое значение, называемое критической массой, которая составляет несколько килограмм.

Ядерную реакцию, происходящую в атомной бомбе, называют неуправляемой. Управляемая реакция осуществляется в ядерных реакторах, используемых на атомных электростанциях (АЭС).

Атомные электростанции. Если в атомной бомбе происходит неуправляемая цепная реакция, то в созданных ядерных реакторах она носит управляемый характер. Суть управляемой реакции заключается в том, что создаются условия, когда на каждый процесс деления ядра урана-235 или плутония приходится в среднем только один нейтрон, вызывающий новый акт деления. Другие же образовавшиеся нейтроны вылетают из системы или поглощаются атомными ядрами других веществ. Таким образом, скорость выделения энергии будет поддерживаться одинаковой. Сердцем атомной электростанции является ядерный реактор 1. В качестве горючего используются уран-235 и плутоний-239. Для управления потоком нейтронов в атомных реакторах применяются управляющие стержни 3, содержащие кадмий или бор, которые хорошо поглощают нейтроны. Эти стержни вводят в активную зону реактора 2 (топливо -- замедлитель). Когда стержни полностью погружены в реактор, они поглощают столько нейтронов, что цепная реакция в реакторе не идёт. При выведении стержней увеличивается число нейтронов в реакторе и начинается реакция. В качестве замедлителя нейтронов используют графит или тяжелую воду. Для обеспечения безопасности работающего персонала от радиоактивных излучений реактор помещают в защитную оболочку 4. Необходимо отметить, что для получения самоподдерживающейся цепной реакции, как и в атомной бомбе, масса топлива должна быть не меньше критической. Критическая масса зависит от вида горючего и составляет несколько килограмм. Энергия, выделяемая реактором (1) в виде тепла, снимается теплоносителем (вода, жидкий натрий), циркулирующим в замкнутом контуре (5). Циркуляция обеспечивается насосом (6). В теплообменнике (7) теплоноситель отдаёт тепло воде, превращая её в пар, который вращает паровую турбину (8). Турбина соединена с электрогенератором (9), вырабатывающим электроэнергию. Из паровой турбины пар поступает в конденсатор 10. Происходит его конденсация в воду, которая поступает в теплообменник. Охлаждение пара в конденсаторе осуществляется водой из искусственно созданного водоёма (11).

Ядерные реакции, в которых из лёгких ядер образуются более тяжёлые ядра, называются реакциями термоядерного синтеза (термоядерными реакциями). При синтезе суммарная масса исходных ядер, превышает массу образовавшегося ядра, в результате этого выделяется энергия. Например, ядра дейтерия D () при слиянии образуют ядро гелия . Расчёты показывают, что два грамма дейтерия выделяют 10 13 Дж энергии. Для того чтобы произошла термоядерная реакция надо положительно заряженные ядра сблизить настоль малые расстояния, чтобы между ними возникли ядерные силы. Для преодоления кулоновского отталкивания ядер вещество надо нагреть до температуры 10 7 -10 8 К. В водородной бомбе высокая температура достигается за счёт взрыва атомной бомбы, при котором получается температура порядка 70 млн. градусов. Взрыв водородной бомбы представляет собой неуправляемую термоядерную реакцию. Реакция термоядерного синтеза не взрывного характера осуществлена природой на Солнце и звёздах, где достигается температура в миллионы градусов. Человечеству необходима управляемая термоядерная реакция, т.е. реакция, в ходе которой энергию можно было бы отбирать в нужном количестве в нужное время.

Для осуществления управляемой термоядерной реакции нужно создать высокотемпературную плазму, которую надо ещё удержать. Частицы, обладая колоссальной кинетической энергией, стремятся сразу же разлететься, а в природе нет такого материала, который бы выдерживал миллионы градусов. Для удержания плазмы физики предположили два пути решения этой задачи. Первый путь заключается в удержании плазмы с помощью магнитного поля. Если на газоразрядную трубку наложить магнитное поле, совпадающее по направлению с электрическим полем, то в такой трубке возникает плазменный шнур. Заряженные частицы плазмы под действием силы Лоренца будут описывать спиральные траектории вокруг магнитных силовых линий. Чем сильнее магнитное поле, тем меньше радиус плазменного шнура. Сила, которая действует на движущиеся заряженные частицы, со стороны магнитного поля и есть причина образования шнура, не соприкасающегося со стенами газоразрядной трубки; плазма как бы висит в вакууме. Второе направление это создание управляемого термоядерного синтеза с помощью лазерного излучения. Самые мощные лазеры могут разогреть вещество с помощью короткого импульса до температуры 60 млн. град. Поэтому появилась возможность осуществить термоядерную реакцию в виде микровзрыва, даже без использования, удерживающего плазму магнитного поля, так как реакция протекает быстро, и дейтерий с тритием не успевают разлететься. В этом случае технически реакция осуществляется воздействием мощного лазерного импульса на твёрдую замороженную таблетку из дейтерия и трития.

Подобные документы

Энергия связи атомного ядра, необходимая для полного расщепления ядра на отдельные нуклоны. Условия, необходимые для ядерной реакции. Классификация ядерных реакций. Определение коэффициента размножения нейтронов. Ядерное оружие, его поражающие свойства.

презентация [2,2 M], добавлен 29.11.2015

Сущность цепной ядерной реакции. Распределение энергии деления ядра урана между различными продуктами деления. Виды и химический состав ядерного топлива. Массовые числа протона и нейтрона. Механизм цепной реакции деления ядер под действием нейтронов.

реферат [34,4 K], добавлен 30.01.2012

Физика атомного ядра. Структура атомных ядер. Ядерные силы. Энергия связи ядер. Дефект массы. Ядерные силы. Ядерные реакции. Закон радиоактивного распада. Измерение радиоактивности и радиационная защита.

реферат [306,3 K], добавлен 08.05.2003

Краткая характеристика нуклонов. Масса и энергия связи ядра. Формы радиоактивного распада. Ядерные силы и модели атомного ядра. Основные формулы теории атомного ядра. Цепные реакции деления. Термоядерные и ядерные реакции. Химические свойства изобаров.

курсовая работа [1,5 M], добавлен 21.03.2014

Планетарная модель атома Резерфорда. Состав и характеристика атомного ядра. Масса и энергия связи ядра. Энергия связи нуклонов в ядре. Взаимодействие между заряженными частицами. Большой адронный коллайдер. Положения теории физики элементарных частиц.

Как известно, все в мире состоит из молекул, которые представляют собой сложные комплексы взаимодействующих атомов. Молекулы - это наименьшие частицы вещества, сохраняющие его свойства. В состав молекул входят атомы различных химических элементов.

Химические элементы состоят из атомов одного типа. Атом, мельчайшая частица химического элемента, состоит из "тяжелого" ядра и вращающихся вокруг электронов.


Кликните мышкой в картину, чтобы посмотреть анимированную версию.


Кликните мышкой в картину, чтобы посмотреть анимированную версию.

Ядро элемента X обозначают как или X-A, например уран U-235 - ,

где Z - заряд ядра, равный числу протонов, определяющий атомный номер ядра, A - массовое число ядра, равное суммарному числу протонов и нейтронов.

Ядра элементов с одинаковым числом протонов, но разным числом нейтронов называются изотопами (например, уран имеет два изотопа U-235 и U-238); ядра при N=const, z=var - изобарами.

1.2 Ядерные реакции

Ядра водорода, протоны, а также нейтроны, электроны (бета-частицы) и одиночные ядра гелия (называемые альфа-частицами), могут существовать автономно вне ядерных структур. Такие ядра или иначе элементарные частицы, двигаясь в пространстве и приближаясь к ядрам на расстояния порядка поперечных размеров ядер, могут взаимодействовать с ядрами, как говорят участвовать в реакции. При этом частицы могут захватываться ядрами, либо после столкновения - менять направление движения, отдавать ядру часть кинетической энергии. Такие акты взаимодействия называются ядерными реакциями. Реакция без проникновения внуть ядра называется упругим рассеянием.

После захвата частицы составное ядро находится в возбужденном состоянии. "Освободиться" от возбуждения ядро может несколькими способами - испустить какую-либо другую частицу и гамма-квант, либо разделиться на две неравные части. Соответственно конечным результатам различают реакции - захвата, неупругого рассеяния, деления, ядерного превращения с испусканием протона или альфа-частицы.

Дополнительная энергия, освобождаемая при ядерных превращениях, часто имеет вид потоков гамма-квантов.


Вероятность реакции характеризуется величиной "поперечного сечения" реакции данного типа

1.3 Радиоактивность

Радиоактивность вошла в сознание человечества всего лишь примерно 100 лет тому назад. Лишь в 1986 году А. Бекерель обнаружил некие х-лучи, засвечивавшие фотопластинки. Затем было установлено, что радиоактивность - это свойство испускать потоки заряженных aльфа, бета и нейтральных гамма частиц. Усилиями многих ученых было обнаружено,что aльфа-частицы представляют собой ядра гелия, бета-частицы - электроны, а гамма-частицы - поток квантов света. Было установлено, что многие вещества являются естественными излучателями частиц, из которых некоторые, как например радий, оказались очень интенсивными источниками радиации.

Различные комбинации нуклонов в ядрах управляются законами ядерных взаимодействий, взаимное положение и движения внутри ядер определяется действием короткодействующих ядерных сил. Известно,что существует некоторая зависимость между числом протонов и нейтронов в ядрах, в рамках которой реализуется стабильность ядер. Эта зависимость для устойчивых ядер имеет вид:


Различные виды радиоактивных превращений можно описать:


,
где X * - составное ядро, A=A1 +A2 , Z=Z1 +Z2 , E - выделенная энергия.

Дочерние продукты радиоактивных процессов могут также претерпевать распад - так возникают цепочки радиоактивных превращений. Важной разновидностью радиоактивных превращений является т.н. спонтанное деление тяжелых ядер, открытое Флеровым и Петржаком в 1942 году. Радиоактивный распад это процесс статистический, т.е. управляемый вероятностными законамиi. Однако, в среднем, за времена большие времен характерных внутренних процессов - это вполне детерминированное явление. Так, можно записать уравнение радиоактивного распада, имеющее вид

или


где Аi - число ядер изотопа Аi в единице обьема,
- константа радиоактивного распада изотопа Аi .


Величина определяет другую, часто используемую характеристику радиоактивного распада изотопов - период полураспада T1/2 :


-

время в течение которого количество вещества за счет радиоактивного распада уменьшается в два раза.

Интенсивность радиоактивного распада измеряется в единицах, называемых "беккерель" (1 Бк = 1 распад / 1 сек). Важная единица интенсивного радиоактивного распада - кюри (1 кюри = 3,7*10 10 Бк = 37 ГБк)

1.4 Деление ядер


Кликните мышкой в картину, чтобы посмотреть анимированную версию.

Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.

После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.

Дифференциальное уравнение превращений осколков деления можно записать в виде:


где Ai - число ядер изотопа i в единице объема ,
Q(t) - число актов деления в единице объема в единицу времени в момент t,
- выход изотопов Ai в акте деления,
- константа радиоактивного распада изотопа Ai ,
- плотность потока нейтронов,
- сечение поглощения нейтронов ядрами изотопа Ai ,
- константа перехода к-того изотопа в i-тый.

Для решения этой системы уравнений нужно задать начальные условия, знать схемы и константы всех радиоактивных переходов. Суммируя по группам изотопов, имеющих тот или иной тип радиоактивности, можно определить интенсивность радиоактивного распада в функции времени. В [3] представлены детали и результаты таких расчетов.

Читайте также: