Электроизоляционные бумаги и картоны реферат

Обновлено: 05.07.2024

Для выработки электроизоляционных бумаг и картонов в большинстве случаев требуется применение исходного сырья высокого качества, надлежащая подготовка полуфабрикатов из этого сырья и особо тщательная их переработка. [16]

В производстве электроизоляционных бумаг , как правило, избегают введения в - их состав каких-либо проклеек и наполнителей, чтобы исключить возможность вредного влияния их на электрические характеристики и стабильность электрической изоляции при долговременной работе в условиях повышенной температуры и механических нагрузок. Однако в особых случаях добавление химически обработанных волокон или введение специально подобранных веществ может значительно улучшить отдельные свойства бумаг и картонов. В обычной практике бумажного производства главным образом преследуют цели придания бумаге известной гидрофобности, для чего бумажную массу проклеивают различными веществами. В большинстве случаев для этих целей используются канифоль, канифольные препараты, парафин, монтан-воск, жидкое стекло, крахмал, казеин, животный клей, латексы. В производстве электроизоляционных бумаг и картонов для придания гидрофобных и других свойств должны получить применение синтетические смолы. [17]

В производстве электроизоляционных бумаг и картонов способ размола необходимо выбирать сообразно специфическим требованиям, предъявляемым к определенному виду продукции; например, в производстве пропиточных бумаг удовлетворительные результаты получаются при двух-трехкратном пропуске массы через конические мельницы; в производстве тонких электроизоляционных картонов требуется тщательный размол целлюлозы или тряпичной полумассы IB рслах и только с целью рафинирования размолотой массы ее пропускают через коническую мельницу. [18]

Главнейшим назначением электроизоляционных бумаг и картонов является использование их в качестве диэлектриков. Поэтому особенно большое значение приобретают электрические характеристики, определяющие свойства и качество диэлектриков. Понятно, что в зависимости от вида и области применения того или иного материала бумажной изоляции меняются конкретные требования, но общий характер этих требований сохраняется. Получение электроизоляционных бумаг и картонов с хорошими электрическими характеристиками возможно при достаточной химической чистоте волокон, минимальном содержании в целлюлозе нестабильных инкрустов, а также минеральных соединений, особенно водорастворимых солей, определяемых зольностью. [19]

От некоторых электроизоляционных бумаг и картонов требуется хорошая прочность на надрыв листа с кромки. Испытание бумаги на сопротивление разрыву полоски не характеризует специфическую особенность сопротивления надрыву, для оценки которого применяют: метод испытания полоски бумаги в кольце. Для этого служит приспособление, состоящее из металлического полукольца шириной 10 мм, толщиной 5 мм. [20]

В качестве электроизоляционной бумаги в настоящее время выпускаются: различные марки кабельной бумаги, предназначенной для изготовления силовых кабелей на различное напряжение; конденсаторная бумага разных марок для силовых конденсаторов, бумага различной толщины для конденсаторов постоянного тока, в том числе толщиной 4 мкм для малогабаритных электрических конденсаторов, конденсаторная бумага повышенной плотности и с малыми диэлектрическими потерями, бумага для электролитических конденсаторов; телефонная электроизоляционная бумага; пропиточные, намоточные и другие виды электроизоляционной бумаги, используемые для изготовления различных электроизоляционных материалов, в том числе гетинакса и фибры; микалентная бумага, применяемая для пазовой изоляции электродвигателей. [21]

Изготовляются из намоточной электроизоляционной бумаги и бакелитовой смолы в качестве связующего. [22]

Для получения электроизоляционных бумаг повышенного качества применяют целлюлозу, в которой содержание а-целлюлозы достигает 94 - 95 % за счет соответствующего снижения содержания гемицеллюлозы. [23]

Производство целлюлозы для электроизоляционной бумаги / / Новое в технологии целлюлозно-бумажной промышленности. [24]

Весьма существенное для электроизоляционных бумаг и картонов свойство противостоять тепловому старению при прочих равных условиях характеризуется повышенной вязкостью целлюлозных волокон, однако в зависимости от условий старения и влияния разных факторов могут быть случаи, когда материал с большей вязкостью сильней подвержен тепловому старению, чем менее вязкий. [25]

Существенное значение для электроизоляционных бумаг имеет равномерность просвета листа, определяющая однородность листа по всей площади. Отдельные сгустки и скопления волокон нарушают однородность структуры листа и образуют так называемый облачный просвет бумаги. На качество просвета бумаги влияют многие причины, например характер размола, свойства исходного волокнистого сырья, условия отлива листа на бумагоделательной машине. Различные волокнистые материалы не одинаково ведут себя при отливе не только из-за структурных своих особенностей, но и в зависимости от их поведения при размоле. Оперируя условиями технологических процессов отлива листа бумаги соответствующим разбавлением массы и равномерным распределением потока по всей ширине сетки, надлежащей установкой форматных линеек и постепенным обезвоживанием на регистровых валиках, удается задержать хлопьеобразование массы и получить бумагу с хорошим просветом. [26]

Одним из способов получения электроизоляционной бумаги с повышенной нагревостойкостью является ацетилировапие. Впервые такая бумага под названием пзоцель была разработана в Швейцарии фирмой Сандоз и вначале предназначалась лишь для применения в силовых кабелях с целью повышения нагревостойкости их изоляции, а также для изготовления гети-накса с пониженной гигроскопичностью. [27]

Ниже рассмотрены конкретные виды электроизоляционных бумаг и картонов. [28]

Одним из способов получения электроизоляционной бумаги с повышенной нагревостой-костью является ацетилироеание. [30]

СОДЕРЖАНИЕ
Введение…..……………………………………………………………………….3
1 Классификация проводниковых материалов…………………..…….………..4
2 Характеристики и применение проводниковых материалов………………. 6
3 Классификация электроизоляционных материалов…………………………10
4 Характеристики электроизоляционных материалов………………………. 12
Заключение……………………………………………………………………….18
Список использованных источников…………………………………………. 19


Введение
Современную технику невозможно представить без проводниковых и электроизоляционных материалов.
Проводниковые материалы находят применение в качестве проводов и жил кабелей, термоэлементов, припоев, предохранителей, нагревателей, для изготовления резисторов.
Электрические устройства имеют надёжную изоляцию токонесущих проводов, проводников и корпусов электрооборудования. Основными задачами электроизоляционных материалов являются предотвращение утечки электрических зарядов, разделение токопроводящих элементов и электрических цепочек, а также обеспечение безопасных схем электроснабжения и условий работы технического персонала.
Целью данной работы являлось изучение классификации, характерных свойств и областей применения проводниковых и электроизоляционных материалов.
1 Классификация проводниковых материалов
По агрегатному состоянию проводниковые материалы длятся на газообразные, жидкие и твёрдые.
Газообразные проводниковые материалы при низких значения напряжённости электрического поля не являются проводниками. При высоких значениях напряжённости электрического поля, начинается ударная ионизация – носители заряда электроны и ионы. При сильной ионизации и равенстве в единице объеме электронной и ионов – плазма. Применение: газоразрядные приборы.
Жидкие проводниковые материалы
а) электролиты (водные растворы кислот, щёлочей, солей) – носители заряда ионы вещества, состав электролита постепенно изменяется, и на электродах выделяются продукты электролиза. Применение: электролитические конденсаторы, покрытие металлов слоем другого металла (гальваностегия), получение копий с предметов (гальванопластика), очистка металлов (рафинирование);
б) расплавленные металлы (имеют высокую температуру, ртуть Hg tплав Hg=-39 оС и галлий Ga tплав Ga=29,7 оС) – носители заряда электроны. Применение: в литейном производстве, ртутные лампы, галлий в полупроводниковой технике (легирующий элемент для германия), низкотемпературные припои.
Твёрдые проводниковые материалы
Металлы и сплавы – носители заряда электроны. Применение: токопроводящие части электрических машин, аппаратов и сетей.
По удельному электрическому сопротивлению различают:
- материалы высокой проводимости (удельное электрическое сопротивление ρ≤0,05 мкОм∙м): серебро Ag (применение: контакты, электроды конденсаторов, радиочастотные кабели); медь Cu (жилы проводов и кабелей); золото Au (контакты, электроды, фотоэлементы); алюминий Al (провода для ЛЭП, жилы проводов и кабелей); железо Fe (провода ЛЭП не большой мощности); металлический натрий Na (провода и кабели в полиэтиленовой оболочке);
- материалы высокого сопротивления (ρ≥0,3 мкОм∙м): манганин сплав Cu – Mn – Ni (применение: образцовые резисторы); константан сплав Cu – Ni – Mn (реостаты и электронагревательные приборы); сплавы на основе железа – нихромы Fe – Ni – Cr, фехрали Fe – Cr – Al (электронагревательные элементы);
- сверхпроводники (ρ=0) при температурах близких к абсолютному нулю по шкале Кельвина -273,15 оС (алюминий Al, олово Sn, свинец Pb);
- криопроводники (ρ≈0) при температурах ниже -173 оС, но не переходя в сверхпроводящее состояние (алюминий Al, медь Cu, бериллий Be).
Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты).
Классификация проводниковых материалов представлена на рис. 1.
Рисунок 1 – Классификация проводниковых материалов
2 Характеристики и применение проводниковых материалов
К электрическим характеристикам проводниковых материалов можно отнести: удельное сопротивление или обратную величину – удельную проводимость; контактную разность потенциалов и термоэлектродвижущую силу (термоЭДС); работу выхода электронов из металла.
Удельная проводимость выражается в сименсах на метр (См/м):
, (1)
где q – заряд электрона (1,6 ·10-19Кл); n0 – число свободных электронов в единице объема металла; λ – средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; m – масса электрона; vт – средняя скорость теплового движения свободного электрона.
Удельное сопротивление проводников:
ρ = ρтепл + ρост, (2)
где ρтепл – удельное сопротивление, обусловленное в основном тепловыми колебаниями решетки; ρост – удельное сопротивление, вызванное наличием дефектов в кристаллической решетке.
Характерная для металлов зависимость удельного сопротивления от температуры приведена на рис.2. При температурах, превышающих температуру Дебая Θ, которая для металлов равна 400 – 800оС, удельное сопротивление возрастает линейно и обусловлено в основном усилением тепловых колебаний решетки. В области низких (криогенных) температур удельное сопротивление почти не зависит от температуры и определяется только сопротивлением ρост.
Рисунок 2 – Зависимость удельного сопротивления металлов от температуры
Изменение удельного сопротивления металлических проводников с температурой принято характеризовать температурным коэффициентом удельного сопротивления ТК ρ или αρ (К-1). Если температура изменяется в узких пределах, то пользуются средним температурным коэффициентом удельного сопротивления:
(3)
где ρ0 – удельное сопротивление при температуре Т0, принятой за начальную; ρ1 – то же при температуре Т1.
Для металлов αρ составляет 4·10-3К-1, а для сплавов значительно меньше – 10-4 – 10-6 К-1. Основные характеристики проводниковых материалов представлены в табл. 1.
Металлы и сплавы высокой проводимости должны иметь достаточную прочность, пластичность, коррозионную стойкость, хорошо свариваться и подвергаться пайке. Практическое применение имеют химически чистые металлы: медь, алюминий, серебро.
Медь обладает рядом ценных свойств: малым удельным сопротивлением; достаточно высокой механической прочностью; удовлетворительной стойкостью к коррозии; хорошей обрабатываемостью давлением; хорошей способностью к пайке и сварке. Для изделий с большей прочностью используют латуни и бронзы с кадмием и бериллием.
Таблица 1 – Основные характеристики проводниковых материалов
Алюминий окисляется на воздухе, покрываясь прочной оксидной пленкой, которая защищает металл от дальнейшего окисления и обусловливает его высокую коррозионную стойкость. Удельное электрическое сопротивление алюминия не должно превышать 0,028 мкОм·м, обладает высокой пластичностью.
Серебро обладает минимальным удельным сопротивлением 0,016 мкОм·м; невысокие прочность и твердость, но хорошая пластичность. По сравнению с другими благородными металлами (золотом, платиной) серебро имеет пониженную химическую стойкость, тенденцию диффундировать в материал подложки.
Припои – сплавы, используемые при пайке металлов. Кроме высокой проводимости должны обеспечивать небольшое переходное сопротивление (сопротивление контакта). Различают два типа припоев: для низкотемпературной пайки с температурой плавления до 400оС и для высокотемпературной пайки. Используют припои на основе олова, свинца, цинка, серебра, имеющие хорошую проводимость и сопротивление которых мало отличается от сопротивления металлов, образующих сплав.
Материалы с большим удельным сопротивлением широко применяются при изготовлении различных электроизмерительных и электронагревательных приборов, образцовых сопротивлений, реостатов и т.д.
Для изготовления электроизмерительных приборов, образцовых сопротивлений и реостатов применяются, как правило, сплавы, отличающиеся высокой стабильностью удельного сопротивления во времени и малым температурным коэффициентом сопротивления. К числу таких материалов относятся манганин, константан и нихром. Среди сплавов с высоким сопротивлением, которые (кроме нихрома) широко используются для изготовления различных нагревательных элементов, необходимо отметить жаростойкие сплавы фехрали и хромали. Эти сплавы отличаются высокой стойкостью к химическому разрушению поверхности под воздействием различных газообразных сред при высоких температурах.
Сверхпроводники (чистые металлы) по физико-химическим свойствам делятся на мягкие (Hg, Sn, Pb, In) и жесткие (Та, Ti, Zr, Nb). Для мягких сверхпроводников характерны низкие температуры плавления, отсутствие внутренних механических напряжений, жесткие – имеют значительные внутренние напряжения. Сверхпроводники используют для создания сверхсильных магнитных полей в достаточно большой области пространства; изготовления обмоток электрических машин и трансформаторов малой массы, но с очень высоким КПД и др.
Криопроводники при сильном охлаждении (ниже -173°С) приобретают высокую электрическую проводимость, но не переходят в сверхпроводящее состояние. Минимальным сопротивлением при температуре жидкого азота обладает бериллий, однако он отличается плохой технологичностью, дорог и высокотоксичен. Более доступен и технологичен алюминий марки А999, при температуре жидкого гелия имеет удельное сопротивление не более 1…2·10-6мкОм·м).
3 Классификация электроизоляционных материалов
Электроизоляционные материалы – класс электротехнических материалов, предназначенных для электрической изоляции, являющейся неотъемлемой частью электрической цепи и необходимой для того, чтобы не пропускать ток по не предусмотренным электрической схемой путям.
Электроизоляционные материалы классифицируют:
• по агрегатному состоянию: газообразные (воздух, азот, вакуум), жидкие (нефтяные и природные масла, синтетические жидкости), твердые (бумага, фибра, гетинакс, фарфор, слюда, стекло) и твердеющие (канифоль, поливинилхлорид, винипласт, парафин). К группе твердых также относят твердеющие материалы, которые вводятся в электрическую изоляцию в жидком или пластичном состоянии, но в работающей изоляции являются твердыми;
• по структуре твердые электроизоляционные материалы можно классифицировать как кристаллические и аморфные;
• по химическому составу электроизоляционные материалы делятся на органические и неорганические;
• по электрическому состоянию молекул электроизоляционные материалы подразделяют на неполярные и полярные. Диэлектрики подразделяются также на гетерополярные (ионные), молекулы которых сравнительно легко диссоциируют, и гомеополярные, для которых диссоциация на ионы не характерна;
• по происхождению: природные, применяемые без химической переработки; искусственные, получаемые путем химической переработки природного сырья; синтетические, получаемые методом химического синтеза.
Классификация электроизоляционных материалов представлена на рис. 3.
Рисунок 3 – Классификация электроизоляционных материалов
4 Характеристики электроизоляционных материалов
В современной технике широко применяют разнообразные изоляционные материалы. Все они отличаются друг от друга электрическими, механическими и химическими свойствами. Важнейшими электрическими характеристиками электроизоляционных материалов являются электрическая прочность, удельное электрическое сопротивление (объемное и поверхностное), диэлектрическая проницаемость и значение диэлектрических потерь. Однако для практических целей немаловажное значение имеют и другие характеристики этих материалов: механическая прочность, гибкость и эластичность, нагревостойкость, морозостойкость, гигроскопичность, химическая стойкость и т. п.
Газообразные материалы широко применяются при изготовлении аппаратов высокого напряжения (выключатели, разрядники и т.п.), кроме того, воздух окружает большинство электротехнических установок, а на ЛЭП является основной изолирующей средой. Оценивая свойства газообразных диэлектриков (табл. 2), следует отметить малую диэлектрическую проницаемость εr (при расчетах принимается равной 1), высокое удельное сопротивление ρ и особенно очень малое значение tgδ. Однако большинство газов при атмосферном давлении имеют невысокую электрическую прочность Епр. Достоинствами газообразных диэлектриков являются восстановление ими электрической прочности после пробоя и отсутствие старения.
Жидкие материалы используют для заполнения внутреннего пространства силовых трансформаторов, реакторов, кабелей, масляных выключателей, конденсаторов и др. Они хорошо пропитывают пористую изоляцию, картоны, бумаги, существенно повышая при этом электрическую прочность изоляции и улучшая теплоотвод. Наиболее широкое применение получили нефтяные электроизоляционные масла, являющиеся смесью различных углеводородов. Достоинства нефтяных масел: хорошие изолирующие свойства, доступность, дешевизна и достаточная химическая стойкость, недостатки – малый интервал рабочих температур, пожаро- и взрывоопасность.
Таблица 2 – Основные характеристики газообразных диэлектриков
Наиболее простым распространенным твердым полимером является полиэтилен (табл. 3) – термопластичный материал, химически стойкий, обладает водоотталкивающими свойствами, гибкостью, стойкостью к растворителям (до температур 100 - 120 °С). Недостатки – невысокая нагревостойкость. Применение: для изоляции проводов и кабелей, при изготовлении изоляционных шлангов, трубок, липких лент, каркасы катушек, платы.
Поливинилхлоридный пластикат широко применяют в качестве основной изоляции монтажных проводов, для изготовления защитных оболочек кабелей, гибких изоляционных трубок и липкой изоляционной ленты.
Эпоксидные смолы являются термопластичными материалами, могут равномерно отверждаться в весьма толстом слое, образуя при этом монолитную, водонепроницаемую, термореактивную изоляцию. Применяют для изготовления клеев, лаков, заливочных компаундов, герметиков и т.д.
Резину широко применяют для изоляции установочных и монтажных проводов, гибких проводов и кабелей, электроизоляционных лент и т.п.
Большое значение в электротехнике имеют лаки и эмали. По назначению различают лаки пропиточные, покровные и клеящие.
Таблица 3 – Основные характеристики электроизоляционных материалов
Электроизоляционные бумаги делятся на кабельные, конденсаторные, пропиточные, намоточные, микалентные, крепированные.
Лакоткани представляют собой гибкие рулонные материалы, тканевая основа которых пропитана электроизоляционным лаком.
По назначению керамические материалы разделяют на пять основных групп – изоляторная, конденсаторная, сегнетоэлектрическая, полупроводниковая и магнитная керамика. Одним из широко применяемых электрокерамических материалов является электротехнический фарфор (применяется для изготовления различных электрических изо­ляторов и покрышек высоковольтных вводов).
Стекла – неорганические вещества. Электротехнические стекла по назначению бывают конденсаторные, установочные, ламповые.
Заключение
Электротехнические материалы имеют существенное значение в конструкциях самых разнообразных электротехнических и радиотехнических устройств и аппаратов.
Учитывая тенденцию в современной электротехнике к увеличению напряжений и мощностей, уменьшению габаритов и веса отдельных машин и аппаратов и повышению их надежности, роль электроматериалов становится более значительной.
В данной работе были изучены различные виды проводниковых и электроизоляционных материалов, их свойства и назначение.
Список использованных источников
1. Богородицкий Н. П. Электротехнические материалы/ Н. П. Богородицкий, В. В. Пасынков, Б. М. Тареев - Л.: Энергоатомиздат, 1985. – 304 с.
2. Тареев Б. М. Физика диэлектрических материалов. - М.: Энергия, 1982. – 320 с.
3. Справочник по электротехническим материалам: Справ. / Под ред. Ю. В. Корицкого и др. - М.: Энергоатомиздат, 1987. - Т. 1-3.
4. Конструкционные и электротехнические материалы / В. Н. Бородулин, А. С. Воробьев, С. Я. Попов и др. Под ред. В. А Филикова. - М.: Выш. шк., 1990. – 226 с.
5. Электротехнический справочник: Справ. Т.1 / Под общ. ред. профессоров МЭИ. - М.: Энергоатомиздат, 1985. – 448 с.
6. Арзамасов Б. Н., Сидорин И. И., Косолапов Г. Ф. и др. Материаловедение: Учебник для вузов. – М.: Машиностроение, 1986 – 384 с.
7. Конструкционные и электротехнические материалы / В. Н. Бородулин, А. С. Воробьев, С. Я. Попов и др.; под ред. В. А. Филикова. – М.: Высшая школа, 1990 – 296 с.
8.Корицкий Ю.В. Электротехнические материалы. 3-е изд.- М.: Высшая школа, 1990.-306 с.
9.Новиков, Ю.Н. Электротехническое материаловедение: Учебное пособие / Ю.Н. Новиков. - СПб.: Лань, 2016. - 200 c.
10.Электротехнические и конструкционные материалы. / Под общ. ред. В. А. Филикова. М.: Академия, 2009. – 385 с.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

В электротехнике весьма широко применяются волокнистые материалы, то есть материалы, которые состоят преимущественно (или целиком) из частиц удлиненной формы — волокон.

Преимущества многих волокнистых материалов: дешевизна, довольно большая механическая прочность и гибкость, удобство обработки. Недостатками их являются невысокие электрическая прочность и теплопроводность. Гигроскопичность их более высокая, чем у массивного материала того же химического состава (так как развитая поверхность волокон легко поглощает влагу, проникающую в промежутки между ними). Свойства волокнистых материалов могут быть существенно улучшены путем пропитки, вот почему эти материалы в электрической изоляции обычно применяют в пропитанном состоянии.

Большая часть волокнистых материалов — органические вещества. К ним принадлежат материалы растительного происхождения (дерево, хлопчатобумажное волокно, бумага и прочие материалы, состоящие в основном из целлюлозы) и животного происхождения (шелк, шерсть), искусственные волокна, получаемые путем химической переработки природного волокнистого (в основной целлюлозного) сырья и, наконец, приобретающие особо важное значение в последнее время синтетические волокна, изготовляемые из синтетических полимеров.

Волокнистые целлюлозные материалы имеют сравнительно большую гигроскопичность, что связано как с химической природой целлюлозы, содержащей большое число полярных гидроксильных групп, так и особенностями строения растительных волокон, а также невысокую нагревостойкость (в непропитанном состоянии — класс Y, а в пропитанном — А. Некоторые искусственные, и в особенности синтетические, волокнистые материалы имеют значительно меньшую гигроскопичность и повышенную нагревостойкость по сравнению с целлюлозными материалами.

В тех случаях, когда требуется особо высокая рабочая температура изоляции, которую волокнистые органические материалы обеспечить не могут, применяют волокнистые неорганические материалы — на основе стеклянного волокна и асбеста.

Дерево. Благодаря своей распространенности, дешевизне и легкости механической обработки дерево явилось одним из первых электроизоляционных и конструкционных материалов, получивших применение в электротехнике. Дерево обладает неплохими механическими свойствами, в особенности, если учесть его легкость: прочность дерева, отнесенная не к геометрическим размерам, а к массе, не ниже, чем у стали. Прочность дерева в различных направлениях различна: прочность поперек волокон меньше, чем вдоль.

Недостатки дерева: высокая гигроскопичность, обусловливающая резкое снижение электроизоляционных свойств дерева при его увлажнении, а также коробление и растрескивание деталей, изготовленных из влажного дерева, при его высушивании (вследствие того, что влажное дерево при сушке дает уменьшение размеров, неодинаковое в различных направлениях); нестандартность свойств дерева даже одной и той же породы, неоднородность свойств образцов дерева в зависимости от направления их выпиливания, наличие сучков и других дефектов; низкая нагревостойкость, а также горючесть.Свойства дерева улучшаются при его пропитке льняным маслом, различными смолами и т. д.

Бумага и картон.Бумага и картон — это листовой или рулонный материал коротковолокнистого строения, состоящий в основном из целлюлозы. Для производства бумаги обычно применяют древесную целлюлозу. В состав древесины помимо целлюлозы и воды входят различные вещества, которые рассматриваются как примеси: лигнин (при­дающий древесине хрупкость), смолы (особенно в древесине хвойных пород), соли и другие. Обычная писчая и печатная бумага, в том числе и бумага, на которой напечатано это пособие, изготавливаются из сульфитной целлюлозы, напучен­ной в результате варки древесины в растворе, содержащем сернистую кислоту H2SO3; такая целлюлоза в процессе ее изготовления легко приобретает белый цвет.

При изготовлении же бумаги, применяемой в качестве электрической изоляции применяется сульфатная и натронная целлюлоза, получаемая путем варки древесины в растворах, содержащих едкий натрий NaOH. Щелочная целлюлоза обычно не отбеливается и сохраняет желтоватый цвет, обусловленный не удаленными красящими веществами древесины. Щелочная целлюлоза дороже сульфитной. Однако, поскольку в процессе щелочной варки исходная целлюлоза древесины в меньшей мере подвергаемся деструкции (разрушению макромолекул) и сохраняет более высокую молекулярную массу и длину волокон, чем в процессе кислотной варки, щелочные бумаги имеют более высокую механическую прочность и более стойки к тепловому старению.Кабельная бумага выпускается различных марок, обозначаемых буквами. К, КМ, KB, КВУ, КВМ и КВМУ (эти буквы обозначают: К — кабельная, М — многослойная, В — высоковольтная, У — уплотненная) и цифрами от 15 до 240 (обозначающими номинальную толщину бумаги — от 15 до 240 мкм).

Телефонная бумага марок КТ и КТУ согласно имеет толщину 50 мкм.

Конденсаторная бумага — весьма важный и ответственный материал: в пропи­танном виде она используется как диэлектрик бумажных конденсаторов. Выпу­скается двух видов: КОН — обычная конденсаторная бумага и силкон — бумага для силовых конденсаторов.

Микалентная бумага, применяемая в качестве подложки микаленты, — одна из немногих разновидностей электроизоляционных бумаг, производимых не из древесной целлюлозы щелочной варки, а из длинноволокнистого хлопка. Она имеет толщину 20 ± 2 мкм и массу 1 м 2 , равную 17 г; выпускается в рулонах шириной 450 или 900 мм.

Картон в основном отличается от бумаги большей толщиной. Электроизоля­ционные картоны изготовляются двух типов: воздушные более твердые и упругие, предназначенные для работы на воздухе (прокладки для пазов электрических ма­шин, каркасы катушек, шайбы), и масляные — более рыхлой структуры и более мягкие, предназначаемые в основном для работы в трансформаторном масле. Масляные картоны хорошо пропитываются маслом и в пропитанном виде имеют высокую электриче­скую прочность. Электроизоляционные картоны изготовляются из древесной или хлопковой целлюлозы.

Особая бумага и картон. Так, бумаги из смеси целлюлозы с полиэтиленовым волокном имеют er, tg d и гигроскопичность меньшие, а механи­ческую прочность большую, чем чисто целлюлозные бумаги. Такие бумаги, в ча­стности, находят применение в изоляции кабелей весьма высокого напряжения.

Фибра.Фибра изготавливается из тонкой бумаги, которая пропускается через теплый раствор хлористого цинка, а затем наматывается на стальной барабан, причем слои прилипают друг к другу, образуя нужную толщину. После чего бумага тщательно промывается водой и прессуется Фибра имеет невысокие электроизоляционные свойства и значительную гигроскопичность, однако она отличается высокой механической прочностью, хорошо обрабатывается. При воздействии на фибру электрической дуги она разлагается, выделяя газ, способствующий гашению дуги, поэтому фибру используют для изготовления стреляющих разрядников. В настоящее время фибра заменяется некоторыми синтетическими смолами.

Для изоляции электрических машин и аппаратов широко применяют различные волокнистые материалы растительного происхождения (бумагу, картон, хлопчатобумажные и шелковые волокна, ткани и ленты), а также некоторые синтетические текстильные материалы, получаемые химической переработкой отдельных веществ: искусственный шелк, синтетические волокна (капрон, нейлон), материалы из полистирола, полихлорвинила, полиамидные и триацетатные пленки. Органические волокнистые изоляционные материалы отличаются невысокой нагревостойкостью. и в естественном виде без специальной обработки относятся к классу Y. Их недостаток — высокая гигроскопичность. Между их волокнами и нитями остаются воздушные промежутки (поры), легко поглощающие влагу.

Бумага и картон. Бумага и картон — листовые материалы коротко-волокнистого строения, состоящие из целлюлозы. Бумагу изготовляют из измельченного хлопчатобумажного тряпья и волокон древесины, которые подвергают специальной химической обработке. Все сорта бумаги обладают хорошими изоляционными свойствами, однако в электромашиностроении применяют только следующие специальные сорта: кабельную (толщиной 0,08—0,17 мм), телефонную (0,05 мм), конденсаторную (7—30 мк), оклеечную (0,33 мм), пропиточную (0,12 мм), намоточную (0,05—0,07 мм) и микалентную (20 мк).

Указанные сорта бумаги используют для изоляции обмоточных проводов и кабелей различного типа, изготовления конденсаторов, оклейки листов электротехнической стали, а также для изготовления микаленты (см. ниже) и различных слоистых пластических материалов (листового и фасонного гетинакса, бакелитовых трубок и пр.).

Картон изготовляют из того же сырья, что и бумагу, но он имеет значительно большую толщину. В электромашиностроении применяют следующие сорта картона: электрокартон, фибру и литероид.

Электрокартон имеет толщину от 0,2 до 3 мм и обладает высокими изоляционными свойствами. Диэлектрическая прочность его достигает 25 кВ на 1 мм толщины. Он очень эластичен, что позволяет изгибать его под нужными углами. Применяется для изготовления прокладок, корпусов катушек, шайб, пазовой изоляции электрических машин и пр.

Фибра — картон, обработанный слабыми кислотами. Обладает большой твердостью, прочностью и может подвергаться обработке на металлорежущих станках (сверлильном, токарном, фрезерном и пр.). Изготовляется в виде листов различной толщины или в виде стержней и трубок. Имеет хорошие изоляционные свойства, но повышенную гигроскопичность.

Текстильные материалы. Электроизоляционные текстильные материалы изготовляют, главным образом, из растительных волокон, представляющих собой в основном целлюлозу (хлопок, реже — лен, пенька, джут). Иногда применяют шелк, из которого получают тонкую и одновременно механически прочную изоляцию.

Из различных видов искусственных волокон наибольшее распространение получили искусственный шелк (вискозный и ацетатный), вырабатываемый путем химической переработки целлюлозы, а также капрон и нейлон. Полученные из целлюлозы искусственные вещества (эфиры целлюлозы) обладают хорошей растворимостью, что дает возможность изготовлять из них тонкие нити путем продавливания этих веществ через отверстия малого диаметра.

Капрон и нейлон, изготовляемые на основе искусственных полиамидных смол, механически прочны, негигроскопичны и нагревостойки.

Текстильные материалы из искусственных волокон находят применение в различных отраслях электроизоляционной техники (для изготовления обмоточных проводов, лакотканей и пр.). В электромашиностроении применяют различные виды текстильных изделий: нити, пряжу, ткани, ленты и пр. Главное преимущество тканей — очень высокая механическая прочность, позволяющая применять их для крепления токопроводящих и изоляционных деталей, а также в качестве основы для изготовления других изоляционных материалов (лакотканей, текстолита и др.).

В электроизоляционной технике используют в большей степени механические свойства непропитанных тканей и лент, чем их электрические свойства. Объясняется это тем, что без специальной обработки ткани не могут служить изоляторами, так как между их нитями остаются поры, поглощающие влагу.

Для улучшения изоляционных свойств волокнистых материалов их поры заполняют различными твердеющими влагонепроницаемыми веществами: естественными и искусственными смолами, битумами и пленками, образующимися при высыхании некоторых масел. Смолы и масла растворяют в различных легколетучих жидкостях, получая лаки и эмали. При сушке лака, нанесенного тонким слоем на твердую поверхность и проникшего в поры изоляции, растворитель улетучивается, а лаковая основа переходит в твердое состояние. При этом образуется пленка, плотно пристающая к твердой поверхности и обладающая высокими электроизоляционными свойствами и малой гигроскопичностью. Процесс заполнения воздушных пор волокнистых материалов твердеющими электроизоляционными веществами называется пропиткой. Для пропитки применяют природные лаки (шеллачные, копаловые, битумные, масляные и их смеси) и синтетические, получаемые химической переработкой различных органических веществ (бакелитовые, глифталевые, полихлорвиниловые, нитроцеллю-лозные и пр.).

В зависимости от режима сушки различают лаки и эмали холодной (воздушной) и горячей (печной) сушки. Температура горячей сушки не должна превышать 110°С во избежание пересушивания, при котором лаковая пленка становится хрупкой и растрескивается.

Для пропитки изоляции обмоток электрических машин и аппаратов наибольшее распространение получили пропиточные лаки горячей сушки. Пропитку волокнистых изоляционных материалов этим лаком осуществляют следующим образом. Изделия предварительно просушивают в печи в течение 5—10 ч при температуре 100—110°С и в горячем состоянии (при температуре 60—70 °С) погружают в аднну с лаком. Через 15—30 мин пропитанные изделия вынимают из ванны, дают избытку лака стечь и подвергают сушке в печи при температуре 100—110°С (в соответствии с режимом сушки, рекомендуемым для данного лака). После такой пропитки с последующей сушкой на поверхность изделия наносят покровную эмаль и осуществляют окончательную сушку.

Эмаль после высыхания образует твердое блестящее покрытие, предохраняющее от влияния влаги и механических воздействий.

Современная техника применяет лаки и эмали, различающиеся и по составу, и по назначению. Каждый из них имеет свою технологию применения. Эти подробности детально указываются в стандартах и технических условиях на соответствующие лаки.
Наибольшее распространение получили следующие сорта лаков: светлые масляные лаки; имеют в качестве основы высыхающие масла, а в качестве растворителя — бензин, обычный или лаковый керосин или же их смеси. Изготовляют как воздушный, так и печной сушки; применяют для покрытия листов электротехнической стали и проволоки с эмалевой изоляцией, для изготовления светлых лакотканей и пр. Имеют высокие изолирующие и защитные свойства, но не маслостойки;

черные битумные лаки холодной сушки; изготовляют из асфальтов и нефтяных битумов, растворенных в бензоле, толуоле или скипидаре или же в смеси их с бензином и лаковым керосином. Применяют в качестве антикоррозионных покрытий стальных деталей;

черные масляно-битумные лаки; применяются в качестве пропиточных и покровных лаков при производстве и ремонте электрических машин;

шеллачный лак — раствор шеллака в спирте; применяется как клеящий лак при изготовлении миканитов и при различных электромонтажных и ремонтных работах. Требует горячей сушки, может быть использован и как лак холодной сушки;

глифталевые лаки, содержащие в качестве основы глифталевые синтетические смолы, а в качестве растворителя — ацетон, смесь толуола и бензина и др. Масло-стойки обладают хорошими изоляционными и защитными свойствами и являются лаками печной сушки. Применяют в качестве пропиточных и покровных лаков и для изготовления серых эмалей, используемых для покрытия деталей электрических машин и аппаратов;

бакелитовые лаки — растворы синтетической смолы бакелита в спирте. Пропиточные и клеющие лаки горячей сушки, дающие механически прочную, но малоэластичную и склонную к тепловому старению пленку;

нитроцеллюлозные лаки (нитролаки); представляющие собой раствор целлюлозы в различных растворителях. Дают хорошую быстросохнущую защитную, но не теплостойкую пленку.

Для пропитки неподвижных катушек и заливки различных токопроводящих деталей (для заполнения воздушных промежутков вокруг катушек электрических аппаратов, пустот в кабельных муфтах, заливки крышек аккумуляторов и пр.) применяют компаунды. Они обеспечивают более влагостойкую и влагонепроницаемую пропитку, чем лаки, и при охлаждении затвердевают полностью. В них не остается пор от испарившегося растворителя, что наблюдается при пропитке лаками. В качестве основы для изготовления компаундов служат битумы. Для придания компаундам большей эластичности, нагревостойкости и маслостойкости к ним добавляют высыхающие масла, смолы и воск. Процесс пропитки компаундами может вестись при повышенной температуре (выше температуры их плавления). Подлежащие пропитке изделия погружают на определенное время в расплавленный компаунд и вынимают, не дожидаясь полного его застывания.

Более совершенной является вакуумная пропитка компаундами. Она заключается в том, что подлежащее пропитке изделие сначала подвергают сушке в герметически закрытом котле (автоклаве) в вакууме, а затем пропитывают в этом же котле под давлением в несколько атмосфер. В некоторых случаях пропитку производят за несколько циклов с периодической подачей давления в автоклав.

Лаки, смолы и эмали используют не только для пропитки волокнистых материалов, но и для изготовления эмалированной проволоки, пластмассовой изоляции проводов, покрытия листов электротехнической стали, склеивания различных твердых электроизоляционных материалов и изделий и пр.

В последнее время для изоляции электрических машин и аппаратов широко применяют различные волокнистые материалы неорганического происхождения: стеклянное волокно и асбест. Основным преимуществом этих материалов перед органическими является их более высокая нагревостойкость. Стеклянное волокно изготовляют путем пропускания расплавленной стеклянной массы сквозь отверстия малого диаметра. В толстом слое стекло является хрупким и ломким материалом. Однако весьма тонкие волокна (диаметром 3—7 мк) имеют настолько большую гибкость, что могут обрабатываться приемами текстильной технологии. Из стеклянных нитей, скрученных из отдельных волокон, ткут стеклянные ткани и ленты. Эти же нити используют для изоляции обмоточных проводов.

Для склеивания и пропитки материалов из стекловолокна применяют органические лаки и смолы повышенной нагреваемости или кремнийорганические лаки и смолы. Таким путем получают различные стеклолакоткани, стеклоленту, стеклотекстолит и пр.

Кремнийорганические смолы, как показывает их название, содержат, кроме углерода, характерного для органических веществ, также и кремний, являющийся одним из важнейших составных частей многих неорганических диэлектриков. Такие смолы обладают значительной нагревостойкостью, хорошими электроизолирующими свойствами и малой гигроскопичностью.

Для изоляции катушек тяговых двигателей применяют монолитную кремний-органическую изоляцию. Катушку заливают кремнийорганическим компаундом. После затвердевания она представляет собой единую монолитную конструкцию.

Асбестовое волокно также может обрабатываться методами текстильной и бумажной технологии: из него изготовляют ткани, ленту, бумагу и картон. В некоторых случаях в асбестовую пряжу для повышения прочности добавляют хлопчатобумажные волокна. Асбестовые изделия гигроскопичны и обладают невысокими изоляционными свойствами. Поэтому в изоляционной технике асбест применяется как вспомо­гательный теплостойкий материал и требует дополнительной обработки лаками или битумами.

Читайте также: