Электрохимические методы анализа реферат

Обновлено: 02.07.2024

Электрохимические методы анализа – это совокупность методов качественного и количественного анализа, основанных на использовании электрохимических процессов, происходящих в электролитической ячейке (гальваническом элементе). Электролитическая ячейка представляет собой систему, состоящую из электродов и электролитов, контактирующих между собой. На границе раздела фаз может происходить электродная реакция между компонентами этих фаз, в результате которой электрический заряд переходит из одной фазы в другую, и на межфазной границе устанавливается потенциал.

Содержание работы

ВВедение 3
Основная часть 4
1. Общая характеристика потенциометрического анализа. 4
2. Индикаторные электроды 4
Электронообменные электроды 5
Ионоселективные электроды 6
3. Электроды сравнения 7
4. Измерение ЭДС электрохимических цепей 8
5. Виды потенциометрического метода анализа 8
Прямая потенциометрия 8
Потенциометрическое титрование 9
Заключение 13
Библиографический список 14

Содержимое работы - 1 файл

Электрохимические методы анализа (Восстановлен).docx

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

по аналитической химии

студент 3 курса группы стс–09

кандидат химических наук, доцент

Магнитогорск 2011

Основная часть 4

1. Общая характеристика потенциометрического анализа. 4

2. Индикаторные электроды 4

Электронообменные электроды 5

Ионоселективные электроды 6

3. Электроды сравнения 7

4. Измерение ЭДС электрохимических цепей 8

5. Виды потенциометрического метода анализа 8

Прямая потенциометрия 8

Потенциометрическое титрование 9

Библиографический список 14

ВВедение

Электрохимические методы анализа – это совокупность методов качественного и количественного анализа, основанных на использовании электрохимических процессов, происходящих в электролитической ячейке (гальваническом элементе). Электролитическая ячейка представляет собой систему, состоящую из электродов и электролитов, контактирующих между собой. На границе раздела фаз может происходить электродная реакция между компонентами этих фаз, в результате которой электрический заряд переходит из одной фазы в другую, и на межфазной границе устанавливается потенциал.

При погружении металла в раствор, содержащий его ионы, возможен процесс перехода ионов с поверхности металла в раствор и обратный процесс перехода ионов металла, находящихся в растворе, на поверхность металла. В результате этого поверхность электрода приобретает заряд. Заряд его зависит от того какой из указанных процессов преобладает. На границе раздела фаз возникает разность потенциалов (скачек потенциала). Когда скорость перехода ионов из раствора в металл равна скорости перехода ионов из металла в раствор, устанавливается равновесие.

Электрохимические методы анализа основаны на использовании зависимости электрических параметров от концентрации, природы и структуры вещества, участвующего в электродной реакции или в электрохимическом процессе переноса зарядов между электродами. Согласно рекомендациям ИЮПАК * принята следующая классификация этих методов:

  1. Классификация, учитывающая природу источника электрической энергии в системе. Различают две группы методов:
  2. Методы без наложения внешнего потенциала. Здесь источник электрической энергии – сама электрохимическая система (гальванический элемент). К таким методам относятся потенциометрические методы.
  3. Методы с наложением внешнего потенциала. К ним относятся: кондуктометрия, вольтамперометрия, кулонометрия, электрогравиметрия.
  4. Классификация по способу применения:
  5. Прямые методы. Измеряют аналитический сигнал как функцию концентрации раствора и по показаниям прибора находят содержание вещества в растворе (прямая потенциометрия, прямая кондуктометрия и т. д.).
  6. Косвенные методы – это методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы (кондуктометрическое, амперометрическое титрование и т. д.).

Развитию и усовершенствованию электрохимических методов анализа способствовали успехи в области электрохимии и приборостроении. Различия между электрохимическими методами анализа в основном обусловлены природой электродов и измерительными приборами.

Подробнее остановимся на потенциометрическом методе анализа.

Основная часть

Общая характеристика потенциометрического анализа.

Потенциометрические методы анализа известны с 90–х гг. XIX в., однако признан как аналитический метод анализа только в 20–х гг. XX в.

Данный метод, основанный на измерении электродвижущих сил (ЭДС) обратимых гальванических элементов, используют для определения содержания веществ в растворе и измерения различных физико–химических величин.

В потенциометрии обычно применяют гальванический элемент, включающий два электрода, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостной контакт (цепь с переносом).

Первый электрод – это электрод, потенциал которого зависит от активности (концентрации) определяемых ионов в растворе, называется индикаторным.

Для измерения потенциала индикаторного электрода в раствор погружают второй электрод, потенциал которого не зависит от концентрации определяемых ионов. Такой электрод называется электродом сравнения. Величину ЭДС можно рассчитать по разности потенциалов этих электродов.

Зависимость величины электродного потенциала (ЭП) от активности ионов в растворе выражается уравнением Нернста:

где Е 0 – стандартный электродный потенциал; R – универсальная газовая постоянная ( R = 8.314 Дж/моль∙К); Т – абсолютная температура; n – число электронов ( ē ), участвующих в реакции; c – концентрация, моль/дм3; f – коэффициент активности.

Так как в потенциометрии используются разбавленные растворы, где f=1 , то активность (а) заменяют на концентрацию (с). Если перейти от ln к lg, то при T = 298K (25 °С) уравнение (1.1) запишется

Индикаторные электроды

В потенциометрическом методе анализа используют обратимые электроды. Токи обмена для обратимых электродов достигают несколько десятков и сотен мА/см 2 . Потенциал у таких электродов зависит от активности компонентов электродной реакции в соответствии с термодинамическими уравнениями. На обратимых электродах быстро устанавливается равновесие, и скачки потенциалов остаются неизменными во времени. При прохождении электрического тока скачки потенциалов не должны значительно изменяться; а после выключения тока быстро должно устанавливаться равновесие. Электроды, не удовлетворяющие этим требованиям, называются необратимыми.

В потенциометрии применяют два основных класса индикаторных электродов:

  1. Электроды, на межфазных границах которых протекают реакции с участием электронов, так называемые электронообменные (окислительно– восстановительные, электроды первого и второго рода);
  2. Электроды, на межфазных границах которых протекают ионообменные реакции. Такие электроды называют мембранными, или ионообменными, их называют также ионоселективными.

Электронообменные электроды

  1. Редокс–электроды состоят из электрохимически инертного проводника (платины, графита и т. д.), погруженного в раствор, в котором находятся окисленная и восстановленная формы потенциалопределяющего вещества. Такой инертный проводник способствует передаче электронов от восстановителя к окислителю через внешнюю цепь. Примерами таких электродов могут служить редокс-электроды с ионами в различных степенях окисления: (Pt)Sn 4+ , Sn 2+ , (Pt)Fe 3+ , Fe 2+ .

Уравнение Нернста при 298 К

  1. Электроды первого рода – электроды, находящиеся в равновесии с катионами, одноименными с металлом, и обратимые по отношению к ним. Простейший электронообменный электрод – металлическая пластинка, погруженная в раствор или расплав электролита Zn/Zn2+; Cu/Cu2+ и т. д.

Уравнение Нернста для электрода первого рода при 298 К

  1. Электроды второго рода представляют собой металлические электроды, покрытые слоем труднорастворимой соли того же металла. При погружении в раствор соли одноименного аниона его потенциал будет определяться активностью иона в растворе.
  2. Хлорсеребряный электрод (ХСЭ) Ag, AgCl|Cl – представляет собой серебряный проводник, покрытый твердым AgCl, который погружен в насыщенный раствор KCl.

Серебро электрохимически взаимодействует со своим ионом:

Уравнение Нернста для этого процесса:

Однако в присутствии труднорастворимого AgCl активность ионов серебра очень мала и ее трудно определить. Но активность ионов Ag + связана с легко задаваемой в данной системе активностью ионов Cl – произведением растворимости хлорида серебра ПРAgCl:

Подставляя это выражение в (2.2.1)

получим уравнение Нернста для хлорсеребряного электрода:

Потенциалопределяющими являются ионы хлора, а электродный процесс может быть представлен уравнением

б) Каломельный электрод (КЭ) Hg|Hg2Cl2|Cl – – это ртуть, находящаяся в контакте с пастой из смеси ртути и каломели Hg2Cl2, которая, в свою очередь, соприкасается с насыщенным раствором KCl.

Принцип действия каломельного электрода тот же, что и хлорсеребряного.

Электродная реакция сводится к восстановлению каломели до металлической ртути:

Потенциал каломельного электрода определяется активностью ионов хлора:

Электроды второго рода обеспечивают стабильное поддержание электродных потенциалов за счет постоянно большой и неизменной концентрации анионов. Поэтому они применяются как электроды сравнения в потенциометрической ячейке.

Ионоселективные электроды

Ионоселективные электроды изготавливают:

– с твердыми мембранами;

– со стеклянными мембранами;

– с жидкостными мембранами.

  1. Электроды с твердыми мембранами. В таких электродах мембрана изготовлена из малорастворимого кристаллического вещества с ионным типом электрической проводимости. Конструктивно электрод представляет собой трубку диаметром около 1 см из инертного полимера (обычно поливинилхлорида), к торцу которой приклеена тонкая (~0,5 мм) мембрана. В трубку заливают внутренний раствор сравнения, в который погружают электрод сравнения. В настоящее время промышленностью выпускаются электроды с твердыми мембранами, селективные к F – –ионам (мембрана на основе монокристалла LаF3), к CI – –, Br – и I – –ионам (мембраны на основе смеси серебра сульфида и соответствующего серебра галогенида).
  2. Электроды со стеклянными мембранами. Их изготавливают из специального электродного стекла, в состав которого входят оксиды алюминия, натрия, калия, бора и др. Мембрана таких электродов представляет собой тонкостенный шарик (~0,1 мм) диаметром 5 – 8 мм.

В настоящее время промышленность выпускает стеклянные электроды, селективные только к катионам Н+, Na+, К+, Аg+, NH4+. В этих электродах не только мембрана, но и сам корпус изготовлены из стекла.

  1. Электроды с жидкостными мембранами. В таких электродах жидкие мембраны, представляющие собой растворенные в органических растворителях ионообменные вещества, отделяют от анализируемого раствора гидрофобными мелкопористыми пленками, пористыми дисками или гидрофобизированными керамическими диафрагмами. Их основным недостатком является постепенное вымывание анализируемым раствором ионообменника, что сокращает срок работы электрода.

Этих трудностей удалось избежать после разработки электродов с пленочными мембранами. В таких электродах в тонкую мембрану из гидрофобного полимера (поливинилхлорида) вводят пластификатор и растворенное в нем электродоактивное вещество, вступающее в ионообменную реакцию с анализируемым ионом в растворе. В настоящее время промышленность выпускает пленочные ионоселективные электроды на катионы Na+, К+, NH4+, Са2+, Mg2+; электроды для определения общей жесткости воды; на анионы галогенидов, NCS–, NО3–. Существуют электроды и на другие ионы.

Электрохимические методы основаны на измерении электрических параметров электрохимических явлений, возникающих в исследуемом растворе. Такое измерение осуществляют с помощью электрохимической ячейки, представляющей собой сосуд с исследуемым раствором, в который помещены электроды. Электрохимические процессы в растворе сопровождаются появлением или изменением разности потенциалов между электродами или изменение величины тока, проходящего через раствор.

Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. В общем случае различают две группы электрохимических методов:

Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.

Методы с наложением постороннего потенциала, основанные на измерении: а) электрической проводимости растворов – кондуктометрия ; б) количества электричества, прошедшего через раствор – кулонометрия ; в) зависимости величины тока от приложенного потенциала – вольт-амперометрия ; г) времени, необходимого для прохождения электрохимической реакции – хроноэлектрохимические методы (хроновольтамперометрия, хронокондуктометрия). В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.

Основным элементом приборов для электрохимического анализа является электрохимическая ячейка. В методах без наложения постороннего потенциала она представляет собой гальванический элемент , в котором вследствие протекания химических окислительно-восстановительных реакций возникает электрический ток. В ячейке типа гальванического элемента в контакте с анализируемым раствором находятся два электрода – индикаторный электрод, потенциал которого зависит от концентрации вещества, и электрод с постоянным потенциалом – электрод сравнения, относительно которого измеряют потенциал индикаторного электрода. Измерение разности потенциалов производят специальными приборами – потенциометрами.

В методах с наложением постороннего потенциала применяют электрохимическую ячейку , названную так потому, что на электродах ячейки под действием наложенного потенциала происходит электролиз – окисление или восстановление вещества. В кондуктометрическом анализе используют кондуктометрическую ячейку, в которой замеряют электрическую проводимость раствора. По способу применения электрохимические методы можно классифицировать на прямые, в которых концентрацию веществ измеряют по показанию прибора, и электрохимическое титрование, где индикацию точки эквивалентности фиксируют с помощью электрохимических измерений. В соответствии с этой классификацией различают потенциометрию и потенциометрическое титрование, кондуктометрию и кондуктометрическое титрование и т.д.

Приборы для электрохимических определений кроме электрохимической ячейки, мешалки, нагрузочного сопротивления включают устройства для измерения разности потенциалов, тока, сопротивление раствора, количества электричества. Эти измерения могут осуществляться стрелочными приборами (вольтметр или микроамперметр), осциллографами, автоматическими самопишущими потенциометрами. Если электрический сигнал от ячейки очень слабый, то его усиливают с помощью радиотехнических усилителей. В приборах методов с наложением постороннего потенциала важной частью являются устройства для подачи на ячейку соответствующего потенциала стабилизированного постоянного или переменного тока (зависит от типа метода). Блок электропитания приборов электрохимического анализа включает обычно выпрямитель и стабилизатор напряжения, который обеспечивает постоянство работы прибора.

Потенциометрия основана на измерении разности электрических потенциалов, возникающих между разнородными электродами, опущенными в раствор с определяемым веществом. Электрический потенциал возникает на электродах при прохождении на них окислительно-восстановительной (электрохимической) реакции. Окислительно-восстановительные реакции протекают между окислителем и восстановителем с образованием окислительно-восстановительных пар, потенциал Е которых определяется по уравнению Нернста концентрациями компонентов пар [ок] и [вос]:

Потенциометрические измерения проводят, опуская в раствор два электрода – индикаторный, реагирующий на концентрацию определяемых ионов, и стандартный электрод или электрод сравнения, относительно которого измеряется потенциал индикаторного. Применяют несколько видов индикаторных и стандартных электродов.

Электроды первого рода обратимы относительно ионов металла, из которого состоит электрод. При опускании такого электрода в раствор, содержащий катионы металла, образуется электродная пара / M .

Электроды второго рода чувствительны к анионам и представляют собой металл М, покрытый слоем нерастворимой его соли МА с анионом , к которому чувствителен электрод. При контакте такого электрода с раствором, содержащим указанный анион , возникает потенциал Е, величина которого зависит от произведения растворимости соли и концентрации аниона [] в растворе.

Электродами второго рода являются хлорсеребряный и каломельный. Насыщенные хлорсеребряный и каломельный электроды поддерживают постоянный потенциал и применяют в качестве электродов сравнения, по отношению к которым измеряется потенциал индикаторного электрода.

Инертные электроды – пластина или проволока, изготовленная из трудноокисляемых металлов – платины, золота, палладия. Применяются они для измерения Е в растворах, содержащих окислительно-восстановительную пару (например, / ).

Мембранные электроды различного типа имеют мембрану, на которой возникает мембранный потенциал Е. Величина Е зависит от разности концентраций одного и того же иона по разным сторонам мембраны. Простейшим и наиболее употребляемым мембранным электродом является стеклянный электрод.

Смешивание нерастворимых солей типа AgBr , AgCl , AgI и других с некоторыми пластмассами (каучуки, полиэтилен, полистирол) привело к созданию ион-селективных электродов на , , избирательно адсорбирующих из раствора указанные ионы вследствие правила Панета – Фаянса – Гана. Так как концентрация определяемых ионов вне электрода отличается от таковой внутри электрода, равновесия на поверхностях мембраны отличаются, что приводит к возникновению мембранного потенциала.

Для проведения потенциометрических определений собирают электрохимическую ячейку из индикаторного электрода сравнения, который опускают в анализируемый раствор и подсоединяют к потенциометру. Применяемые в потенциометрии электроды имеют большое внутреннее сопротивление (500-1000 МОм), поэтому существуют типы потенциометров представляют собой сложные электронные высокоомные вольтметры. Для измерения ЭДС электродной системы в потенциометрах применяют компенсационную схему, позволяющую уменьшить ток в цепи ячейки.

Наиболее часто потенциометры применяют для прямых измерений рН, показатели концентраций других ионов pNa , pK , pNH ₄, pCl и мВ. Измерения проводят, используя соответствующие ион-селективные электроды.

Для измерения рН применяют стеклянный электрод и электрод сравнения – хлорсеребряный. Перед проведением анализов необходимо проверить калибровку рН-метров по стандартным буферным растворам, фиксаналы которых прикладываются к прибору.

рН-метры помимо прямых определений рН, pNa , pK , pNH ₄, pCl и других позволяют проводить потенциометрическое титрование определяемого иона.

Потенциометрическое титрование проводят в тех случаях, когда химические индикаторы использовать нельзя или при отсутствии подходящего индикатора.

В потенциометрическом титровании в качестве индикаторов используют электроды потенциометра, опушенные в титруемый раствор. При этом применяют электроды, чувствительные к титруемым ионам. В процессе титрования изменяется концентрация ионов, что регистрируется на шкале измерительного пробора потенциометра. Записав показания потенциометра в единицах рН или мВ, строят график их зависимости от объема титранта (кривую титрования), определяют точку эквивалентности и объем титранта, израсходованный на титрование. По полученным данным строят кривую потенциометрического титрования.

Кривая потенциометрического титрования имеет вид, аналогичный кривой титрования в титриметрическом анализе. По кривой титрования определяют точку эквивалентности, которая находится в середине скачка титрования. Для этого проводят касательные к участкам кривой титрования и по середине касательной скачка титрования определяют точку эквивалентности. Наибольшее значение изменения ∆рН/∆ V приобретает в точке эквивалентности.

Еще более точно точку эквивалентности можно определить методом Грана, по которому строят зависимость ∆ V /∆Е от объема титранта. Методом Грана можно проводить потенциометрическое титрование, не доводя его до точки эквивалентности.

Потенциометрическое титрование применяют во всех случаях титриметрического анализа.

При кислотно-основном титровании используют стеклянный электрод и электрод сравнения. Поскольку стеклянный электрод чувствителен к изменениям рН среды, при их титровании на потенциометре регистрируются изменения рН среды. Кислотно-основное потенциометрическое титрование с успехом применяют при титровании слабых кислот и оснований (рК≤8). При титровании смесей кислот необходимо, чтобы их рК отличались больше, чем на 4 единицы, в противном случае часть более слабой кислоты оттитровывается вместе с сильной, и скачок титрования выражен не четко.

Это позволяет использовать потенциометрию для построения экспериментальных кривых титрования, подбор индикаторов для титрования и определения констант кислотности и основности.

При осадительном потенциометрическом титровании применяют в качестве индикатора электрод из металла, составляющего с определяемыми ионами электродную пару.

При комплексометрическом титровании используют: а) металлический электрод, обратимый к иону определяемого металла; б) платиновый электрод при наличии в растворе окислительно-восстановительной пары. При связывании титрантом одного из компонентов редокс-пары меняется его концентрация, что вызывает изменения потенциала индикаторного платинового электрода. Применяются также обратное титрование избытка раствора ЭДТА, добавленного к соли металла, раствором соли железа ( III ).

При окислительно-восстановительном титровании применяют электрод сравнения и платиновый индикаторный электрод, чувствительный к окислительно-восстановительным парам.

Потенциометрическое титрование – один из наиболее употребляемых методов инструментального анализа вследствие простоты, доступности, селективности и широких возможностей.

Кондуктометрия. Кондуктометрическое титрование

Кондуктометрия основана на измерении электрической проводимости раствора. Если в раствор вещества поместить два электрода и подать на электроды разность потенциалов, то через раствор потечет электрический ток. Как и каждый проводник электричества, растворы характеризуются сопротивлением R и обратной ему величиной – электрической проводимостью L :

Кондуктометрический анализ проводят с помощью кондуктометров – приборов, измеряющих сопротивление растворов. По величине сопротивления R определяют обратную ему по величине электрическую проводимость растворов L .

Определение концентрации растворов осуществляют прямой кондуктометрией и кондуктометрическим титрованием. Прямая кондуктометрия используется для определения концентрации раствора по калибровочному графику. Для составления калибровочного графика замеряют электр.проводимось серии растворов с известной концентрацией и строят калибровочный график зависимости электр.проводимости от концентрации. Затем измеряют электр.проводимость анализируемого раствора и по графику определяют его концентрацию.

Чаще применяют кондуктометрическое титрование . При этом в ячейку с электродами помещают анализируемый раствор, ячейку помещают на магнитную мешалку и титруют соответствующим титрантом. Титрант добавляют равными порциями. После добавления каждой порции титранта замеряют электр.проводимость раствора и строят график зависимости между электр.проводимостью и объемом титранта. При добавлении титранта происходит изменение электр.проводимости раствора в т.э. наступает перегиб кривой титрования.

От подвижности ионов зависит электр.проводимость раствора: чем выше подвижность ионов, тем больше электр.проводимость раствора.

Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, в отсутствии химических индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы веществ (до моль/дм³). Кондуктометрическим титрованием анализируют смеси веществ, т.к. различия в подвижности различных ионов существенны и их можно дифференцированно оттитровывать в присутствии друг друга.

Кондуктометрический анализ легко автоматизировать, если раствор титранта подавать из бюретки с постоянной скоростью, а изменение электрической проводимости раствора регистрировать на самописце. Эта разновидность кондуктометрии получила название хронокондуктометрического анализа .

В кислотно-основном титровании кондуктометрическим путем можно определять сильные кислоты, слабые кислоты, соли слабых оснований и сильных кислот.

В осадительном кондуктометрическом титровании электр.проводимость титруемых растворов сначала уменьшается или остается на некотором постоянном уровне вследствие связывания титруемого электролита в осадок, после т.э. при появлении избытка титранта – снова возрастает.

В комплексометрическом кондуктометрическом титровании изменения электр.проводимости раствора наступают вследствие связывания катионов металла в комплекс с ЭДТА.

Окислительно-восстановительное кондуктометрическое титрование основано на изменении концентрации реагирующих ионов и появлении в растворе новых ионов, что изменяет электр.проводимость раствора.

В последние годы получило развитие высокочастотная кондуктометрия , в которой электроды с раствором не контактируют, что важно при анализе агрессивных сред и растворов в закрытых сосудах.

Получила развитие два варианта – прямая высокочастотная кондуктометрия и высокочастотное титрование.

Прямая высокочастотная кондуктометрия применяется для определения влажности веществ, зерна, древесины, концентрации растворов в закрытых сосудах – ампулах, при анализе агрессивных жидкостей.

Высокочастотное титрование проводят на специальных титраторах – ТВ-6, ТВ-6Л.

Высокочастотное кондуктометрическое титрование проводят по типу кислотно-основного, окислительно-восстановительного или осадительного титрования в тех случаях, когда отсутствует подходящий индикатор или при анализе смесей веществ.

Кулонометрия. Кулонометрическое титрование

В кулонометрии вещества определяют измерением количества электричества, затраченное на их количественное электрохимическое превращение. Кулометрический анализ проводят в электролитической ячейке, в которую помещают раствор определяемого вещества. При подаче на электроды ячейки соответствующего потенциала происходит электрохимическое восстановление или окисление вещества. Согласно законам электролиза, открытым Фарадеем, количество вещества, прореагировавшего на электроде, пропорционально количеству электричества, прошедшего через раствор:

Кулонометрический анализ позволяет определять вещества, не осаждающиеся на электродах или улетучивающиеся в атмосферу при электрохимической реакции.

Различают кулонометрию прямую и кулонометрическое титрование . Высока точность и чувствительность методов измерения электрического тока обеспечивает кулонометрическому анализу уникальную точность 0,1-0,001%, и чувствительность до 1∙10⁻⁸- 1∙10⁻¹⁰ г. Поэтому кулонометрический анализ применяется для определения микропримесей и продуктов разрушения веществ, что важно при контроле их качества.

Для индикации т.э. при кулонометрическом титровании можно применять химический и инструментальные методы – добавление индикаторов, обнаружение окрашенных соединений фотометрическим или спектрофотометрическим путём.

В отличии от других методов анализа кулонометрия может быть полностью автоматизирована, что сводит к минимуму случайные ошибки определения. Эта особенность использована при создании автоматических кулонометрических татраторов – чувствительных приборов, применяющихся для особо точных анализов, когда другие методы оказываются недостаточно чувствительными. При анализе веществ, малорастворимых в воде, кулонометрию можно проводить на электродах из ацетиленовой сажи, являющиеся хорошим адсорбентом и извлекающий такие вещества из реакционной среды с достаточной полнотой. Кулонометрическое титрование – перспективный метод инструментального анализа. Он может найти широкое применение для решения ряда специальных аналитических задач – анализа примесей, малых количеств лекарственных препаратов, определение в биологическом материале и окружающей среде токсических веществ, микроэлементов и других соединений.

Список используемой литературы:

Выполнил студент 2-го курса
Олексюк Кирилл Дмитриевич
Факультет: Институт Высших технологий (ВТ-9)
Направление: Нанотехнологии и микросистемная техникаКафедра: Наноматериалы
Преподаватель по аналитической химии: Берлин Наталья Борисовна

2)Электрохимические методы анализа……………………………………….4-5

3) Потенциометрия. Потенциометрическое титрование……………………5-6

4) Кондуктометрия. Кондуктометрическое титрование………………..……7-8


1. Введение.
Электрохимические методы анализа были созданы в конце XIX – начале XX века на основе достижений физики и физической химии. Примером могут быть закономерности процесса электролиза, установленные Майклом Фарадеем в середине XIX века и ставшие затемосновой методов кулонометрии и электрогравиметрии.
Теоретические аспекты и аналитические возможности электрохимических методов были глубоко исследованы в XX веке.Электрохимические методы основаны на измерении электрических параметров электрохимических явлений, возникающих в исследуемом растворе. Такое измерение осуществляют с помощью электрохимической ячейки, представляющей собой сосуд с исследуемымраствором, в который помещены электроды. Электрохимические процессы в растворе сопровождаются появлением или изменением разности потенциалов между электродами или изменение величины тока, проходящего через раствор. В химическом анализе применяют около десятка разных электрохимических методов. Они имеют много общего. Во всех случаях анализируемую пробу переводят в раствор и опускают в него два электрода.Система раствор - электроды представляет собой электрохимическую ячейку. После установления равновесия измеряют с помощью подходящего прибора аналитический сигнал, в данном случае - характеристику ячейки, зависящую от содержания определяемого компонента в исследуемом растворе.
Электрохимические методы классифицируют по природе аналитического сигнала. Так, в ходе анализа можно измерять потенциалодного из электродов (потенциометрия), сопротивление ячейки или электропроводность раствора (кондуктометрия). Во многих случаях на электроды накладывают внешнее напряжение, после чего измеряют силу тока, проходящего через раствор (вольтамперометрические методы, в частности полярография). При этом на поверхности электродов протекают окислительно-восстановительные реакции, то есть идет электролизраствора. Если провести электролиз до конца и измерить количество электричества, пошедшего на окисление (или на восстановление) определяемого вещества, можно рассчитать массу этого вещества. Такой метод называют кулонометрией. Иногда содержание определяемого вещества рассчитывают по привесу электрода, т. е. по массе выделившегося на нем продукта электролиза (электрогравиметрия).2.Электрохимические методы анализа.

Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. В общем случае различают две группы электрохимических методов:
1) Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда сисследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.
2) Методы с наложением постороннего потенциала, основанные на измерении: а) электрической проводимости растворов.

Электрохимические методы анализа – это совокупность методов качественного и количественного анализа, основанных на использовании электрохимических процессов, происходящих в электролитической ячейке (гальваническом элементе). Электролитическая ячейка представляет собой систему, состоящую из электродов и электролитов, контактирующих между собой. На границе раздела фаз может происходить электродная реакция между компонентами этих фаз, в результате которой электрический заряд переходит из одной фазы в другую, и на межфазной границе устанавливается потенциал.

Содержание работы

ВВедение 3
Основная часть 4
1. Общая характеристика потенциометрического анализа. 4
2. Индикаторные электроды 4
Электронообменные электроды 5
Ионоселективные электроды 6
3. Электроды сравнения 7
4. Измерение ЭДС электрохимических цепей 8
5. Виды потенциометрического метода анализа 8
Прямая потенциометрия 8
Потенциометрическое титрование 9
Заключение 13
Библиографический список 14

Содержимое работы - 1 файл

Электрохимические методы анализа (Восстановлен).docx

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

по аналитической химии

студент 3 курса группы стс–09

кандидат химических наук, доцент

Магнитогорск 2011

Основная часть 4

1. Общая характеристика потенциометрического анализа. 4

2. Индикаторные электроды 4

Электронообменные электроды 5

Ионоселективные электроды 6

3. Электроды сравнения 7

4. Измерение ЭДС электрохимических цепей 8

5. Виды потенциометрического метода анализа 8

Прямая потенциометрия 8

Потенциометрическое титрование 9

Библиографический список 14

ВВедение

Электрохимические методы анализа – это совокупность методов качественного и количественного анализа, основанных на использовании электрохимических процессов, происходящих в электролитической ячейке (гальваническом элементе). Электролитическая ячейка представляет собой систему, состоящую из электродов и электролитов, контактирующих между собой. На границе раздела фаз может происходить электродная реакция между компонентами этих фаз, в результате которой электрический заряд переходит из одной фазы в другую, и на межфазной границе устанавливается потенциал.

При погружении металла в раствор, содержащий его ионы, возможен процесс перехода ионов с поверхности металла в раствор и обратный процесс перехода ионов металла, находящихся в растворе, на поверхность металла. В результате этого поверхность электрода приобретает заряд. Заряд его зависит от того какой из указанных процессов преобладает. На границе раздела фаз возникает разность потенциалов (скачек потенциала). Когда скорость перехода ионов из раствора в металл равна скорости перехода ионов из металла в раствор, устанавливается равновесие.

Электрохимические методы анализа основаны на использовании зависимости электрических параметров от концентрации, природы и структуры вещества, участвующего в электродной реакции или в электрохимическом процессе переноса зарядов между электродами. Согласно рекомендациям ИЮПАК * принята следующая классификация этих методов:

  1. Классификация, учитывающая природу источника электрической энергии в системе. Различают две группы методов:
  2. Методы без наложения внешнего потенциала. Здесь источник электрической энергии – сама электрохимическая система (гальванический элемент). К таким методам относятся потенциометрические методы.
  3. Методы с наложением внешнего потенциала. К ним относятся: кондуктометрия, вольтамперометрия, кулонометрия, электрогравиметрия.
  4. Классификация по способу применения:
  5. Прямые методы. Измеряют аналитический сигнал как функцию концентрации раствора и по показаниям прибора находят содержание вещества в растворе (прямая потенциометрия, прямая кондуктометрия и т. д.).
  6. Косвенные методы – это методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы (кондуктометрическое, амперометрическое титрование и т. д.).

Развитию и усовершенствованию электрохимических методов анализа способствовали успехи в области электрохимии и приборостроении. Различия между электрохимическими методами анализа в основном обусловлены природой электродов и измерительными приборами.

Подробнее остановимся на потенциометрическом методе анализа.

Основная часть

Общая характеристика потенциометрического анализа.

Потенциометрические методы анализа известны с 90–х гг. XIX в., однако признан как аналитический метод анализа только в 20–х гг. XX в.

Данный метод, основанный на измерении электродвижущих сил (ЭДС) обратимых гальванических элементов, используют для определения содержания веществ в растворе и измерения различных физико–химических величин.

В потенциометрии обычно применяют гальванический элемент, включающий два электрода, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостной контакт (цепь с переносом).

Первый электрод – это электрод, потенциал которого зависит от активности (концентрации) определяемых ионов в растворе, называется индикаторным.

Для измерения потенциала индикаторного электрода в раствор погружают второй электрод, потенциал которого не зависит от концентрации определяемых ионов. Такой электрод называется электродом сравнения. Величину ЭДС можно рассчитать по разности потенциалов этих электродов.

Зависимость величины электродного потенциала (ЭП) от активности ионов в растворе выражается уравнением Нернста:

где Е 0 – стандартный электродный потенциал; R – универсальная газовая постоянная ( R = 8.314 Дж/моль∙К); Т – абсолютная температура; n – число электронов ( ē ), участвующих в реакции; c – концентрация, моль/дм3; f – коэффициент активности.

Так как в потенциометрии используются разбавленные растворы, где f=1 , то активность (а) заменяют на концентрацию (с). Если перейти от ln к lg, то при T = 298K (25 °С) уравнение (1.1) запишется

Индикаторные электроды

В потенциометрическом методе анализа используют обратимые электроды. Токи обмена для обратимых электродов достигают несколько десятков и сотен мА/см 2 . Потенциал у таких электродов зависит от активности компонентов электродной реакции в соответствии с термодинамическими уравнениями. На обратимых электродах быстро устанавливается равновесие, и скачки потенциалов остаются неизменными во времени. При прохождении электрического тока скачки потенциалов не должны значительно изменяться; а после выключения тока быстро должно устанавливаться равновесие. Электроды, не удовлетворяющие этим требованиям, называются необратимыми.

В потенциометрии применяют два основных класса индикаторных электродов:

  1. Электроды, на межфазных границах которых протекают реакции с участием электронов, так называемые электронообменные (окислительно– восстановительные, электроды первого и второго рода);
  2. Электроды, на межфазных границах которых протекают ионообменные реакции. Такие электроды называют мембранными, или ионообменными, их называют также ионоселективными.

Электронообменные электроды

  1. Редокс–электроды состоят из электрохимически инертного проводника (платины, графита и т. д.), погруженного в раствор, в котором находятся окисленная и восстановленная формы потенциалопределяющего вещества. Такой инертный проводник способствует передаче электронов от восстановителя к окислителю через внешнюю цепь. Примерами таких электродов могут служить редокс-электроды с ионами в различных степенях окисления: (Pt)Sn 4+ , Sn 2+ , (Pt)Fe 3+ , Fe 2+ .

Уравнение Нернста при 298 К

  1. Электроды первого рода – электроды, находящиеся в равновесии с катионами, одноименными с металлом, и обратимые по отношению к ним. Простейший электронообменный электрод – металлическая пластинка, погруженная в раствор или расплав электролита Zn/Zn2+; Cu/Cu2+ и т. д.

Уравнение Нернста для электрода первого рода при 298 К

  1. Электроды второго рода представляют собой металлические электроды, покрытые слоем труднорастворимой соли того же металла. При погружении в раствор соли одноименного аниона его потенциал будет определяться активностью иона в растворе.
  2. Хлорсеребряный электрод (ХСЭ) Ag, AgCl|Cl – представляет собой серебряный проводник, покрытый твердым AgCl, который погружен в насыщенный раствор KCl.

Серебро электрохимически взаимодействует со своим ионом:

Уравнение Нернста для этого процесса:

Однако в присутствии труднорастворимого AgCl активность ионов серебра очень мала и ее трудно определить. Но активность ионов Ag + связана с легко задаваемой в данной системе активностью ионов Cl – произведением растворимости хлорида серебра ПРAgCl:

Подставляя это выражение в (2.2.1)

получим уравнение Нернста для хлорсеребряного электрода:

Потенциалопределяющими являются ионы хлора, а электродный процесс может быть представлен уравнением

б) Каломельный электрод (КЭ) Hg|Hg2Cl2|Cl – – это ртуть, находящаяся в контакте с пастой из смеси ртути и каломели Hg2Cl2, которая, в свою очередь, соприкасается с насыщенным раствором KCl.

Принцип действия каломельного электрода тот же, что и хлорсеребряного.

Электродная реакция сводится к восстановлению каломели до металлической ртути:

Потенциал каломельного электрода определяется активностью ионов хлора:

Электроды второго рода обеспечивают стабильное поддержание электродных потенциалов за счет постоянно большой и неизменной концентрации анионов. Поэтому они применяются как электроды сравнения в потенциометрической ячейке.

Ионоселективные электроды

Ионоселективные электроды изготавливают:

– с твердыми мембранами;

– со стеклянными мембранами;

– с жидкостными мембранами.

  1. Электроды с твердыми мембранами. В таких электродах мембрана изготовлена из малорастворимого кристаллического вещества с ионным типом электрической проводимости. Конструктивно электрод представляет собой трубку диаметром около 1 см из инертного полимера (обычно поливинилхлорида), к торцу которой приклеена тонкая (~0,5 мм) мембрана. В трубку заливают внутренний раствор сравнения, в который погружают электрод сравнения. В настоящее время промышленностью выпускаются электроды с твердыми мембранами, селективные к F – –ионам (мембрана на основе монокристалла LаF3), к CI – –, Br – и I – –ионам (мембраны на основе смеси серебра сульфида и соответствующего серебра галогенида).
  2. Электроды со стеклянными мембранами. Их изготавливают из специального электродного стекла, в состав которого входят оксиды алюминия, натрия, калия, бора и др. Мембрана таких электродов представляет собой тонкостенный шарик (~0,1 мм) диаметром 5 – 8 мм.

В настоящее время промышленность выпускает стеклянные электроды, селективные только к катионам Н+, Na+, К+, Аg+, NH4+. В этих электродах не только мембрана, но и сам корпус изготовлены из стекла.

  1. Электроды с жидкостными мембранами. В таких электродах жидкие мембраны, представляющие собой растворенные в органических растворителях ионообменные вещества, отделяют от анализируемого раствора гидрофобными мелкопористыми пленками, пористыми дисками или гидрофобизированными керамическими диафрагмами. Их основным недостатком является постепенное вымывание анализируемым раствором ионообменника, что сокращает срок работы электрода.

Этих трудностей удалось избежать после разработки электродов с пленочными мембранами. В таких электродах в тонкую мембрану из гидрофобного полимера (поливинилхлорида) вводят пластификатор и растворенное в нем электродоактивное вещество, вступающее в ионообменную реакцию с анализируемым ионом в растворе. В настоящее время промышленность выпускает пленочные ионоселективные электроды на катионы Na+, К+, NH4+, Са2+, Mg2+; электроды для определения общей жесткости воды; на анионы галогенидов, NCS–, NО3–. Существуют электроды и на другие ионы.

Читайте также: