Биотехнология в 21 веке реферат

Обновлено: 09.05.2024

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы… Читать ещё >

Перспективы развития биотехнологии ( реферат , курсовая , диплом , контрольная )

Введение

Методы биотехнологии, и ее перспективы Биотехнология сельскохозяйственных растений. Перспективы Повышение урожайности Естественная защита растений Устойчивость к гербицидам Устойчивость к неблагоприятным факторам среды Вывод Список использованной литературы.

Биотехнология — это наука о методах и технологиях производства различных ценных веществ и продуктов с использованием природных биологических объектов (микроорганизмов, растительных и животных клеток), частей клеток (клеточных мембран, рибосом, митохондрий, хлоропластов) и процессов.

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона.

Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822−1895).

Методы биотехнологии, ее перспективы.

Генная и клеточная инженерия — являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.

Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т. д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.

Вторая волна — начало 2000;х годов — создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т. д.

Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.

В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации — пересадке органов от одного вида живых организмов другому, — достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа.

Учёные также предполагают, что перенос генов поможет снизить аллергию человека к коровьему молоку. Целенаправленные изменения в ДНК коров должны привести также к уменьшению содержания в молоке насыщенных жирных кислот и холестерина, что сделает его еще более полезным для здоровья. Потенциальная опасность применения генетически модифицированных организмов выражается в двух аспектах: безопасность продовольствия для здоровья людей и экологические последствия. Поэтому важнейшим этапом при создании генно-модифицированного продукта должна быть его всесторонняя экспертиза во избежание опасности того, что продукт содержит протеины, вызывающие аллергию, токсичные вещества или какие-то новые опасные компоненты.

Биотехнология сельскохозяйственных растений. Перспективы.

Начиная с каменного века люди отбирали растения с удовлетворяющими их характеристиками и сохраняли их семена на следующий год. Отбирая лучшие семена, первые агрономы осуществили первичное генетическое модифицирование растений и таким образом одомашнили их задолго до того, как были открыты основные генетические закономерности. Сотни лет фермеры и селекционеры растений пользовались перекрестным скрещиванием, гибридизацией и другими подходами к модификации генома, приводящими к увеличению урожайности, улучшению качества продукции и повышению устойчивости растений к насекомым-вредителям, болезнетворным микроорганизмам и неблагоприятным условиям среды.

По мере углубления знаний о генетике растений человек начал осуществлять целенаправленное перекрестное скрещивание (кроссбридинг) обладающих желаемыми характеристиками или не имеющих нежелательных признаков сортов растений и межвидовую гибридизацию с целью получения новых сортов, сохранивших лучшие качества обеих родительских линий. В настоящее время практически любая сельскохозяйственная культура является результатом кроссбридинга, гибридизации или применения обоих подходов. К сожалению, эти методы нередко дороги, требуют больших затрат времени, неэффективны и имеют существенные практические ограничения. Например, для создания с помощью традиционного кроссбридинга сорта кукурузы, устойчивого к определенным насекомым, потребовался бы не один десяток лет, причем без гарантированного результата.

Биотехнологические подходы позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого. Этот процесс гораздо более точен и избирателен, чем традиционное скрещивание, в ходе которого тысячи генов, обладающих неизвестными функциями, перемещаются из одного сорта или вида растений в другой.

Биотехнология позволяет и то, что не под силу природе — перемещение генов между растениями, животными и микроорганизмами. Это открывает огромные возможности для улучшения качества урожая. Например, мы можем взять бактериальный ген, токсичный для болезнетворного грибка, и встроить его в геном растения. Растение при этом начинает синтезировать фунгицидный белок и в борьбе с грибком не нуждается в помощи извне.

Повышение урожайности.

Современные селекционеры-биотехнологи ставят перед собой те же задачи, что и при традиционном кроссбридинге и других методах модификации генома: повышение урожайности; устойчивость к болезнетворным бактериям, грибкам и вирусам; способность выживать в неблагоприятных условиях среды (при заморозках и засухах); устойчивость к вредителям, таким как насекомые, сорняки и круглые черви (нематоды).

Естественная защита растений ("https://referat.bookap.info", 17).

Растения, как и животные, обладают врожденными механизмами защиты от различных насекомых и заболеваний. В настоящее время ученые ведут активный поиск соединений, которые активизировали бы эти естественные механизмы, не нанося при этом вреда окружающей среде.

Биотехнология также открывает большие перспективы в работе над созданием новых биопестицидов, таких как белки микроорганизмов и жирные кислоты, токсичные для определенных сельскохозяйственных вредителей, но безвредные для человека, животных, рыб, птиц и полезных насекомых. Уникальность механизмов действия биопестицидов обеспечивает защиту от вредителей, устойчивых к традиционным средствам.

Уже в 30-х годах прошлого века фермеры начали использовать в качестве биопестицида микроорганизм Bacillusthuringiensis (Bt), естественной средой обитания которого является почва. Некоторые белки, синтезируемые B. thuringiensis, смертельны для определенных насекомых, в том числе для кукурузного мотылька (Ostrinianubilalis), ежегодно наносящего сельскому хозяйству США урон в 1,2 миллиарда долларов. Использование аэрозолей, содержащих бактерии Bt, позволяет уничтожить насекомых-вредителей, не прибегая к химическим средствам.

Возможности биотехнологии позволяют нам переносить гены белков, ядовитых для определенных вредителей (но не для людей, животных и полезных насекомых), в геном растений, которыми эти вредители питаются. Растение, которое раньше было источником пищи, становится смертельным для вредителя, что отменяет необходимость опрыскивания плантаций химическими пестицидами.

Устойчивость к гербицидам.

Продуктивность сельскохозяйственной культуры зависит от присутствия в среде обитания сорняков, вступающих с основной культурой в конкуренцию за питательные вещества и влагу. Для уничтожения нежелательных растений сельскохозяйственные плантации, как правило, опрыскиваются гербицидами, которые в большей или меньшей степени токсичны не только для сорняков.

С помощью биотехнологических приемов можно повысить устойчивость культурных растений к гербицидам и таким образом в несколько раз уменьшить поступление токсичных веществ в окружающую среду.

Устойчивость к неблагоприятным факторам среды.

Кроме описанных выше биологических факторов, препятствующих росту и развитию растений, существует еще целый ряд абиотических стрессорных воздействий, регулярно оказываемых природой на сельскохозяйственные культуры — это засухи, холод, жара, повышенная кислотность или засоленность почв. Селекционерам с помощью кроссбридинга удалось создать достаточное количество сортов растений, устойчивых к биологическим факторам окружающей среды, однако в отношении устойчивости к абиотическим стрессам все не так просто. Основным лимитирующим моментом в данном случае является отсутствие у многих видов культурных растений диких родственников, обладающих устойчивостью к тому или иному фактору среды.

Репродуктивная несовместимость, ограничивающая возможности традиционного кроссбридинга, совершенно не влияет на возможности биотехнологии растений, т.к. гены практически любого организма могут использоваться для улучшения существующих сортов сельскохозяйственных культур. В настоящее время ученые делают большие достижения в разработке сортов, способных расти и давать урожай в различных природных условиях. В качестве примера можно привести генетически модифицированные сорта помидоров и канолы (разновидность рапса), которые могут переносить в 100 раз более высокий уровень солености почвы, чем традиционные сорта. Исследователи также идентифицировали большое количество генов, ответственных за естественную устойчивость некоторых растений и бактерий к холоду, жаре и засухе. Мексиканские ученые создали сорта кукурузы и папайи, устойчивые к повышенному содержанию в почве алюминия, оказывающему негативное влияние на продуктивность сельского хозяйства многих развивающихся стран.

Кроме увеличения продуктивности сортов за счет придания им устойчивости к заболеваниям, вредителям, сорнякам и воздействиям окружающей среды, сельскохозяйственные биотехнологи работают над непосредственным повышением урожайности культур. Японские ученые встроили гены, обеспечивающие фотосинтез растений кукурузы, в геном риса. Это повысило эффективность усвоения энергии солнечного света и накопления в зерне крахмала, и урожайность нового сорта риса оказалась на 30% выше по сравнению с исходным уровнем. Другим подходом, но с той же конечной целью, является блокирование определенных генов растения, что приводит к перераспределению питательных веществ между различными частями растения. Урожайность значительно возрастает при преимущественном накоплении крахмала или жирных кислот не в листьях растения, а, например, в клубнях картофеля или семенах рапса.

Биотехнологические методы также позволяют повышать эффективность усвоения растениями необходимых им микроэлементов. Например, мексиканские ученые создали генетически модифицированные растения, корни которых секретируют в окружающую среду лимонную кислоту. В результате происходит небольшое подкисление почвы и переход содержащихся в ней минералов, в том числе кальция, фосфора и калия, в растворимую форму, что делает их доступными для растений.

Азот является важнейшим элементом, лимитирующим рост растений, и ученые, работающие в разных областях, шаг за шагом приближаются к разгадке секретов симбиотических отношений, позволяющих азотфиксирующим бактериям поглощать атмосферный азот и отдавать его растениям, предоставляющим им убежище в корневых клубеньках:

— генетики-ботаники из Венгрии и Англии идентифицировали растительный ген и соответствующий белок, позволяющий растениям вступать во взаимодействие с почвенными азотфиксирующими бактериями;

— генетики-микробиологи из университета Квинсленда (Австралия) идентифицировали бактериальный ген, стимулирующий формирование корневых клубеньков;

— в результате совместной работы молекулярных биологов Европейского Союза, США и Канады был полностью расшифрован геном одного из видов азотфиксирующих бактерий;

— ученые, занимающиеся химией белков, расшифровали точную структуру фермента, превращающего атмосферный азот в приемлемую для растений форму.

Вывод.

Центральная проблема биотехнологии — интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.

В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами. В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.

Биотехнология — типичное порождение нашего бурного, ди намичного XXI в. Она открывает новые горизонты перед челове ческим разумом. Проблемы биотехнологии чрезвычайно много образны, начиная от чисто технических (например, снижение каталитической активности ферментов при их иммобилизации) и кончая тонкими интеллектуальными проблемами, связанными с обеднением фундаментальной науки в связи с доминирова нием чисто проблемно-прикладных разработок.

Список использованной литературы.

Содержание

Введение;
Понятие биотехнологии;
Этапы развития биотехнологии;
История развития биотехнологии (даты, события);
Биотехнология на службе народного хозяйства, медицины и науке:
Биотехнология и сельское хозяйство. Биотехнология и растениеводство;
Биотехнология и животноводство;
Технологическая биоэнергетика;
Биотехнология и медицина;
Биотехнология и пищевая промышленность;
Биогеотехнология;
Биотехнология охраны окружающей среды;
Биоэлектроника.
Заключение;
Список литературы.

Работа содержит 1 файл

Документ Microsoft Word.docx

Московский Государственный Вечерний Металлургический

по дисциплине общая химическая технология

Студент: Жеребина Н.С. Преподаватель: доцент, кандидат

хим. наук Кругликова Е.С.

  1. Понятие биотехнологии;
  2. Этапы развития биотехнологии;
  3. История развития биотехнологии (даты, события);
  4. Биотехнология на службе народного хозяйства, медицины и науке:
  1. Биотехнология и сельское хозяйство. Биотехнология и растениеводство;
  1. Биотехнология и животноводство;
  2. Технологическая биоэнергетика;
  3. Биотехнология и медицина;
  4. Биотехнология и пищевая промышленность;
  5. Биогеотехнология;
  6. Биотехнология охраны окружающей среды;
  7. Биоэлектроника.

Впервые термин "биотехнология" применил венгерский инженер Карл Эреки в 1917 году. Биотехнология - это интеграция естественных и инже-нерных наук, позволяющая наиболее полно реализовать возможности живых организмов или их производные для создания и модификации продуктов или процессов различного назначения. Биотехнология - это производство, основанное на последних достижениях современной науки: генной инженерии, физико-химии ферментов, молекулярной диагностики, селекционной генетики, микробиологии, химии антибиотиков, комбинаторной химии. [2, с.3] Чаще всего применяется в медицине, пищевой промышленности, также для решение проблем в области энергетики, охране окружающей среды. Современные биотехнологии защиты окружающей среды, основаны на применении биопрепаратов, в состав которых входят разнообразные бактерии (микроорганизмы), способные разлагать различные органические вещества, в том числе и те, которые загрязняют окружающую среду. Микроорганизмы - это удивительные создания природы, обладающие уникальными свойствами. Они - самые многочисленные обитатели нашей планеты. Среда обитания микроорганизмов охватывает весьма широкие зоны биосферы, зачастую с экстремальными условиями обитания, где не могут развиваться ни рас-тения, ни животные. Их повсеместное распространение обусловлено не-большими размерами, позволяющими легко переноситься с потоками воды и воздуха, а также высокой устойчивостью к экстремальным фак-торам среды. Обладая высокой химической активностью, они способны к разложению органических веществ как природного, так и антропогенного происхождения. Именно на этих уникальных свойствах микроорганизмов базируется применение биотехнологии, как эффективного способа защиты и восстановления окружающей среды.

В развитии биотехнологии выделяют следующие периоды:

  • эмпирический,
  • научный,
  • современный (молекулярный).

Последний специально отделяется от предыдущего, так как биотехнологии уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

Эмпирическая биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен – при-готовление теста, получение молочнокислых продуктов, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка рас-тительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим ап-паратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на прак-тическом воплощении этих достижений), выросла из биотехнологии Пастера и, являясь также строго научной, отличается от последней, прежде всего тем, что способна создавать и использовать в производстве не-природные биообъекты, что отражается как на производственном про-цессе в целом, так и на свойствах новых биотехнологических продуктов.

  1. История развития биотехнологии (даты, события)

1917 г. – введен термин биотехнология

- произведен в промышленном масштабе пенициллин;

- показано, что генетический материал представляет собой ДНК;

1953 г. – установлена структура инсулина, расшифрована структура ДНК;

1961-1966 гг. – расшифрован генетический код, оказавшийся универсальным для всех организмов;

1953-1976 гг. – расшифрована структура ДНК, ее функции в сохранении и передаче организмом наследственной информации, способность ДНК организовываться в гены;

1963 г. – осуществлён синтез биополимеров по установленной структуре;

1970 г. – выделена первая рестрикционная эндонуклеаза;

- осуществлён синтез ДНК;

1972 г. – синтезирован полноразмерный ген транспортной РНК;

1975 г. – получены моноклональные антитела;

1976 г. – разработаны методы определения нуклеотидной последовательности ДНК;

- синтезированы фрагменты нуклеиновых кислот;

- разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК;

1983 г. – гибридные Ti-плазмиды применены для трансформации растений;

1994-1995 гг. – опубликованы подробные генетические и физические карты хромосом человека;

1996 г. – ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд. долларов;

1997 г. – клонировано млекопитающее из дифференцированной соматической клетки;

  1. Биотехнология на службе народного хозяйства, медицины и науке.

Биотехнологические разработки могут внести немаловажный вклад в решение комплексных проблем народного хозяйства, здравоохранения и науки.

Для удовлетворения пищевых потребностей необходимо увеличить эф-фективность растениеводства и животноводства. Именно на это, в первую очередь, нацелены усилия биотехнологов. Кроме того, биотехнология предлагает как источник кормового (возможно, и пищевого) белка клеточную массу бактерий, грибов и водорослей.

Во-вторых, повышение цен на традиционные источники энергии (нефть, природный газ, уголь) и угроза исчерпания их запасов побудили челове-чество обратиться к альтернативным путям получения энергии. Биотех-нология может дать ценные возобновляемые энергетические источники: спирты, биогенные углеводороды, водород. Эти экологически чистые ви-ды топлива можно получать путем биоконверсии отходов промышлен-ного и сельскохозяйственного производства.

В-третьих, уже в наши дни биотехнология оказывает реальную помощь здравоохранению. Нет сомнений в терапевтической ценности инсулина, гормона роста, интерферонов, факторов свертывания крови и иммунной системы, тромболитических ферментов, изготовленных биотехнологи-ческим путем. Помимо получения лечебных средств, биотехнология позво-ляет проводить раннюю диагностику инфекционных заболеваний и злока-чественных новообразований на основе применения препаратов анти-генов, моноклональных антител, ДНК/РНК-проб. С помощью новых вак-цинных препаратов возможно предупреждение инфекционных болезней.

В-четвертых, биотехнология может резко ограничить масштабы за-грязнения нашей планеты промышленными, сельскохозяйственными и бытовыми отходами, токсичными компонентами автомобильных выхлопов и т. д. Современные разработки нацелены на создание безотходных технологий, на получение легко разрушаемых полимеров (в частности, биогенного происхождения: поли-b-оксибутирата, поли-амилозы) и поиск новых активных микроорганизмов-разрушителей поли-меров (полиэтилена, полипропилена, полихлорвинила). Усилия биотехно-логов направлены также на борьбу с пестицидными загрязнениями — следствием неумеренного и нерационального применения ядохимикатов.

Биотехнологические разработки играют важную роль в добыче и пере-работке полезных ископаемых, получении различных препаратов и созда-нии новой аппаратуры для аналитических целей.

  1. Биотехнология и сельское хозяйство. Биотехнология и растениеводство.

Культурные растения страдают от сорняков, грызунов, насекомых-вреди-телей, фитопатогенных грибов, бактерий, вирусов, неблагоприятных по-годных и климатических условий. Перечисленные факторы наряду с поч-венной эрозией и градом значительно снижают урожайность сельско-хозяйственных растений. Известно, какие разрушительные последствия в картофелеводстве вызывает колорадский жук, а также гриб Phytophtora — возбудитель ранней гнили (фитофтороза) картофеля.

В последние годы большое внимание уделяют вирусным заболеваниям растений. Наряду с болезнями, оставляющими видимые следы на куль-турных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие урожайность сельскохозяйственных культур и ведущие к их вырождению.

Биотехнологические пути защиты растений от рассмотренных вредо-носных агентов включают: 1) выведение сортов растений, устойчивых к не-благоприятным факторам; 2) химические средства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсе-ктициды), фитопатогенными грибами (фунгициды), бактериями, вирусами; 3) биологические средства борьбы с вредителями, использование их естес-твенных врагов и паразитов, а также токсических продуктов, образуемых живыми организмами.

Наряду с защитой растений ставится задача повышения продуктивности сельскохозяйственных культур, их пищевой (кормовой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Разработки нацелены на повышение энер-гетической эффективности различных процессов в растительных тканях, начиная от поглощения кванта света и кончая ассимиляцией СО2 и водно-солевым обменом.

Вступление. Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Биотехнологией часто называют применение генной инженерии в XX—XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах — химической и информационной технологиях и робототехнике.

История биотехнологии

Так, в 1814 году петербургский академик К. С. Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения.

Первый антибиотик — пенициллин — удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных. Примерами применения генной инженерии в медицине являются также производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге. Физиологическая роль данного гормона состоит в регуляции продукции эритроцитов в зависимости от потребности организма в кислороде) в культуре клеток (т.е. вне организма человека) или новых пород экспериментальных мышей для научных исследований.

В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни. Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Клонирование – это один из методов, применяемых в биотехнологии для получения идентичных потомков при помощи бесполого размножения. Иначе клонирование можно определить как процесс изготовления генетически идентичных копий отдельной клетки или организма. То есть полученные в результате клонирования организмы похожи не только внешне, но и генетическая информация, заложенная в них, абсолютно одинакова.

Первым искусственно клонированным многоклеточным организмом стала в 1997 г. овца Долли. В 2007 году одного из создателей клонированной овцы Елизавета II наградила за это научное достижение рыцарским званием.

Достижения биотехнологии

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Например, в последние годы получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

Очень важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений — женьшеня, маслинной пальмы, малины, персиков и др.

Уже многие годы для решения проблемы загрязнения окружающей среды используются биологические методы, разработанные биотехнологами. Так, бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти.

Я считаю, что мой реферат актуален для нашего времени, ведь по заверениям ученых демографов, в ближайшие двадцать лет население земного шара удвоится, прокормить такое количество людей будет просто невозможно. Следовательно, уже сейчас пора подумать о том, как с наименьшими потерями поднять урожайность сельхозугодий вдвое. Поскольку для обычной селекции срок в два десятилетия крайне мал, то остается механическая модификация генетического кода растений. Можно, например, добавить ген устойчивости к насекомым-вредителям или сделать растение более плодовитым. Это основной довод трансгенетиков.


  • дать определение генной инженерии;

  • рассмотреть методы генной инженерии;

  • выявить основные механизмы генной инженерии

  • выяснить достижения генной инженерии;

  • рассмотреть преимущества и недостатки генной инженерии;

  • рассмотреть интересные факты по генной инженерии.

Генная инженерия - это сумма методов, позволяющих переносить гены из одного организма в другой, или - это технология направленного конструирования новых биологических объектов.

Генная инженерия не является наукой – это только набор инструментов, использующий современные достижения клеточной и молекулярной биологии, генетики, микробиологии и вирусологии.

С поразительной настойчивостью и упорством человек стал добиваться поставленной цели и к концу первого десятилетия XXI века достиг очень многого. Он научился выделять ген из организма и синтезировать его в лабораторных условиях; освоил технологии видоизменения гена для придания ему нужной структуры; нашёл способы введения в ядро клетки преобразованного гена и присоединения его к существующим генетическим образованиям.

II. Методы генной инженерии

1. Гибридологический анализ - основной метод генетики. Он основан на использовании системы скрещивания в ряде поколений для определения характера наследования признаков и свойств.

2. Генеалогический метод заключается в использовании родословных. Для изучения закономерностей наследования признаков, в том числе наследственных болезней. Этот метод в первую очередь принимается при изучении наследственности человека и медленно плодящихся животных.

3. Цитогенетический метод служит для изучения строения хромосом, их репликации и функционирования, хромосомных перестроек и изменчивости числа хромосом. С помощью цитогенетики выявляют разные болезни и аномалии, связанные с нарушением в строении хромосом и изменение их числа.

4. Популяционно - статический метод применяется при обработке результатов скрещиваний, изучения связи между признаками, анализе генетической структуры популяций и т.д.

5. Иммуногенетический метод включают серологические методы, иммуноэлектрофорез и др., кот используют для изучения групп крови, белков и ферментов сыворотки крови тканей. С его помощью можно установить иммунологическую несовместимость, выявить иммунодефициты и т.д.

6. Онтогенетический метод используют для анализа действия и проявление генов в онтогенезе при различных условиях среды. Для изучения явлений наследственности и изменчивости используют биохимический, физиологический и другие методы.

Технология рекомбинантных ДНК использует следующие методы:

1. специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

2. быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

3. конструирование рекомбинантной ДНК;

4. гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;

5. клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

6. введение рекомбинантной ДНК в клетки или организмы.

III. Основные механизмы генной инженерии

(Технология рекомбинантной ДНК)

Суть генной инженерии сводится к следующему: биологи, зная, какой ген за что отвечает, выделяют его из ДНК одного организма и встраивают в ДНК другого. В результате можно заставить клетку синтезировать новые белки, что придает организму новые свойства.

Мы знаем, что обмен генетической информацией происходит и в природе, но только между особями одного вида. Случаи же скрещивания особей разных видов (например, собаки и волка) являются исключением.

Перенос генов от родителей к потомкам внутри одного вида называется вертикальным. Так как возникающие при этом особи, как правило, очень похожи на родителей, в природе генетический аппарат обладает высокой точностью и обеспечивает постоянство каждого вида.

Всё это стало возможно благодаря ферментам – образованиям на основе белка, отвечающим за организацию работы клетки. В частности можно назвать такие ферменты, как рестриктазы. Одна из их функций – защита клетки от инородных генов. Чужая ДНК разрезается этим надёжным стражем на отдельные части, причём существует множество различных рестриктаз, каждая из которых наносит удар в строго определённом месте.

Подобрав набор таких ферментов, можно без труда расчленять молекулу на требуемые участки. Затем необходимо их соединить, но уже по новому. Тут помогает природное свойство генетического материала воссоединяться друг с другом. Помощь в этом оказывают также ферменты лигазы, задача которых заключается именно в соединении двух молекул с образованием новой химической связи.

Непохожий ни на что гибрид создан. Представляет он собой молекулу ДНК, несущую новую генетическую информации. Такое образование в генной инженерии называют вектором. Его главная задача – передача новой программы воспроизводства намеченному для этой цели живому организму. Но ведь последний может её проигнорировать, отторгнуть и руководствоваться только родными генетическими программами.

Такое невозможно, благодаря явлению, которое носит название трансформация у бактерий и трансфекция у человека и животных. Суть его заключается в том, что если клетка организма поглотила свободную молекулу ДНК из окружающей среды, то она всегда встраивает её в геном. Это влечёт за собой появление у такой клетки новых наследственных признаков, запрограммированных в поглощённую ДНК.

Поэтому, чтобы новая генетическая программа начала работать, необходимо только одно, – чтобы она оказалась в нужной клетке. Это сделать не просто, так как такое сложное образование, как клетка, имеет множество защитных механизмов, препятствующих проникновению в неё чужеродных объектов.

Накладки и недоработки учитываются и тщательно анализируются. Непрерывно идут работы, изучающие различные комбинации генов: удаление части их из молекулы или наоборот – добавление составляющих, совсем не свойственных данному живому организму.

Горизонтальный перенос генов у прокариот – это не просто лабораторный результат генной инженерии, а распространенное природное явление.

Установлены три основных механизма латерального переноса: трансформация, коньюгация и трансдукция.

1. Трансформация – это нормальная физиологическая функция обмена генетическим материалом у некоторых бактерий.

2. Конъюгацияимеет наименьшее число ограничений для межвидового обмена генетической информацией, но предполагает тесный физический контакт между микроорганизмами, легче всего достижимый в биопленках.

3. Трансдукция (от лат. transductio – перемещение) – это перенос генетического материала из одной клетки в другую с помощью некоторых вирусов (бактериофагов), что приводит к изменению наследственных свойств клетки реципиента.

К наиболее опасным заболеваниям, вызываемым вирусами у животных и человека, относят бешенство, оспу, грипп, полиомиелит, СПИД, гепатит и др. Вирусы обладают вирулентность – это степень болезнетворного действия микроба. Ее можно рассматривать как способность адаптироваться к организму хозяина и преодолевать его защитные механизмы.

IV. Достижения генной инженерии

В наши дни успехи и достижения видны невооружённым глазом. Если рассмотреть такую сферу человеческой деятельности, как сельское хозяйство, то здесь генная инженерия добилась самых впечатляющих результатов.

С начала 80-х годов получено множество геномодифицированных сортов зерновых культур. На конец первого десятилетия XXI века ими засеяно 120 млн. га. земельных угодий по всему миру. Отмечен высочайший уровень урожайности, его потрясающая устойчивость к неблагоприятным климатическим условиям и полное отсутствие паразитов, пожирающих необходимые для людей злаки.

Выведены невиданные раньше сорта картофеля, кукурузы, сои, риса, рапса, огурцов.

Генная инженерия может скрещивать помидоры с картошкой, огурцы с луком, виноград с арбузами – возможности здесь просто потрясающие. Размеры и аппетитный свежий вид полученного продукта могут приятно удивить любого.

Скоро слова инсектициды, акарициды, пестициды будут надёжно забыты, так как внедрённые в растительную клетку овоща, фрукта или зерновой культуры молекулы ДНК, определённых видов бактерий, уничтожат и колорадского жука, и хлопковую совку, и листовёртку, и многих-многих других вредителей сельскохозяйственных угодий.

Животноводство также находится в зоне интересов генной инженерии. Исследования по созданию трансгенных овец, свиней, коров, кроликов, уток, гусей, кур считаются в наши дни приоритетными. Здесь большое внимание уделяется именно животным, которые вполне могли бы синтезировать различные лекарственные препараты: инсулин, гормоны, интерферон, аминокислоты.

Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека. В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность.

В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.

Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100г кристаллического инсулина требуется 800-1000кг поджелудочной железы, а одна железа коровы весит 200-250грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.

Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР.

V. Преимущества и недостатки генной инженерии

Преимущества генной инженерии:

Б) Можно существенно расширить ареалы посева сельхозпродуктов, приспособив их к экстремальным условиям, таким, как засуха и холод.

В) Путем генетической модификации растений можно существенно уменьшить интенсивность обработки полей пестицидами и гербицидами. Ярким примером здесь является уже состоявшееся внедрение в геном кукурузы гена земляной бактерии Bacillus thuringiensis, уже снабжающего растение собственной защитой, так называемым Bt-токсином, и делающего по замыслу генетиков дополнительную обработку бессмысленной.

Г) Генетически измененным продуктам могут быть приданы лечебные свойства. Ученым уже удалось создать банан с содержанием анальгина и салат, вырабатывающий вакцину против гепатита B.

Д) Еда из генетически измененных растений может быть дешевле и вкуснее.

Е) Модифицированные виды помогут решить и некоторые экологические проблемы. Конструируются растения, эффективно поглощающие цинк, кобальт, кадмий, никель и прочие металлы из загрязненных промышленными отходами почв.

Ё) Генная инженерия позволит улучшить качество жизни, очень вероятно - существенно продлить её; есть надежда найти гены, ответственные за старение организма и реконструировать их.

Недостатки генной инженерии:

В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Выведение генетически модифицированных видов растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде.

Экологические риски: 1) появление супервредителей; 2) нарушение природного баланса; 3) выход трансгенов из-под контроля.

Медицинские риски: 1) Повышенная аллергеноопасность; 2) Возможная токсичность и опасность для здоровья; 3) Устойчивость к действиям антибиотиков; 4) могут возникнуть новые и опасные вирусы.

Социально - экономических причинпо которым генетически измененные растения считаются опасными:

1. они представляют угрозу для выживания миллионов мелких фермеров.

2. Они сосредоточат контроль над мировыми пищевыми ресурсами в руках небольшой группы людей. Всего десять компаний могут контролировать 85% глобального агрохимического рынка.

3. Они лишат западных потребителей свободы выбора в приобретении продуктов.

VI. Интересные факты генной инженерии

1. Факт. В 2005 году на биотехнологические продукцию и услуги в области ветеринарии в США планировалось потратить более 5 млрд. долларов. По данным Департамента сельского хозяйства США (USDA), на различные виды биотехнологической продукции для животных выдано 105 лицензий. Это – ветеринарные вакцины, биопрепараты и средства диагностики.

2. Факт. Первые живые существа, полученные с помощью генной инженерии – декоративные рыбки GloFish – появились на рынке в январе 2004 года. В них вживили ген морского анемона, и если наблюдать за этими рыбками в темноте, они флюоресцируют ярким красным светом.

3. Факт. Домашние животные, такие, как собаки и кошки, получают немало пользы от произведенных с помощью биотехнологии вакцин и диагностических наборов.

4. Факт. Проведенные исследования показали, что животные - клоны едят, пьют и ведут себя абсолютно также, как и обычные животные.

5. Факт. Успешно были клонированы, по крайней мере, три вида исчезающих животных: европейский муфлон и дикие быки гаур и бантенг. Клонированного бантенга вы можете увидеть в зоопарке города Сан-Диего, Калифорния.

6. Факт. В 1984 году в одной из американских клиник пациенту вживили сердце бабуина, которое проработало в течение 20 дней. Сегодня врачи регулярно используют сердечные клапаны свиней для пересадки их человеку, а также пересаживают кожу этих животных людям, пострадавшим от ожогов. Несколько групп исследователей в разных странах работают над созданием генетически модифицированных свиней, органы которых при пересадке человеку не будут отторгаться его иммунной системой.

7. Факт. Животные, выращенные с помощью биотехнологии, если и отличаются от обычных животных, то в лучшую сторону: клонирование и генная инженерия – это всего лишь еще один инструмент для выведения новых пород, а этим люди тысячи лет занимались неосознанно и около ста лет – на основе данных генетики. Ученые и технический персонал заботятся об экспериментальных животных куда лучше, чем фермер – о своем стаде обычных животных.

8. Факт. Несколько групп ученых в разных странах исследовали мясо и молоко клонированных животных по сотне показателей и не нашли отличий от мяса и молока животных, зачатых обычным путем.

9. Факт. Действительно, при клонировании или получении генетически модифицированных животных многие эмбрионы оказываются нежизнеспособными, а смертность при родах – выше, чем при обычном разведении животных.

10. Факт. В целом состояние здоровья клонов и традиционных животных не отличаются – это доказали десятилетние исследования, проведенные в том числе Национальной академией наук США.

11. Факт. За животными - клонами и за животными, которых используют в генной инженерии, ухаживают, как показывают наблюдения ветеринаров, с особой заботой.

12. Факт. В действительности Долли прожила даже дольше, чем обычно живут овцы, и умерла в преклонном возрасте из-за развития артрита. Смерть наступила из-за обычной старости, и это никак не связанно с тем, что она была клонирована.

Под генной (генетической) инженерией подразумевают целый комплекс технологий, методов, процессов, посредством которых получают рекомбинантные (созданные благодаря биотехнологии на основе ДНК) РНК и ДНК, а также гены из клеток организмов, осуществляют различные

В 70-е годы XX века создана техника выделения гена из ДНК, а также методика размножения нужного гена. В результате этого возникла генная инженерия. Внедрение в живой организм чужеродной генетической информации и приемы, заставляющие организм эту информацию реализовывать, составляют одно из самых перспективных направлений в развитии биотехнологии. С помощью современных биотехнологий удалось получить ряд лекарств (интерферон, инсулин сыворотка против гипотита и др.) Объектом биотехнологии выступает сегодня не только отдельный ген, но и клетка в целом.

Генная инженерия позволила создать точную копию конкретного организма - клона. Клонированные органы - это спасение для людей, попавших в автомобильные аварии или иные катастрофы, а также нуждающихся в радикальной помощи из - за каких - либо заболеваний. Клонирование может дать возможность бездетным людям иметь своих собственных детей, поможет людям, страдающим тяжелыми генетическими заболеваниями. Более скромная, но не менее важная задача клонирования - регуляция пола сельскохозяйственных животных, а также клонирование в них человеческих генов "терапевтических белков", которые используются для лечения людей, например гемофиликов, у которых мутировал ген, кодирующий белок, участвующий в процессе свертывания крови.

За короткий срок генная инженерия оказала огромное влияние на развитие молекулярно-генетических методов и позволила существенно продвинуться по пути познания строения и функционирования генетического аппарата, а также генная инженерия обратили внимание человечества на необходимость общественного контроля за всем, что происходит в науке.

Судя по тому, каких успехов добилась генная инженерия за сравнительно небольшой период времени – это не вызывает никакого сомнения. Наоборот, возникает непреклонная убеждённость, что в ближайшие двадцать лет мир изменится до неузнаваемости. Уже сейчас созданы совершеннейшие сложнейшие технологии, кардинально преобразующие жизнь человеческой цивилизации. Гордость, восхищение, восторг – только такими синонимами можно выразить всю гамму чувств.

Список использованной литературы:

1. Бекиш О. - Я.Л. Медицинская биология.

2. Горелов. Концепции современного естествознания.

3. Жигалов Ю.И. Концепции современного естествознания

4. Заяц Р.С. Основы медицинской генетики. Мутовин Г.Р. Основы клинической генетики.

Читайте также: