Дефекты магнитных дисков реферат

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Неисправности накопителей на жестких магнитных дисках

Цель работы: изучить конструктивные особенности и характерные неисправности накопителей HDD; ознакомиться с правилами подключения и эксплуатации накопителей HDD.

Оборудование: IBM PC-совместимый компьютер, накопители HDD.

Используемая литература: конспект лекций и данные методические указания.

Порядок выполнения работы

Ознакомиться с теоретической частью данной работы.

Изучить устройство накопителей HDD и подключение интерфейсов.

Ознакомиться с контрольными вопросами и продумать ответы на них.

Сдать устный или письменный (по вариантам) зачёт по данной лабораторной работе.

Краткие теоретические сведения

Устранение неисправности жесткого диска — достаточно серьезное занятие, которое не всегда заканчивается полным успехом. Дело усложняется еще и тем, что в большинстве случаев на жестком диске записаны важные данные, которые, чаще всего, не были в нужный момент скопированы на внешний носитель информации.

Неисправности жесткого диска могут быть следующих видов:

• неисправность контроллера жесткого диска;

• потеря или разрушение служебной информации

Логическая неисправность

Неисправность контроллера жесткого диска

К данному виду относятся неисправности, связанные с физическими повреждениями компонентов контроллера диска: перегоревшими микросхемами, поврежденными головками, оторванным интерфейсным кабелем и т. п.

Существует два варианта определения таких неисправностей.

Первый из них — самый простой, когда признаки разрушения компонентов контроллера, например дыры на микросхемах, выявляют при внешнем осмотре. В этом случае перед началом каких-либо действий следует заменить сгоревшие компоненты.

Второй вариант, соответственно, самый сложный: когда видимых признаков повреждения нет, однако жесткий диск ведет себя нестандартно. Рассмотрим некоторые ситуации.

- Двигатель не раскручивается, никаких звуков не слышно . Возможные причины - заклинило шпиндельный двигатель или головки чтения/записи "прилипли" к поверхности диска.

Если попытаться провернуть шпиндель, то это может привести не только к повреждению поверхности диска и, соответственно, пропаже информации, но и к поломке механизма управления головками и самих головок. В этом случае неисправный винчестер лучше отнести в сервисный центр, где, во-первых, вам точно скажут, подлежит ли жесткий диск ремонту, а во-вторых, перепишут с него всю важную информацию

- Двигатель раскручивается, слышен щелчок . Этот щелчок является следствием неудачной распарковки головок. Наиболее вероятная причина данной неисправности - выход из строя генератора шпиндельного двигателя или системы позиционирования головок. Возможно также повреждение катушки позиционирования, которая размещена на блоке головок.

- Двигатель раскручивается , однако диск не определяется или определяется неверно . Причиной возникновения такой неисправности может быть выход из строя интерфейсной микросхемы контроллера или механическое повреждение контактной группы, к которой подключается шлейф данных (например, согнутый или поломанный металлический вывод).

- Жесткий диск распознается нормально, однако ОС загружается не полностью или не загружается вовсе. Данный факт говорит о том, что область винчестера, в которой записаны файлы операционной системы, содержит сбойные секторы. В данном случае следует обратиться к низкоуровневым утилитам, которые пометят сбойные секторы и в случае необходимости перепланируют винчестер.

Профилактика HDD

Со временем диск начинает работать медленнее, со сбоями, греется, появляются ошибки чтения и т. п. Это означает, что пришло время профилактики, основными мерами которой являются:

- Дефрагментация файлов с помощью стандартных утилит или утилит стороннего производителя. Фрагментация — это разбитие одного файла на несколько фрагментов и размещение их на разных участках диска. Фрагментация происходит не намеренно, а из-за специфики записи информации. Дефрагментация — соответственно, соединение фрагментов одного файла. Если диск дефрагментирован, то скорость доступа к информации увеличивается. Со временем фрагментация новых файлов снова приводит к замедлению работы, в этом случае процесс дефрагментации следует повторить.

- Наблюдение за температурой диска с помощью специализированных утилит. Температура как ничто другое влияет на состояние производительности жесткого диска. В результате повышения температуры могут пострадать внутренние компоненты контроллера, что приведет к появлению серьезных неисправностей. Этого вполне достаточно для обеспечения, по крайней мере, логического "здоровья" жесткого диска.

Контрольные вопросы

Назовите основные компоненты HDD и их назначение.

Отличие способа записи информации в HDD и FDD.

Среднее время доступа в накопителях, единицы его измерения.

Чем определяется надёжность HDD?

Что определяет быстродействие HDD?

Назовите интерфейсы подключения HDD (внутренних и внешних).

Что происходит при форматировании жёстких дисков?

Какие виды форматирования вы знаете? Для каких носителей существует возможность создания логических дисков?

Назовите виды неисправностей HDD.

Назовите меры профилактики HDD, охарактеризуйте их.

Какова причина возникновения ситуации Двигатель не раскручивается, никаких звуков не слышно?

Какова причина возникновения ситуации Двигатель раскручивается , однако диск не определяется или определяется неверно ?

Довольно часто происходит ухудшение эксплуатационных характеристик жестких дисков в процессе использования. Это приводит к снижению производительности и появлению сбойных участков на поверхности устройств, что может стать причиной потери информации.

РАЗДЕЛ 1. ОСНОВНЫЕ УСТРОЙСТВА ХРАНЕНИЯ ДАННЫХ

1.1 История развития HDD и SSD

1.2 Различия HDD и SSD

РАЗДЕЛ 2. ЭКСПЛУАТАЦИЯ HDD И SSD

2.1 Установка и настройка HDD и SSD в ПК

2.2 Правильная эксплуатация HDD, его форматирование, дефрагментация и очистка

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

2.3 Правильная эксплуатация SSD

РАЗДЕЛ 3. ДИАГНОСТИКА УСТРОЙСТВ ХРАНЕНИЯ ДАННЫХ

3.1 Диагностика работоспособности HDD

3.2 Программы для диагностики HDD и SSD

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Актуальность исследуемой темы заключается в том, что на сегодняшний момент развитие компьютерной техники привело к необходимости не только перевести большую нагрузку по оформлению документации и выполнению математических вычислений на компьютерную технику, но и провести разработку методик поддержания данной техники в работоспособном состоянии.

Цель проекта — исследовать технологию диагностики неисправностей и восстановления работоспособности HDD и SSD после отказа.

Объект исследования проекта — методы проведения технического обслуживания периферийных устройств.

Предметисследования проекта – устройства хранения данных HDDи SSD.

Для достижения поставленной цели необходимо рассмотреть сведения о характеристиках устройств хранения данных, способах диагностики, возможных проблемах устройств хранения данных, симптомах неисправностей и методах их устранения.

Пояснительная записка к курсовому проекту содержит: 34 страницы формата А4, 2 рисунка, 13 использованных источников.

РАЗДЕЛ 1. ОСНОВНЫЕ УСТРОЙСТВА ХРАНЕНИЯ ДАННЫХ

1.1 История развития HDD и SSD

Нужна помощь в написании курсовой?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Первый жесткий диск IBM 350 Disk Storage Unit был показан миру 4 сентября 1956 года. Он представлял собой громадный шкаф шириной 1,5 м, высотой 1,7 м, толщиной 0,74 м, весил почти тонну и стоил целое состояние. На его шпинделе было 50 дисков размером 24″. Изобретенный небольшой группой инженеров IBM 350 Disk Storage Unit был частью ламповой вычислительной системы IBM 305 RAMAC [7]. Такие системы в 50-х и 60-х годах использовались исключительно в больших корпорациях и правительственных организациях. Все идеи заложенные в самом первом жестком диске, появившемся еще в эпоху ламповых компьютеров, дожили до сегодняшних дней: в современных накопителях тот же набор из дисков, покрытых ферромагнитным слоем, на которые записываются дорожки с данными и блок головок чтения и записи, размещенный на “арме” с электромеханическим приводом. Практически с самого начала в компьютерах использовалось несколько различных видов памяти, но лишь потому, что совершенное запоминающее устройство так до сих пор и не придумано. Если представить себе, что нам удалось получить чипы, работающие так же быстро, как оперативная память, энергонезависимые, как флэш, но с большим ресурсом перезаписи и такого объема, как современные жесткие диски, то нам не нужно было бы делить эту память на отдельные устройства. Каждый же из существующих ныне видов запоминающих устройств несовершенен, причем в связи с тотальной миниатюризацией особенно несовершенными из-за своей механической природы оказываются жесткие диски. Они появились из идеи относительно недорого получить большой объем памяти, а следовательно, изначально требования по другим параметрам, таким, например, как скорость и надежность, так или иначе отходили на второй план. Поэтому неудивительно, что альтернативу HDD искали всегда.

Твердотельный накопитель (SSD) — компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Наиболее распространенный вид твердотельных накопителей использует для хранения информации флеш-памяти типа NAND, однако существуют варианты, в которых накопитель создается на базе DRAM-памяти, снабженной дополнительным источником питания — аккумулятором [9].

В настоящее время твердотельные накопители используются не только в компактных устройствах — ноутбуках, нетбуках, коммуникаторах и смартфонах, планшетах, но могут быть использованы и в стационарных компьютерах для повышения производительности.

По сравнению с традиционными жёсткими дисками (HDD), твердотельные накопители имеют меньший размер и вес, но в несколько раз (6—7) большую стоимость за гигабайт и значительно меньшую износостойкость (ресурс записи).

Небольшие твердотельные накопители могут встраиваться в один корпус с магнитными жёсткими дисками, образуя гибридные жёсткие диски (англ. SSHD, solid-state hybrid drive)[. Флеш-память в них может использоваться либо в качестве буфера (кэша) небольшого объёма (4—8 ГБ), либо, реже, быть доступной как отдельный накопитель (англ. dual-drive hybrid systems). Подобное объединение позволяет воспользоваться частью преимуществ флеш-памяти (быстрый произвольный доступ) при сохранении небольшой стоимости хранения больших объёмов данных.

В 70-80-х годах неоднократно предпринимались попытки создания твердотельных накопителей (Solid State Drive, SSD) на основе динамической памяти, которые оснащались специальным контроллером и аккумуляторной батареей на случай обесточивания. Тогда это были почти безумные проекты, стоившие огромных денег, и воплощение они получали исключительно в суперкомпьютерах (IBM, Cray) и в системах, используемых для обработки данных в реальном времени (например, на сейсмических станциях). Позже, когда объемы чипов оперативной памяти существенно увеличились и их стоимость снизилась, подобные накопители появились в качестве решений для персональных компьютеров (например, хорошо известный i-RAM производства Gigabyte), но все равно остались уделом гиков, так и не получив массового распространения из-за относительной дороговизны и малого объема.Другое направление SSD родилось из идеи создания чипа электрически перезаписываемого постоянного запоминающего устройства (EEPROM) большого объема. Проблема в том, что записываемые ячейки можно разместить на кристалле достаточно плотно, но если нужно не только записывать, но и стирать, а затем записывать вновь, то нужна цепь, отвечающая за стирание, которая сильно увеличивает размер ячейки памяти. Выход в начале 80-х нашел ученый, работавший в компании Toshiba – доктор Фудзио Масуока. Он предложил скрестить два способа стирания ячеек постоянной памяти, и вместо того чтобы очищать весь чип целиком или, напротив, только одну ячейку стирать память достаточно большими блоками. В 1984 году Масуока представил свою разработку на конференции IEEE 1984 International Electron Devices Meeting (IEDM), а в 1989 году на International Solid-State Circuits Conference компания Toshiba показала разработанный концепт флэш-памяти NAND. Тогда даже в самых смелых мечтах вряд ли кто-то мог подумать, что чип небольшого объема со сложной схемой доступа к данным сможет конкурировать с жесткими дисками, которые уже вовсю набирали обороты.

Основанная в том же 1989 году израильская компания M-Systems первой начала работу над идеей флэш-диска, и в 1995 году выпустила DiskOnChip – накопитель на одном чипе. В нем была и флэш-память, и контроллер. Этот однокристальный диск объемом 8,16 и 32 Мб уже тогда содержал в своей микропрограмме алгоритмы контроля износа ячеек и обнаружения и перераспределения поврежденных блоков. Именно M-Systems в 1999 году первой выпустит USB флэш-накопители – DiskOnKey, a IBM подпишет с компанией контракт и будет продавать их на территории США под собственным брендом. Для того чтобы SSD-накопители на основе флэш-памяти стали массовым продуктом, понадобилось еще примерно 10 лет [10]. В 2006 году компания Samsung, к тому времени крупнейший производитель чипов памяти, выпустила первый в мире ноутбук с SSD-диском объемом 32 Гб. Через два года Apple показала MacBook Air, в котором опционально мог быть установлен SSD, а в 2010 году этот лэптоп стал выпускаться исключительно с твердотельными накопителями. Полупроводниковая промышленность развивается очень быстро, разрабатываются новые типы памяти, совершенствуются алгоритмы работы контроллеров, объемы быстро увеличиваются, и стоимость постепенно снижается. Собрать SSD – это то же самое, что собрать только плату контроллера для жесткого диска, и нужна для этого лишь сборочная линия плат с поверхностным монтажом. Это, очень упрощенно, но в целом верно. Сборка классического жесткого диска – процесс гораздо более сложный, а значит, дорогостоящий. Именно поэтому ни у кого не возникает сомнений, что до момента, когда SSD начнут активно вытеснять “винчестеры”, осталось совсем немного [13].

Дефекты поверхности НЖМД делятся на следующие группы:

1. Физические дефекты, которые подразделяются на:

2. Логические дефекты, которые подразделяются на:

- Исправимые логические дефекты (софт-бэды).

- Неисправимые логические ошибки.

Дефекты поверхности. Возникают при механическом повреждении магнитного покрытия внутри пространства сектора, например из-за царапин, вызванных пылью, старением блинов или небрежным обращением с винчестером. Такой сектор должен быть помечен как негодный и исключен из обращения.

Серво-ошибки. По сервометкам происходит стабилизация скорости вращения двигателя и удержание головки на заданном треке, независимо от внешних воздействий и тепловой деформации элементов.

Аппаратные BAD'ы. Возникают из-за неисправности механики или электроники накопителя. К таким неполадкам относятся:

- погнутый вал в результате удара;

Ошибки такого типа обычно имеют катастрофический характер и не подлежат исправлению программным путем.

Исправимые логические дефекты (софт-бэды): появляются, если контрольная сумма сектора не совпадает с контрольной суммой записанных в него данных.

Возникает из-за помех или отключения питания во время записи, когда HDD уже записал в сектор данные, а контрольную сумму записать не успел.

Поэтому все современные винчестеры при изготовлении проходят индивидуальную настройку, в процессе которой подбираются такие параметры электрических сигналов, при которых устройству работается лучше.

Эта настройка осуществляется специальной программой при технологическом сканировании поверхности. При этом генерируются так называемые адаптивы - переменные, в которых содержится информация об особенностях конкретного гермоблока. Адаптивы сохраняются на дисках в служебной зоне, а иногда во Flash-памяти на плате контроллера.

Типовые причины возникновения неисправностей аппаратной части НЖМД можно условно разделить на следующие группы:

- Неисправности из-за естественного старения НЖМД.

- Неисправности, обусловленные неверным режимом эксплуатации.

- Неисправности, связанные с ошибками в конструкции.

Первая - при подаче питания на диск с ним не происходит вообще ничего, он полностью молчит и даже не раскручивает шпиндельный двигатель, либо пытается это делать, но не набирает нужные обороты. Подобный симптом может присутствовать оттого, что заклинило сам двигатель, либо головки упали на диск и прилипли к нему (такое бывает практически на всех современных дисках, т.к. головки идеально отполированы и возникает эффект диффузии).

Вторая неисправность - диск нормально раскручивается, но отсутствует распарковка головок - характерный тихий щелчек. Подобное возникает редко, т.к. часто управление позиционированием головок (сервосистема) и трехфазный генератор для шпиндельного двигателя размещены на одном кристалле, и если и выходит из строя, то как правило все сразу или распарковки не происходит потому, что оборвалась катушка позиционирования на блоке головок.

Третья неисправность - диск нормально рекалибруется при включении питания и не издает посторонних звуков, но при этом не определяется в BIOS, а название модели не соответствует тому, которое написано на самом диске, либо в названии присутствуют непонятные символы. В таком случае очень часто бывает неисправен главный интерфейсный чип на плате электроники. Производить запись на такой накопитель категорически не рекомендуется, т.к. в следствие неисправности шины данных можно повредить данные на диске.

Четвертая неисправность - связанная с дефектом микросхем, которые деградируют от постоянных тепловых расширений (температурного градиента). Проявляется неисправность в основном с прогревом, т.е. какое то время диск отлично работает, а затем начинает скрежетать , стучать или останавливать двигатель.

Любой жесткий диск представляет собой место хранения данных, состоящее из двух областей – системной и области данных. Системная область выполняет вспомогательную роль и служит для организации хранения данных (образует файловую систему диска. Структурная схема устройства системной области представлена на рисунке 2.1.


Рисунок 2.1 - Структурная схема устройства системной области

Структурная схема устройства системной области состоит из следующего:

- MBR- (Master Boot Record) - главная загрузочная запись.

- PT- (Partition Table) - таблица разделов.

- NSB-(Non-System Bootstrap) - внесистемный загрузчик

- BA (Boot Area) - загрузочная область операционной системы.

- BR (Boot Record) - загрузочная запись OC.

- ROOT - Корневой каталог диска.

- LDT - (Logical Disk Table) таблица разделов логического диска.

Любые нарушения в системной области отображаются как ошибки файловой системы.

- Если проблема не связана с самим диском, нужно серьезно разбираться с тем, куда делись системные сектора.

- Во втором случае налицо либо нарушения таблицы PT, либо разрушение загрузочного сектора.

- В третьем случае системные файлы могли быть удалены или испорчены.

Признаки разрушения таблицы разделов:

- Раздел исчез из Проводника. При запуске утилиты "Управление дисками" отображается пустое место, и могут появляться разделы-призраки, при этом суммирование объемов всех логических дисков превышает размер самого винчестера. Это означает, что некоторые разделы перекрываются друг с другом.

- Windows показывает синий экран с надписью "STOP:INACCESSIBLEB00T DEVICE".

Причиной разрушения таблицы разделов может быть ошибочное удаление не того раздела. Этот вариант является наименее опасным, поскольку все данные остаются на месте, но доступа к ним нет. Так же может произойти разрушение цепочки разделов. Это бывает в случае порчи ЕРР (Указателей Расширенных Разделов). Возможно одновременное разрушение MBR и ЕРР. [15]

В следующей статье можно найти информацию об устройстве жесткого диска и типичных физических неисправностях.

Часть II. Физические повреждения жесткого диска

Физические повреждения жесткого диска

Устройство жесткого диска

Причины поломок и способы ремонта жестких дисков

Продолжая разговор о восстановлении данных на жестких дисках, перейдем к проблемам аппаратным. То есть таким, которые вызваны физической неисправностью компонент жесткого диска. Мы попросили инженера сервисного центра Диком А. рассказать нам максимально просто и понятно, из чего состоит винчестер компьютера, почему он ломается, и что с этим можно сделать.

Устройство жесткого диска

Жесткий диск компьютера состоит из гермоблока и контроллера. В гермоблоке располагаются самые нежные детали: магнитные диски, блок головок и электропривод. Все это находится в герметичном металлическом корпусе для максимальной защиты от внешнего воздействия.

Пластины жесткого диска

Возможные неисправности: старение магнитного слоя, физическое повреждение поверхности.

Жесткий диск состоит из нескольких таких пластин, насаженных друг над другом на шпиндель. Чем больше пластин, тем больше объем винчестера. Для еще большего увеличения объема каждая пластина имеет две независимых рабочих поверхности, как виниловая пластинка имеет две стороны.

Возможные неисправности: клин подшипников, деформация оси.

Пластины жесткого диска (HDD)


Пластины жесткого диска

Магнитные головки

Данные нужно как-то сохранять и считывать. Этим занимается магнитная головка. Точнее головки – по две на каждый диск (с одной и другой стороны). Все головки объединены в блок, который перемещается в нужную область диска аналогично рычагу проигрывателя грампластинок.

При раскручивании дисков на их поверхности образуется воздушная подушка толщиной несколько микрон. Благодаря ей головки не касаются поверхности диска и не царапают его.

Для управления блоком головок используется устройство позиционирования. Если не вдаваться в подробности, то это привод, который с высокой точностью перемещает головку в нужную область. В выключенном состоянии головки находятся в парковочной зоне вне пластин диска.

Возможные неисправности: залипание блока магнитных головок, его повреждение.

Блок магнитных головок


Блок магнитных головок (БМГ)

Контроллер жесткого диска

Возможные неисправности: повреждение служебных данных, выход из строя контроллера.

Контроллер жесткого диска


Контроллер жесткого диска

Причины поломок и способы ремонта жестких дисков

Повреждение секторов жесткого диска

Старение магнитного слоя и попадание мельчайших частичек пыли внутрь гермоблока приводят к тому, что отдельные секторы магнитного диска повреждаются. Появляются так называемые BAD-блоки. Обычно такие повреждения не носят фатальный характер, оставляя возможность прочитать данные с помощью специального оборудования.

Признаки: нет доступа к отдельным файлам, не загружается операционная система, диск издает шаркающие звуки.

Ремонт: данные с неисправного диска посекторно переносятся на рабочий винчестер. Применение программно-аппаратного комплекса существенно повышает шансы на восстановление данных из поврежденных областей. В ряде случаев возможен последующий ремонт и эксплуатация винчестера.

Повреждение служебных данных контроллера

Блок электроники жесткого диска представляет собой набор элементов, одним из которых является ПЗУ – постоянное запоминающее устройство. Здесь хранится программа, управляющая всеми элементами жесткого диска. При разрушении или повреждении этой области, программа не будет выполняться корректно или не будет выполняться вообще.

Признаки: жесткий диск не определяется компьютером, издает странные звуки, определяется компьютером, но отсутствует доступ к данным.

Ремонт: поврежденную служебную область диска восстанавливают с помощью специального программно-аппаратного комплекса PC-3000. Успех мероприятия зависит от степени повреждения. Если данные восстановить не удалось, то переходят к следующему пункту.

Неисправность контроллера

Выход из строя всего контроллера или отдельных его элементов.

Признаки: жесткий диск не определяется компьютером, характерно стучит или вообще не подает признаков жизни.

Ремонт: восстановление работоспособности контроллера путем замены его элементов либо замена контроллера целиком. В некоторых случаях спасает перепрошивка – загрузка программного обеспечения в ПЗУ с помощью программатора. После ремонта данные переносятся на исправный диск, а пользоваться отремонтированным не рекомендуется.

Неисправность контроллера


Неисправность контроллера

Залипание магнитных головок

Когда мы рассматривали строение жесткого диска, то отметили, что в выключенном состоянии блок головок находится в парковочной зоне и не контактирует с пластинами. Из-за падения или сильного встряхивания головки могут соскочить. При контакте с поверхностью дисков, начинается процесс диффузии – проникновения молекул одного вещества в другое. Как бы врастание головок в поверхность диска. Чтобы головки прилипли к диску достаточно всего 2-3 часов.

Признаки: диск не определяется компьютером, не раскручивается.

Ремонт: гермозона вскрывается в лабораторных условиях, блок головок устанавливается в рабочее положение, после чего с помощью программно-аппаратного комплекса вычитываются данные и переносятся на исправный носитель.

Залипание магнитных головок


Залипание магнитных головок

Повреждение блока магнитных головок

Выйти из строя может весь блок, например, после скачка напряжения, или отдельные головки. Наиболее часта причина поломки – падение жесткого диска.

Признаки: диск не определяется компьютером, при раскручивании слышен стук или скрежет.

Ремонт: полная замена всего блока магнитных головок. Сложность заключается в том, что недостаточно просто пересадить блок от аналогичного диска. Иногда требуется до 10-15 доноров, прежде чем найдется подходящий вариант. Причем для каждого варианта головки нужно калибровать с высочайшей точностью.

После замены данные вычитываются на комплексе Data Extractor и переносятся на исправный носитель. Отремонтированный винчестер, равно как и доноры, дальнейшему использованию не подлежат.

Повреждение блока магнитных головок (БМГ)


Повреждение блока магнитных головок (БМГ)

Заклинивание двигателя

Деформация оси двигателя происходит, как правило, из-за падения или сильной тряски. Диски смещаются относительно друг друга и располагаются не строго параллельно, а под углом.

Признаки: диск не определяется компьютером, не раскручивается.

Ремонт: в редких случаях возможно расклинивание. Но чаще требуется перенос всего пакета магнитных дисков на исправный накопитель. Это очень сложная, долгая и дорогая процедура, требующая нескольких недель кропотливой работы специалиста. После переноса данные копируются на новый винчестер с помощью комплекса Data Extractor.

Повреждение поверхности диска

Попадание пылинок внутрь гермозоны, залипание блока головок, отслоение головок, деформация оси двигателя – все перечисленные неисправности могут повлечь за собой повреждение поверхности магнитных дисков. Пылинка или головка, касающаяся поверхности, царапают диск, полностью уничтожая данные. При такой неисправности восстановление данных невозможно.

Очень важно при появлении любых подозрений на физическую поломку немедленно отключить жесткий диск и не предпринимать никаких самостоятельных попыток вернуть его к жизни. Если диск упал или подвергался сильной тряски, его ни в коем случае нельзя подключать к компьютеру! Помните, что аппаратные проблемы можно решить только тогда, когда не повреждены магнитные диски. А любая из описанных нами неисправностей при запуске винчестера может привести к такому повреждению.

Повреждение поверхности диска


Повреждение поверхности диска

Часть I. Когда потеряны данные, но сам диск не поврежден
Часть III. Восстановление данных с CD и DVD
Часть IV. Восстановление данных с флеш-накопителей

Читайте также: