Элементы 2 а группы реферат

Обновлено: 07.07.2024

К щелочноземельным металлам относят химические элементы: двувалентные металлы, составляющие IIА группу:

Бериллий Be

магний Mg

кальций Ca,

стронций Sr,

барий Ba и

радий Ra.

Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них.

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Общая характеристка щелочноземельных металлов

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Периодическая таблица-2 группа

Электронные конфигурации у данных элементов схожи, все они содержат 2 электрона на внешнем уровне ns 2 :

Be — 2s 2

Mg —3s 2

Ca — 4s 2

Sr — 5s 2

Ba — 6s 2

Ra — 7s 2

Нахождение в природе щелочноземельных металлов

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др.

Основные минералы, в которых присутствуют щелочноземельные металлы:

щелочноземельные металлы_нахождение в природе

Способы получения щелочноземельных металлов

Магний

  • Магний получают электролизом солей, чаще всего хлоридов: расплавленного карналлита (KCl·MgCl26H2O) или хлорида магния с добавками хлорида натрия при 720–750°С:
  • восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий

Барий получают алюмотермическим способом — восстановление оксида бария алюминием в вакууме при 1200 °C:

Химические свойства щелочноземельных металлов

Качественные реакции

  • Окрашивание пламени солями щелочных металлов

Цвет пламени:

щелочноземельные металлы_цвет пламени

Sr — карминово-красный (алый)

щелочноземельные металлы_качественные реакции

Взаимодействие с простыми веществами — неметаллами

С кислородом

С кислородом взаимодействуют при нагревании с образованием оксидов

С галогенами

Щелочноземельные металлы реагируют с галогенами при нагревании с образованием галогенидов .

С водородом

Щелочноземельные металлы реагируют с водородом при нагревании с образованием гидридов:

Бериллий с водородом не взаимодействует.

Магний реагирует только при повышенном давлении:

С серой

Щелочноземельные металлы при нагревании взаимодействуют с серой с образованием сульфидов сульфидов:

Ca + 2C → CaC2 (карбиды)

С азотом

При комнатной температуре с азотом взаимодействует только магний с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

С углеродом

Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

Бериллий при нагревании с углеродом с образует карбид — метанид:

С фосфором

Щелочноземельные металлы при нагревании взаимодействуют с фосфором с образованием фосфидов:

Взаимодействие со сложными веществами

С водой

Кальций, стронций и барий взаимодействуют с водой при комнатной температуре с образованием щелочи и водорода:

Магний реагирует с водой при кипячении, а бериллий с водой не реагирует.

С кислотами

с концентрированной серной:

с разбавленной и концентрированной азотной:

С водными растворами щелочей

В водных растворах щелочей растворяется только бериллий:

С солями

В расплаве щелочноземельные металлы могут взаимодействовать с некоторыми солями:

Запомните! В растворе щелочноземельные металлы взаимодействуют с водой, а не с солями других металлов.

С оксидами

Щелочноземельные металлы могут восстанавливать из оксидов такие неметаллы как кремний, бор, углерод:

2Ca + SiO2 → 2CaO + Si

Магний сгорает в атмосфере углекислого газа с образованием оксида магния и сажи (С):

«Медико-биологическое значение биогенных элементов 1А и 2А групп.

Выполнила: студентка 1 курса

Потапова Варвара Валерьевна

Катунина Елена Евгеньевна

Глава 1. Общая характеристика элементов 1А группы 4

Параграф 1. Химические свойства Li. Медико-биологическое значение. 5

Параграф 2. Химические свойства Na. Медико-биологическое значение. 5

Параграф 3. Химические свойства K. Медико-биологическое значение. 6

Параграф 4. Химические свойства Rb. Медико-биологическое значение. 6

Параграф 5. Химические свойства Cs. Медико-биологическое значение. 7

Параграф 6. Химические свойства Fr. Медико-биологическое действие. 7

Глава 2. Общая характеристика элементов 2А группы 8

Параграф 1. Химические свойства Mg. Медико-биологическое значение. 8

Параграф 2. Химические свойства Ca. Медико-биологическое значение. 9

Параграф 3. Химические свойства Sr. Медико-биологическое значение. 9

Параграф 4. Химические свойства Ra. Медико-биологическое значение 10

Глава 3. Токсичность соединений бериллия и бария 11

Параграф 1. Общая характеристика Ba 11

Параграф 2. Токсичность бария 11

Параграф 3. Общая характеристика Be 13

Параграф 4. Токсичность бериллия 13

Список используемой литературы: 16

Введение

Актуальность темы: Актуальность данной темы очевидна, так как элементы 1А и 2А группы относятся к наиболее часто используемым элементам в различных областях науки, техники, промышленности, а также в медицине. Данные элементы необходимы для построения и жизнедеятельности клетки в организме. Например, натрий и калий постоянно содержатся в организме человека и активно участвуют в обмене веществ. Однако, некоторые элементы 2А группы обладают токсическим действием. Вопрос о возможном воздействии на живые организмы, поведении того или иного токсичного элемента при определённой концентрации очень интересен и актуален.

Цель работы: Определить медицинское з начение элементов 1А и 2А группы и изучить токсичное воздействие соединений бериллия и бария.

Поставленная цель предопределила необходимость решения следующих задач:

  1. Выделить основные свойства элементов 1А и 2А группы.
  2. Определить их биологическую роль
  3. Определить влияние токсичности соединений бериллия и бария на человека

Глава 1. Общая характеристика элементов 1А группы

В периодической таблице Менделеева выделяют 6 металлов 1А группы. К ним относятся: литий ( Li ), натрий ( Na ), калий ( К ), рубидий ( Rb ), цезий ( Сs ) и франций ( Fr ) . Данные элементы являются щелочными, так как образуют сильное основание-щелочи.

На внешнем энергетическом уровне у элементов 1А группы находится один электрон, который они легко могут отдать, становясь при этом однозарядными катионами. Данные катионы обладают устойчивой электронной структурой, соответствующей благородному газу. Элементы характеризуются как типичные металлы из-за легкой отдачи электронов: металлические свойства у щелочных металлов выражены особенно высоко. При увеличении порядкового номера увеличивается радиус атома, вследствие этого усиливаются восстановительные свойства.

Физиологическая роль бериллия в организме человека, его синергисты и антагонисты. Роль магния в организме человека для обеспечения протекания различных жизненных процессов. Нейтрализация избыточной кислотности организма. Значение стронция для человека.
Краткое сожержание материала:

Биогенные элементы 2А группы

бериллий магний кислотность биогенный

1. Бериллий относится к токсичным ультрамикроэлементам. Физиологическая роль бериллия в организме человека изучена недостаточно, однако известно, что бериллий может участвовать в регуляции фосфорно-кальциевого обмена, поддержке иммунного статуса организма.Суточная потребность организма человека точно не установлена, однако есть данные, что оптимальное среднесуточное поступление бериллия составляет 10-20 мкг.

В организм человека бериллий может попадать как с пищей, так и через легкие. При введении в растворимой форме в желудочно-кишечный тракт бериллий взаимодействует с фосфатами и образует плохо растворимый Be3 (PO4) 2 или связывается с белками эпителиальных клеток в прочные протеинаты. Поэтому всасываемость бериллия в желудочно-кишечном тракте невелика и колеблется от 4 до 10% от поступившего количества. Следует отметить, что этот показатель зависит также и от кислотности желудочного сока.

Биологическая роль в организме человека. В основном бериллий участвует в обмене магния и фосфора в ткани. Установлено, что активность соединений бериллия отчетливо проявляется в различных биохимических превращениях, связанных с участием неорганических фосфатов.

Синергисты и антагонисты бериллия. Антагонистом бериллия является магний. Магний в организме преимущественно находится внутри клеток, где образует соединения с белками и нуклеиновыми кислотами, содержащими связи Mg-N и Mg-O. Сходство физико-химических характеристик ионов Be2+ и Mg2+ обусловливает их способность к взаимному замещению в таких соединениях. Это объясняет, в частности, ингибирование магнийсодержащих ферментов при попадании в организм бериллия.

Признаки недостаточности бериллия. Научные данные отсутствуют.

Основные проявления избытка бериллия: поражение легочной ткани (фиброз, саркоидоз), поражение кожи - экзема, эритема, дерматоз (при контактах соединений бериллия с кожей), бериллиоз, лихорадка литейная (раздражение слизистых оболочек глаз и дыхательных путей); эрозии слизистых оболочек желудочно-кишечного тракта, нарушение функций миокарда, печени, развитие аутоиммунных процессов, опухоли.

Бериллий необходим: в древности бериллом (силикат алюминия и бериллия) лечили огромное количество женских заболеваний. Бытовало мнение, что с помощью порошка берилла можно избежать опущения матки, зубной и головной боли, а бериллиевые браслеты защищают от заболеваний яичников и мочевого пузыря. Врачи-литотерапевты современности рекомендуют носить берилл в случае расстройств нервной системы и хронических болезней дыхательной системы.

Пищевые источники бериллия: поступление бериллия с пищей и водой незначительно, значительные количества накапливаются в томатах.

Основной путь поступления бериллия в организм - ингаляционный, т.е. через дыхательные пути. У людей, которые работают в условиях, где есть вероятность вдыхания пыли, содержащей бериллий, может развиться профессиональное заболевание - бериллиоз (бериллиевая или химическая пневмония).

2. Магний.

Magnifique - значит великолепный. От этого французского слова получил название элемент периодической таблицы - магний. На открытом воздухе горит это вещество очень эффектно, великолепным ярким пламенем. Отсюда и магний. Однако великолепен магний не только тем, что горит красиво.

Необычайно важна роль магния в организме человека для обеспечения протекания различных жизненных процессов. И, к счастью, с горением это не связано никак. А какие это процессы? Давайте рассмотрим.

Магний является кофактором и активатором некоторых ферментов - энолазы, щелочной фосфатазы, карбоксилазы, гексокиназы. Установлено участие магния в фосфорном и углеводном обмене. Элемент оказывает асептическое и сосудорасширяющее действие. Под воздействием соединений магния усиливается перистальтика кишечника, лучше отделяется желчь и выводится холестерин, снижается нервно-мышечная возбудимость. Магний участвует в синтезе белка. Наряду с вышеперечисленным роль магния в организме человека заключается в оказании щелочного действия на органы и ткани.

Нехватка магния в организме

К сожалению, человек редко обращает внимание на дефицит магния в организме. А между тем, постоянная нехватка магния в организме вызывает масштабные функциональные нарушения во всех органах. О недостаточности магния говорят судороги в мышцах и дрожь, повышенная раздражительность, ухудшение концентрации. Из-за того, что при недостатке магния снижается уровень кальция, возникает остеопороз костей. Нарушение функционирования паращитовидной железы и сбои в работе сердца тоже являются проявлениями недостатка магния. Начальные симптомы нехватки магния заметить несложно - раздражительность и тремор, внезапные головокружения, сопровождаемые потерей равновесия, упомянутые уже мышечные судороги, покалывающие ощущения в ногах, выпадают волосы, повышается ломкость ногтей. Все эти симптомы наблюдаются у алкоголезависимых людей, а так же у тех, кто в больших объёмах употребляет чёрный чай, кофе, чрезмерно солёные или сладкие блюда. Специалисты уверены, что инфаркт людей в возрасте от 30 до 40 лет вызывается именно недостаточным содержанием магния в сердечной мышце. 50%-ная недостаточность магния может привести к летальному исходу.

Избыток магния в организме.

В каких продуктах содержится магний.

Наиболее богаты магнием орехи, фасоль, да и вообще, семена всех бобовых культур. К примеру, половина стакана свежей фасоли содержит около 150 миллиграммов магния. Тот же объём бобов сои - более 200 миллиграммов. Сваренные овощи - шпинат, ботва свёклы, капуста кольраби тоже богаты магнием. Однако при длительной обработке овощей в большом количестве воды магний вымывается. Наверное, стоит упомянуть, в каких продуктах содержится магний в малых количествах. Это все мучные изделия, содержащие сдобу. Овощи содержат магний в разных количествах, и зависит оно от почв и от внесения удобрений.

Большое количество магния зафиксировано в какао, овсяной крупе, отрубях пшеницы, в сушеных абрикосах, черносливе, салате, укропе, яйцах.

3. Кальций.

Кальций играет огромную роль в жизнедеятельности человеческого организма. Можно смело сказать, что из всех элементов - кальций является главным, не только в количественном, но и в функциональном отношении. В организме человека содержится 1000-1200 г. кальция, 99% - включено в костную ткань, дентин, эмаль зубов, а 1% играет исключительно важную роль как внутриклеточный кальций, кальций крови и тканевой жидкости. Понятно, что кальций играет важнейшую роль в формировании костей. Кальций участвует в процессах передачи нервных импульсов, обеспечивает равновесие между процессами возбуждения и торможения в коре головного мозга, участвует в регуляции сократимости скелетных мышц и мышцы сердца, влияет на кислотно-щелочное равновесие организма, активность рада ферментов. Он является также важным элементом буферной системы организма, поддерживающей рН (водородный показатель.

Биогенные элементы. Продуктивность экосистемы
Понятие про биогенные элементы. Природный круговорот серы. Типы экологических пирамид. Пирамиды биомассы, численности и энергии. "Повестка на XXI век".

Биогенные элементы в организме человека
Содержание и биологическая роль химических элементов в организме человека. Биогенные элементы – металлы и неметаллы, входящие в состав организма челов.

Биогенные амины
Биогенные амины – это амины, образующиеся в организме в результате метаболизма. Распространение в природе. Синтез биогенных аминов. Физические и химич.

Металлы
Общая характеристика металлов. Элементы I группы Li, Na, K, Rb, Cs, Fr. Оксиды и пероксиды щелочных металлов. Гидроксиды. Элементы главной II группы.

Элементы І группы
Общая характеристика элементов І группы, их химические и физические свойства, история открытия и особенности способов получения. Литий и его соединени.

На внешнем уровне имеют по два электрона. Отдавая их, они проявляют в соединениях степень окисления +2. В окислительно-восстановительных реакциях все металлы подгруппы ведут себя как сильные восстановители, однако, несколько более слабые, чем щелочные металлы. Это объясняется тем, что атомы металлов II группы имеют меньшие атомные радиусы, чем атомы соответствующих щелочных металлов, расположенных в тех же периодах.

Содержание

Общая характеристика металлов главной подгруппы II группы 2
Физические и химические свойства металлов 3
Характеристика Бериллия (Be) 5
Характеристика Магния (Mg) 8
Характеристика Кальция (Ca) 13
Характеристика Стронция (Sr) 19
Характеристика Бария (Ba) 23
Характеристика Радия (Ra) 27
Заключение 31
ПРИЛОЖЕНИЕ 1 32
ПРИЛОЖЕНИЕ 2 33
ПРОЛОЖЕНИЕ 3 34
ПРИОЛОЖЕНИЕ 4 35
ПРИЛОЖЕНИЕ 5 36

Прикрепленные файлы: 1 файл

Общая характеристика металлов главной подгруппы II группы реферат.docx

Общая характеристика металлов главной подгруппы II группы 2
Физические и химические свойства металлов 3
Характеристика Бериллия (Be) 5
Характеристика Магния (Mg) 8
Характеристика Кальция (Ca) 13
Характеристика Стронция (Sr) 19
Характеристика Бария (Ba) 23
Характеристика Радия (Ra) 27

Заключение 31
ПРИЛОЖЕНИЕ 1 32
ПРИЛОЖЕНИЕ 2 33
ПРОЛОЖЕНИЕ 3 34
ПРИОЛОЖЕНИЕ 4 35

ПРИЛОЖЕНИЕ 5 36

Общая характеристика металлов главной подгруппы II группы

В главную подгруппу II группы входят бериллий Be, магний Mg, кальций Са, стронций Sr, барий Ва, радий Ra. Из них кальций, стронций, барий относятся к семейству щелочноземельных металлов.

Это s-элементы. В виде простых веществ типичные металлы. На внешнем уровне имеют по два электрона. Отдавая их, они проявляют в соединениях степень окисления +2. В окислительно-восстановительных реакциях все металлы подгруппы ведут себя как сильные восстановители, однако, несколько более слабые, чем щелочные металлы. Это объясняется тем, что атомы металлов II группы имеют меньшие атомные радиусы, чем атомы соответствующих щелочных металлов, расположенных в тех же периодах. Это связано с некоторым сжатием электронных оболочек, так как s-подуровень внешнего электронного слоя у них завершен, поэтому электроны ими удерживаются сильнее.
Все эти элементы имеют изотопы с некомпенсированным ядерным спином. В отличие от щелочных металлов, щелочноземельные распределяются в плазме и в клетках крови аналогично переходным металлам, то есть с увеличением радиуса иона содержание металла в плазме увеличивается. Ионы металлов 2 группы образуют больше комплексных соединений, чем ионы щелочных металлов.

Из этих ns2-металлов важнейшими являются Mg и Са. В живых организмах оба они относятся к макроэлементам. Например, в организме взрослого человека содержится до 1 кг Са (до 99% — в составе костей и зубов) и около 25 г Mg. Показано их значение для метаболических процессов, свертывания крови, сокращения мышц, функционирования нервной системы.

Физические и химические свойства металлов

С ростом порядкового номера элемента отдача электронов облегчается, и поэтому металлические свойства закономерно возрастают. Более ярко они проявляются у щелочноземельных металлов.

Свойства. Бериллий, магний, кальций, барий и радий - металлы серебристо-белого цвета. Стронций имеет золотистый цвет. Эти металлы легкие, особенно низкие плотности имеют кальций, магний, бериллий.

Следует отметить, что по своим свойствам бериллий и магний несколько отличаются от щелочноземельных металлов кальция, стронция и бария (последний элемент группы радий отличается от остальных щелочноземельных металлов природными радиоактивными свойствами).

Кальций, стронций и барий окисляются на воздухе до оксидов состава RO, поэтому их хранят без доступа воздуха либо в герметически закрытых сосудах, либо под слоем эфира или керосина. Бериллий и магний при комнатной температуре на воздухе покрываются тонкой оксидной пленкой, предохраняющей их от дальнейшего окисления.

В свободном состоянии эти металлы в природе не встречаются. К числу наиболее распространенных элементов относятся кальций и магний. Основными кальцийсодержащими минералами являются кальцит CaCO3 (его разновидности - известняк, мел, мрамор), ангидрит CaSO4, гипс CaSO4 · 2H2O , флюорит CaF2 и фторапатит Ca5(PO4)3F. Магний входит в состав минералов магнезита MgCO3, доломита MgCO3 · CaCo3, карналлита KCl · MgCl2 · 6H2O. Соединения магния в больших количествах содержатся в морской воде.

Бериллий, магний и особенно щелочноземельные элементы - химически активные металлы. Они являются сильными восстановителями. Из металлов этой подгруппы несколько менее активен бериллий, что обусловлено образованием на поверхности этого металла защитной оксидной пленки.

Некоторые физические и химические свойства можно посмотреть в таблице 1 (ПРИЛОЖЕНИЕ 1)

1. Взаимодействие с простыми веществами. Все легко взаимодействуют с кислородом и серой, образуя оксиды и сульфаты:

Бериллий и магний реагируют с кислородом и серой при нагревании, остальные металлы - при обычных условиях.

Все металлы этой группы легко реагируют с галогенами:

При нагревании все реагируют с водородом, азотом, углеродом, кремнием и другими неметаллами:

Ca + H2 = CaH2 (гидрид кальция)

3Mg + N2 = Mg3N2 (нитрид магния)

Ca + 2C = CaC2 (карбид кальция)

Карбид кальция - бесцветное кристаллическое вещество. Технический карбид, содержащий различные примеси, может иметь цвет серый, коричневый и даже черный. Карбид кальция разлагается водой с образованием газа ацетилена C2H2 - важного продукта хим. промышленности:

CaC2 + 2H2O = CaOH)2 + C2H2

Расплавленные металлы могут соединяться с другими металлами, образуя интерметаллические соединения, например CaSn3, Ca2Sn.

2. Взаимодействуют с водой. Бериллий с водой не взаимодействует, т.к. реакции препятствует защитная пленка оксида на поверхности металла. Магний реагирует с водой при нагревании:

Mg + 2H2O = Mg(OH)2 + H2

Остальные металлы активно взаимодействуют с водой при обычных условиях:

Ca + 2H2O = Ca(OH)2 + H2

3. Взаимодействие с кислотами. Все взаимодействуют с хлороводородной и разбавленной серной кислотами с выделением водорода:

Be + 2HCl = BeCl2 + H2

Разбавленную азотную кислоту металлы восстанавливают главным образом до аммиака или нитрата аммония:

2Ca + 10HNO3(разб.) = 4Ca(NO3)2 + NH4NO3 + 3H2O

В концентрированных азотной и серной кислотах (без нагревания) бериллий пассивирует, остальные металлы реагируют с этими кислотами.

4. Взаимодействие с щелочами. Бериллий взаимодействует с водными растворами щелочей с образованием комплексной соли и выделением водорода:

Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2

Магний и щелочноземельные металлы с щелочами не реагируют.

5. Взаимодействие с оксидами и солями металлов. Магний и щелочноземельные металлы могут восстанавливать многие металлы из их оксидов и солей:

TiCl4 + 2Mg = Ti + 2MgCl2

V2O5 + 5Ca = 2V + 5CaO

Бериллий, магний и щелочноземельные металлы получают электролизом расплавов их хлоридов или термическим восстановлением их соединений:

BeF2 + Mg = Be + MgF2

3CaO + 2Al = 2Ca + Al2O3

3BaO + 2Al = 3Ba + Al2O3

Радий получают в виде сплава с ртутью электролизом водного раствора RaCl2 с ртутным катодом.

1) Окисление металлов (кроме Ba, который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO3 –t-> CaO + CO2-

2Mg(NO3)2 -t°-> 2MgO + 4NO2- + O2-

Характеристика Be (Берилия)

Бериллий — элемент главной подгруппы второй группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 4. Обозначается символом Be (лат. Beryllium). Высокотоксичный элемент. Простое вещество бериллий (CAS-номер: 7440-41-7) — относительно твёрдый металл светло-серого цвета, имеет весьма высокую стоимость.

Открыт в 1798 г. французским химиком Луи Никола Вокленом. Большую работу по установлению состава соединений бериллия и его минералов провёл российский химик И. В. Авдеев (1818—1865) . Именно он доказал, что оксид бериллия имеет состав BeO, а не Be2O3, как считалось ранее.

Нахождение в природе
Среднее содержание бериллия в земной коре 3,8 г/т и увеличивается от ультраосновных (0,2 г/т) к кислым (5 г/т) и щелочным (70 г/т) породам. Основная масса бериллия в магматических породах связана с плагиоклазами, где бериллий замещает кремний. Однако наибольшие его концентрации характерны для некоторых тёмноцветных минералов и мусковита (десятки, реже сотни г/т). Если в щелочных породах бериллий почти полностью рассеивается, то при формировании кислых горных пород он может накапливаться в постмагматических продуктах — пегматитах и пневматолито-гидротермальных телах. В кислых пегматитах образование значительных скоплений бериллия связано с процессами альбитизации и мусковитизации. В пегматитах бериллий образует собственные минералы, но часть его (ок. 10 %) находится в изоморфной форме в породообразующих и второстепенных минералах (микроклине, альбите, кварце, слюдах, и др.). В щелочных пегматитах бериллий устанавливается в небольших количествах в составе редких минералов: эвдидимита, чкаловита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом, оловом, молибден ом и литием .

Содержание бериллия в морской воде чрезвычайно низкое — 6·10−7 мг/л.

Известно более 30 собственно бериллиевых минералов, но только 6 из них считаются более-менее распространёнными: берилл, хри зоберилл, бертрандит, фенакит, гельвин,даналит. Промышленное значение имеет в основном берилл, в России (Республика Бурятия) разрабатывается фенакит-бертрандитовое Ермаков ское месторождение.

Разновидности берилла считаются драгоценными камнями: аквамарин — голубой, зеленовато-голубой, голубовато-зелёный; изумруд — густо-зелёный, ярко-зелёный; гелиодор — жёлтый; известны ряд других разновидностей берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов.
Месторождения
Месторождения минералов бериллия присутствуют на территории Бразилии, Аргентины , Африки, Индии, России (Бурят ия, Сибирь) и др

Бериллий (Be) — очень твёрдый и легкий, его сплав с медью сходен со сталью. В эпоху нанотехнологии он необходим для атомной, электронной, электротехнической, авиационной и нефтегазовой промышленности. Be обладает некомпенсированным спином и высокой латентной токсичностью, хотя его атомная масса среди прочих металлов наименьшая. Он связан диагональным соотношением с Аl, и имеет с ним много общих свойств. Контакт с солями Be вызывает поражение кожи, а ингаляция Be-содержащих аэрозолей вызывает хронический легочный гранулематоз — бериллиоз. Ион Ве2+ имеет малые размеры, но высокую плотность заряда. В организме он ингибирует фосфатазы, особенно щелочную, участвующую в процессах образования костей, а также ферменты, активируемые Mg2+ и К+, нарушает репликацию ДНК. Ионы Ве2+ образуют комплексы с тетраэдрическим расположением лигандов (КЧ = 4) с различной стереохимической конфигурацией. Хелатная терапия в случае хронического отравления Be неэффективна.

Химические свойства
Для бериллия характерна только одна степень окисления +2. Соответствующий гидроксид амфотерен, причём как основные (с образованием Be2+), так и кислотные (с образованием [Be(OH)4]2-] свойства выражены слабо.

Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют ещё более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200 °C с образованием нитрида Be3N2, а углерод даёт карбид Ве2С при 1700 °C. С водородом бериллий непосредственно не реагирует.

Читайте также: