Деформация горных пород реферат

Обновлено: 02.07.2024

Горные породы под действием приложенных нагрузок в одних случаях меняют только свою форму и объем без разрыва сплошности (пластическая деформация), в других разрушаются на отдельные элементы без заметной пластической деформации. В связи с этим выделяют такие важные свойства пород, как пластичность, хрупкость и упругость.

Пластичностью горных пород называется свойство породы в известных условиях и пределах под воздействием сил претерпевать остаточную деформацию (пластические деформации после снятия нагрузки) без микроскопических нарушений сплошности.

Пластичности обычно противопоставляется понятие хрупкости, т.е. способности горных пород при воздействии сил разрушаться без заметных пластических деформаций. Эти породы имеют слабую сопротивляемость разрушению при действии на них ударной нагрузки. В породах с повышенной хрупкостью усиливается эффект взрыва, но увеличиваются переборы по сечению, что приводит к лишним затратам при погрузке породы, креплении выработки и пр.

Упругость – способность породы восстанавливать первоначальную форму и объем после снятия нагрузки.

Проявление тех или иных свойств у горных пород в значительной мере связано с условиями нагружения. При мгновенном нагружении многие горные породы (песчаники, сланцы и др.) разрушаются на отдельные осколки, проявляя типичное свойство хрупкости. Вместе с тем эти же породы при постепенном нагружении ведут себя как упругие тела, т.е. пропорционально силам растут деформации. При длительном воздействии нагрузки в них проявляются остаточные деформации, т.е. породы проявляют пластичность.

Таким образом, упругость, хрупкость и пластичность имеют относительный характер.

Хрупкость и пластичность оцениваются коэффициентом пластичности (хрупкости), равным отношению общей работы деформации до разрушения Аобщ к работе упругой деформации Aупр, т.е. k = Aобщ/Аупр. Хрупкое разрушение в чистом виде оценивается коэффициентом k = 1. При пластических свойствах коэффициент k увеличивается.

Упругость твердых горных пород характеризуется: модулем упругости E (модуль Юнга), коэффициентом Пуассона μ, модулем сдвига G. Кроме них, иногда пользуются такими показателями, как модуль деформации E0 и динамический модуль упругости Еg.

Модуль Юнга представляет собой отношение нормального напряжения (σ) к относительной деформации (ζ), Е = σ/ζу. Коэффициент Пуассона представляет собой отношение относительных деформаций – поперечной к продольной μ=ζу′/ζу. Модуль Юнга и коэффициент Пуассона вычисляют по данным лабораторных испытаний пород.

Модуль сдвига может быть определен по формуле

Модуль полной деформации есть отношение нормального напряжения σ к полной относительной деформации, т.е. E0= σ/ζп связан с криволинейной зависимостью между деформациями и напряжениями и с неоднородностью горных пород.

Определение упругих характеристик E и μ производится с помощью точных измерений деформации образца породы при сжатии или изгибе. На практике для этого пользуются индикаторами часового типа или же электрическими тензодатчиками сопротивления. Угол, характеризующий предельное состояние взаимодействующих частиц грунта, называется углом внутреннего трения (φ):

φ = arctg fT,

где fт = Fтн – коэффициент внутреннего трения; Fт – сила трения; Рн – величина нормальной нагрузки.

Величина угла внутреннего трения зависит от размера и формы зерен, внешнего давления, воздействующего на породу, и от степени водонасыщения породы.

Порода Угол естественного откоса при состоянии породы, град.
сухое влажное мокрое
Скальные породы 32–45 30–40
Гравий
Галька 40–45 35–37
Песок:
крупнозернистый
среднезернистый
мелкозернистый
глинистый
Растительная плотно
слежавшаяся земля -

Величина коэффициента fт повышается с увеличением размеров и угловатости зерен, шероховатости их поверхностей, с возрастанием внешнего давления вследствие уплотнения пород. В сыпучей породе, содержащей воду в таком количестве, при котором проявляется действие капиллярных сил, коэффициент fт увеличивается. При большем содержании воды коэффициент fт уменьшается.

Значения коэффициента φ зависят от методики испытаний и величины действующих нагрузок. Для аналитических расчетов при σ12 и сжимающих напряжениях tgφ =(σ1 – σ2)(γ1 – γ2). В случае, если σ1 – растягивающее напряжение, а σ2 – сжимающее, и σ12, то tg φ =1 + σ2)(σ2 – σ1).

В естественном состоянии сыпучая порода приобретает форму конуса, образующая которого находится под некоторым постоянным для данной породы углом φ к горизонтальной плоскости. Этот угол называется углом естественного откоса (табл. 14).

Вязкость – это сопротивление пород силам, стремящимся разъединить их частицы. В однородных и простых породах вязкость равномерна во всех направлениях. В породах неоднородного сложения или сложных вязкость, как и твердость, меньше вдоль слоев и больше в направлении, перпендикулярном к слоям. Наибольшей вязкостью обладают мелкозернистые породы.

Разрыхляемость – свойство горной породы увеличиваться в объеме при выемке ее из массива. Разрыхляемость породы характеризуется коэффициентом разрыхления kр.

Коэффициент разрыхления – это отношение объема породы в состоянии разрыхления Vр к первоначальному объему той же породы в массиве Vп, т.е. kр = Vр//Vп. Величина его всегда больше единицы и зависит как от крепости горной породы, так и от способа ее разрушения (табл. 15).

Разрыхляемость существенно влияет на продолжительность процесса погрузки породы. При больших значениях коэффициента разрыхления требуется загрузить большее число вагонов или бадей, произвести большее число черпаний ковшом породопогрузочной машины.

Это один из современных и уже довольно широко применяемых методов изучения деформационных свойств горных пород. Сущность его та же, что и метода испытания горных пород пробными статическими нагрузками. Она состоит в исследовании изменений деформации горных пород, слагающих стенки скважин, при воздействии на них возрастающих ступеней нагрузки.

Эти исследования производят с помощью специального прибора бокового давления – прессиометра, представляющего собой цилиндр (камеру) с эластичными стенками (рис.1). Его устанавливают в скважине и под воздействием давления жидкости (гидравлический прессиометр) или газа (пневматический прессиометр), нагнетаемых в камеру, производят уплотнение горных пород в стенках скважины и одновременно определяют значения действующего давления и деформации горных пород. По данным измерений вычисляют значения модуля общей деформации Е о .

Прессиометрический метод применим для исследования деформационных свойств любых горных пород - скальных, полу-скальных, рыхлых несвязных и мягких связных, но наиболее часто его применяют при изучении свойств песчаных и глинистых пород. Примером этого метода для исследования скальных пород могут служить исследования песчаников и диабазов, залегающих в основании Братской ГЭС.

На графике, выражающем зависимость ? r = f ( p ) (см. рис.2) обычно выделяют два участка, отражающие различные стадии деформации горных пород под воздействием на них нагрузки. Первый участок BC соответствует стадии их уплотнения и практически выражает линейную зависимость деформации от нагрузки. Давление р п – предел пропорцио-нальности – является пределом возможного использования линейной зависимости деформации горных пород. По первому участку кривой и вычисляют значение модуля деформации. Второй участок CD характеризует криволинейную зависимость развития деформации горных пород и означает начало и развитие их разрушения в зоне действия нагрузки. Давление р maxявляется пределом прочности горных пород.

Каждый прессиометр состоит из собственно прессиометра – цилиндра-камеры, устанавливаемой непосредственно в скважине, измерительной аппаратуры, включающей технические устройства для подачи давления (нагрузки) в рабочую камеру прессиометра, и приборов для измерения давления и деформаций горных пород. Прессиометр и измерительная аппаратура связаны между собой шлангами, а некоторые из них еще и электрическими проводами.

Выше уже было отмечено, что в зависимости от способа создания усилий (давления) в рабочей камере прессиометры бывают гидравлического или пневматического действия. При этом измерения деформаций горных пород производят либо по изменению объема рабочей камеры, либо по изменению ее диаметра с помощью электрических датчиков, устанавливаемых внутри рабочей камеры.

При подготовке к прессиометрическим испытаниям необходимо детально изучить геологический разрез по каждой опытной скважине и геологически обосновать выделение слоев, зон или подзон горных пород, подлежащих испытаниям. Выделение интервалов для испытаний должно основываться на полном учете особенностей геологического разреза горных пород, вскрытых скважиной, глубины заложения фундаментов сооружений и распределения напряжений в их основании. Испытаниям подлежат главным образом те слои и зоны горных пород, которые попадают в зону влияния сооружения.

В соответствии с техническими данными прессиометров диаметр скважин должен быть от 76 до 127 мм , т.е. на 10- 20 мм больше, чем внешний диаметр прессиометра, а глубина до 15 м , редко более. Бурение необходимо производить способами, обеспечивающими полную сохранность естественного сложения и физического состояния горных пород в стенках скважины. Если в геологическом разрезе преобладают породы устойчивые, бурение скважин производят без обсадки и испытание пород проводят после окончания бурения, начиная с нижних горизонтов. Если в геологическом разрезе преобладают неустойчивые породы, их испытание производят в процессе бурения. В этом случае скважину бурят с обсадкой трубами до необходимой глубины, на которую опускают прессиометр. Затем обсадные трубы поднимают и производят обжатие пород в стенках скважины. В такой последовательности исследуют деформационные свойства пород в процессе бурения скважины.


Рис. 2. График зависимости деформаций горных пород от действующей нагрузки при прессиометрических испытаниях.

ОА – расширение камеры прессиометра до со-прикосновения со стенками скважины; АВ – обжатие неровностей поверхности стенок скважины; ВС – уплотнение породы под действием бокового давления (фаза уплотнения пород); CD – заметное развитие сдвигов в породе (фаза заметного разрушения породы); ? r Н , р Н - приращение радиуса прессиометра и давления, соответствующие моменту завершения обжатия неровностей стенок скважины; ? r п , р п – приращение радиуса прессиометра и давления, соответствующие пределу пропорциональности деформаций горных пород от действующего давления

Испытания каждого слоя, зоны и подзоны пород производят возрастающими ступенями нагрузки по 0,1 – 0,25 кгс/см 2 , если они имеют малую и среднюю плотность, и по 0,5 – 1,0 кгс/см 2 при плотном сложении. Каждая ступень давления создается в течение 1 – 2 мин и выдерживается до условной стабилизации деформации, т.е. когда она не превышает 0,1 мм за 30 мин у песчаных пород и за 1 ч – у глинистых. Наблюдения за деформациями производят в первые 15 мин в песчаных породах и 30 мин – в глинистых, соответственно через каждые 5 и 10 мин и впоследствии соответственно через каждые 15 и 30 мин до условной стабилизации деформаций.

При определении давления на стенки скважины при работе с гидравлическим прессиометром рекомендуется к давлению, измеренному манометром, добавлять давление столба воды от уровня манометра до середины рабочей камеры прессиометра. При установке гидравлического прессиометра на глубине более 10 – 15 м этот столб воды может создать значительное давление на стенки скважины, когда еще невозможно измерить деформацию пород. В слабых породах эти деформации могут быть значительными. Поэтому гидравлические прессиометры нецелесообразно применять при испытаниях пород на значительных глубинах и особенно в слабых, податливых породах.

Информация для статьи заимствована из книги: Ломтадзе В.Д. "Инженерная геология. Специальная инженерная геология." Л, Недра, 1978

Знание физико-механических свойств горных пород необходимо при строительстве скважин и разработке месторождений. С учетом их следует производить предварительный выбор долот для различных интервалов бурения; учитывать их при проектировании режимов бурения; при выборе типа бурового раствора и его свойств, методов вскрытия продуктивного пласта и конструкции призабойной зоны скважины; для предупреждения возможных осложнений в процессе бурения; иногда - при выборе конструкции скважины. Знать физико-механические свойства горных пород необходимо и при составлении проекта разработки нефтяных и газовых месторождений.

Содержание

ВВЕДЕНИЕ 3
1. ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД 5
1.1. Плотность 5
1.2. Прочность 5
1.3 Упругость 6
1.4. Пластичность 8
1.5. Твердость 10
1.6. Абразивность 14
2. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД В ПРОЦЕССЕ БУРЕНИЯ 16
2.1 Основные физико-механические свойства горных пород, влияющие на процесс бурения 17
2.2. Основные закономерности разрушения горных пород при бурении 19
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 24

Работа состоит из 1 файл

курс 5.docx

Министерство образования и науки рф

Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования

Институт геологиии и нефтегазодобычи

МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД

1. ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД 5

1.4. Пластичность 8

1.5. Твердость 10

1.6. Абразивность 14

2. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД В ПРОЦЕССЕ БУРЕНИЯ 16

2.1 Основные физико-механические свойства горных пород, влияющие на процесс бурения 17

2.2. Основные закономерности разрушения горных пород при бурении 19

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 24

Знание физико-механических свойств горных пород необходимо при строительстве скважин и разработке месторождений. С учетом их следует производить предварительный выбор долот для различных интервалов бурения; учитывать их при проектировании режимов бурения; при выборе типа бурового раствора и его свойств, методов вскрытия продуктивного пласта и конструкции призабойной зоны скважины; для предупреждения возможных осложнений в процессе бурения; иногда - при выборе конструкции скважины. Знать физико-механические свойства горных пород необходимо и при составлении проекта разработки нефтяных и газовых месторождений.

Механические свойства горных пород — характеризуют изменения формы, размеров и сплошности горных пород под воздействием механических нагрузок, которые создаются в результате действия естественных (горное давление, тектонические движения) или искусственных факторов (взрывные работы, резание, дробление пород).

Механическое нагружение вызывает в горных породах напряжения и деформации. По виду деформаций и связи с вызвавшими их напряжениями механические свойства подразделяют на упругие (модуль Юнга, коэффициент Пуассона и др.), пластические (модуль полной деформации, коэффициент пластичности и др.), прочностные (пределы прочности горных пород при сжатии, растяжении и др.) и реологические свойства (период релаксации, предел длительной прочности и др.). К показателям механических свойств относят также характеристики воздействия на горные породы жидкостей и газов (например, коэффициент размокания), горнотехнологические параметры горные породы (показатели крепости, твёрдости, буримости, взрываемости, дробимости.

Механические свойства определяют прямыми или косвенными измерениями напряжений и деформаций в горных породах в процессе их различного нагружения. В массиве чаще используют косвенные методы оценки механических свойств — по глубине и усилиям проникновения острого инструмента в горных породах, по зависимости между скоростью упругих волн и механическими свойствами.

На величину показателей механических свойств влияют анизотропия горной породы, силы и характер связей между частицами, ориентация ослабленных зон и слоев горной породы, размер зёрен, пористость, минеральный состав. Это предопределяет широкую вариацию показателей механических свойств от точки к точке в массиве (рис.).

Более монолитные скальные горные породы имеют высокие значения модуля Юнга, прочностных параметров, низкие значения показателей пластичности. Осадочные горные породы, как правило, обладают более низкой прочностью и упругими свойствами, повышенными значениями показателей пластичности, хорошо выраженными реологическими свойствами.

Любые изменения состояния горной породы и её структурных характеристик влияют на величину механических свойств. Увеличение влажности снижает упругие и прочностные, но повышает пластические параметры пород; трещиноватость и высокая пористость пород снижают прочностные и упругие параметры пород. Разрушенная горная порода также способна сопротивляться в определённой степени внешним нагрузкам. Например, несущую способность разрушенных горных пород оценивают особыми механическими свойствами — параметрами запредельного деформирования и прочности, определяемыми на специальных жёстких испытательных прессах.

Плотность d - это отношение массы m вещества к единице объема V. Плотность измеряется в г/см 3 , кг/л или т/м 3 . Так как плотность воздуха мала, то ею пренебрегают и при измерениях плотности взвешивают вещество в воздухе, а не в вакууме. Плотность воды 1 г/см 3 , дерева немного меньше - оно плавает как и жидкая нефть (0,8–0,9 г/см 3 ), растекаясь пятнами на море при авариях танкеров. Плотность человека, выдохнувшего воздух, тоже почти 1 г/см 3 , а вдохнувшего - 0,95 г/см 3 . Плотность густой нефти, и тем более мазута 1,05 г/см 3 – недаром он оседает на дно при крупных разливах нефти в море. Это случается при авариях танкеров, во время военных сражений протекающих на территориях нефтяных промыслов.

Плотности минералов колеблются в очень широком диапазоне от 2,2 г/см 3 у галита, 2,66 г/см 3 у кварца, 2,55 – 2,7 г/см 3 у полевого шпата, 2,72 г/см 3 у кальцита, до 3,9 г/см 3 у сидерита и 5,0 г/см 3 у магнетита. Среди самых тяжелых минералов магнетит, киноварь и золото. Горные породы состоят из комплексов породообразующих минералов, плотности которых колеблются в узких пределах - от 2,55 г/см 3 у ортоклаза до 2,75 г/см 3 у доломита, и поэтому минеральный состав существенно на плотность не влияет. Иное дело жидкая и газообразная фазы породы или, в терминах нефтяной геологии - поры: плотность кварцевого песка снижается при 10% пористости с 2,66 до 2,40 г/см 3 , а при пористости 20% – до 2,10 г/см 3 . Таким образом, плотность горных пород, и особенно пород осадочных, во многом определяется пористостью.

При некоторой тренировке геолог может, взвесив в руке образец, довольно точно определить его плотность, а по ней пористость.

В пластовых условиях, где поры заполнены солеными пластовыми водами, плотность соответственно возрастает при пористости 10% до 2,50 г/см 3 , а при пористости 20% до 2,35 г/см 3 . В науке о бурении плотность породы в пластовых условиях называется объемной массой.

С увеличением всестороннего сжатия объемная масса возрастает благодаря, во-первых, уменьшению пористости и, во-вторых – некоторому увеличению плотности сжимаемого в порах флюида. Кроме того, соленость пород растет с глубиной. Объемная масса осадочных пород обычно колеблется от 2,0 до 2,7 г/см 3 . С ростом объемной массы связано и увеличение горного (литостатического) давления.

Прочность - это способность вещества не разрушаться под действием механических сил – будь то удар молотка или воздействие долота на породу. Прочность измеряется напряжением, при котором вещество разрушается. Измеряется прочность в МПа. Прочность горной породы зависит от вида деформации. Горная порода и минералы могут подвергаться одноосному сжатию и растяжению, деформациям изгиба и сдвига (простым видам деформации), а также нескольким деформациям одновременно (сложные виды деформации). Горные породы наиболее устойчивы по отношению к сжатию, а другим деформациям горные породы противостоят слабее; прочность на растяжение составляет менее 10% от прочности на сжатие. И действительно, из камня сложены стены неприступных крепостей, и даже конструкция арки такова, что и здесь камень в основном, работает на сжатие. Прочность горных пород на сжатие σсж, на сдвиг σс, на изгиб σизг и на растяжение σр связаны между собой следующим соотношением:

Приведенное соотношение показывает, что наиболее рациональный способ разрушения горной породы на забое скважины связан с использованием деформации растяжения.

Прочность минералов на сжатие достаточно велика, хотя и колеблется в широких пределах – свыше 500 МПа у кварца до 10–20 МПа у кальцита. Прочность горных пород существенно ниже, что объясняется их неоднородностью, наличием локальных дефектов, трещиноватостью (от зияющих трещин до паутин и микротрещин). Прочность пород существенно зависит от её минерального состава, структуры и текстуры породы, глубины залегания и других. факторов.

Прочность породы уменьшается с ростом влажности, например, прочность песчаников и известняков снижается при насыщении их поровой водой на 25 – 45%, что и происходит в пластовых условиях. Особенно сильно можно снизить прочность пород, используя поверхностно- активные вещества ПАВ (эффект Ребиндера). У слоистых – т.е. анизотропных пород прочность сильно меняется в зависимости от направления действия нагрузки. Отношение прочности перпендикулярно слоям к прочности параллельно им называется коэффициентом анизотропии, который колеблется у различных пород от 0,3 до 0,8. Естественно, что у изотропных, однородных пород, например, известняков или гранитов он равен 1. Прочность пород растет по мере их погружения в недра, отражая уменьшение пористости, изменение структуры и минерального состава и благодаря напряженному состоянию, в котором порода пребывает в недрах. Например, у глин прочность возрастает от 2–10 МПа на поверхности до 50–100 МПа в зоне метаморфизма, где глины преобразуются в сланцы. В процессе разрушения долотом горной породы последняя испытывает сложные виды деформации. Учитывая это, а так же особенности процесса внедрения зубца долота в забой скважины, прочностные характеристики горной породы мало подходят для проектирования процесса её разрушения.

В общепринятом смысле упругость – это свойство тел после снятия напряжения восстанавливать свою форму без остаточной деформации. Деформация упругих тел описывается законом Гука, т.е. относительная деформация x пропорциональна приложенному напряжению σ:

Где Е - модуль Юнга, характеризует упругость тела. Классический пример упругого тела – пружина. Чем сильнее вы её растягиваете (сжимаете), тем больше она удлиняется (укорачивается). Как только вы перестаете на неё воздействовать она возвращается в первоначальное состояние (к первоначальной длине).

Наряду с модулем Юнга упругие свойства горных пород описываются коэффициентом Пуассона m. Он является коэффициентом пропорциональности между относительными продольными и поперечными деформациями.

где xx и xy продольная и поперечная деформация породы соответственно.

Коэффициент Пуассона для большинства минералов и горных пород находится в интервале 0,2–0,4. Исключением является кварц, у которого из-за специфики строения кристаллической решетки m достигает 0,07.

Большинство минералов подчиняются закону Гука. Кристаллы ведут себя как упругие тела и разрушаются минуя пластическую деформацию, когда напряжение достигнет предела прочности.

В табл.23 приведены модули Юнга для некоторых горных пород, полученные при одноосном сжатии.

Читайте также: