Биомеханика в медицине реферат

Обновлено: 07.07.2024

Биомеханика – это наука, изучающая законы механического движения в живых системах.

В самом широком смысле к живым системам в биомеханике относятся:

§ целостные системы, например – человек;

§ его органы и ткани;

§ объединения организмов, то есть совершающая совместные действия группа людей.

Все движения человека осуществляются в полном соответствии с законами физики, но биомеханика много сложнее, чем механика неживых тел.

Движения человека обеспечиваются совместной работой скелета, мышц, вестибулярного аппарата и нервной системы.

Биомеханика в медицине изучает координацию усилий костно-мышечной, нервной системы и вестибулярного аппарата, направленных на поддержку равновесия и обеспечение наиболее физиологичного положения тела в покое и при движении: ходьбе, подъёмах тяжестей, наклонах, в положении сидя, стоя, лежа, а также при выполнении повседневных жизненных функций.

По законам биомеханики, эффективно лишь то движение, которое обеспечивает достижение поставленной цели с наибольшей выгодой для организма: наименьшим напряжением мышц, расходом энергии и нагрузкой на скелет.

Медицинская сестра должна быть знакома с правилами биомеханики, уметь применять их в своей работе и обучить пациента пользоваться ими. Сидеть, стоять и поднимать тяжести нужно с соблюдением определенных правил, обеспечивающих правильное положение вашего тела.

Правильная биомеханика в положении сидя заключается в следующем:

1. Колени должны быть чуть выше бедер (это позволит перераспределить массу тела и уменьшить нагрузку на поясничный отдел позвоночника).

2. Спина должна быть прямой, а мышцы живота – напряженными.

3. Плечи должны быть расправлены и расположены симметрично бедрам.

4. Чтобы повернуться в сидячем положении, делайте это сразу всем корпусом, а не только грудью или плечами.

5. При выборе подходящего стула сядьте на него и обопритесь на спинку. Высота стула и его глубина подобраны для вашего тела правильно, если две трети длины ваших бедер находятся на сидении, а стопы без напряжения касаются пола. Если размер вам не подходит, выберите другой стул или же используйте такие приспособления, как жесткие подушки или подставки под ноги, для того чтобы биомеханика тела была правильной.

Правильная биомеханика тела в положении стоя заключается в следующем:

1. Колени должны быть расслаблены так, чтобы коленные суставы двигались свободно.

2. Масса тела должна быть распределена равномерно на обе ноги.

3. Ступни должны быть расставлены на ширину плеч.

4. Для того чтобы снизить нагрузку на поясничный отдел позвоночника, встаньте прямо и напрягите мышцы живота и ягодиц; голову при этом следует держать прямо, чтобы подбородок находился в горизонтальной плоскости.

5. Расположите плечи в одной плоскости с бедрами.

6. Поворот тела начинайте со ступней, чтобы за ступнями следовали остальные части тела. Не начинайте поворот с поясницы!

Правильная биомеханика при поднятии тяжестей заключается в следующем:

1. Перед поднятием тяжестей расположите стопы на расстоянии 30 см друг от друга, выдвинув одну стопу слегка вперед (такое положение обеспечивает хорошую опору, не позволяющую вам потерять равновесие и упасть).

2. Встаньте рядом с человеком, которого вам нужно будет поднимать, так, чтобы вам не нужно было наклоняться вперед.

3. Прижимайте поднимаемого человека к себе в процессе подъема.

4. Сгибайте только колени, поднимая человека, сохраняя туловище в вертикальном положении.

5. Поднимайте груз плавно, не делайте резких движений.

6. Чтобы повернуться, сначала поднимите груз, а затем, опираясь на ступни, плавно поворачивайтесь, не сгибая туловища, пока груз находится в руках.

Кроме выполнения перечисленных правил биомеханики, необходимо также избегать натуживаний на высоте вдоха. Натуживание на высоте вдоха вызывает нарушения сердечного ритма и коронарного кровотока –эффект Вальсальвы.

Резкое изменение положения тела в пространстве может вызвать постуральный рефлекс у человека – появление головокружения, шума в ушах, сердцебиения, иногда потерю сознания.

Используя правильную биомеханику тела, медицинская сестра обеспечивает себе безопасность, а стало быть, сохраняет свое здоровье.

Безопасная больничная среда – это самая актуальная и самая сложная проблема для медицинских работников, так как именно она предупреждает возникновение инфекционных и профессиональных болезней, обеспечивает здоровье и долголетие работающим.

Значительный процент в структуре заболеваемости медицинских работников составляет травматизм при осуществлении профессиональных обязанностей. Медицинским сестрам приходится перемещать пациентов, передвигать тяжелое оборудование, переносить тяжести, длительно находиться в вынужденной позе.

Сегодня проблема перегрузки и травматизма медицинских работников решается с помощью здоровьесберегающей технологии – медицинской эргономики. Она позволяет медицинским сестрам обучиться правильным профессиональным позам и, применяя современные эргономические приспособления, облегчить физические нагрузки в повседневной практической деятельности по уходу за тяжелобольными.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Реферат на тему:

Методы исследования в биомеханике

ГЛАВА 1. МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ. 4

1.1. Понятие метода исследования. 4

1.2. Этапы измерений. 4

1.3. Состав измерительной системы. 5

ГЛАВА 2. ОПТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ. 7

2.1. Киносъемка. 7

2.2. Видеосъемка. 7

2.3. Оптоэлектронная циклография. 8

2.4. Динамометрия. 8

2.5. Акселерометрия. 10

2.6. Электромиография. 11

ГЛАВА 3.МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА. 14

СПИСОК использованных источников. 17

Биомеханика является сложной дисциплиной, она объединяет знания из разных областей науки. Поэтому методы биомеханики можно рассматривать с разных позиций: медицинской и механической. Исходя из медицинской точки зрения, методы биомеханики - это, в первую очередь, методы диагностики, которые включают в себя клинические тесты, нахождение механических свойств изучаемого объекта, визуализацию внутренних органов, инвазивные процедуры. Клинические тесты применяются медицинскими сотрудниками при первичном осмотре. К методам визуализации относятся магнитно-резонансная томография, рентгенография, видеорентгенография и т.д. Инвазивный метод диагностики - это процедура, при которой происходит проникновение через кожный покров с целью поставить диагноз. Наиболее часто этот метод применяют для электрофизиологического исследования сердца, двигательной функции позвоночника и генетической проверки эмбриона.

А с позиции механики - это моделирование и численные методы. Моделирование - это процесс создания модели для конкретной задачи. Он включает в себя выявление качественных особенностей изучаемого объекта, а также количественные характеристики, полученные из экспериментов.

ГЛАВА 1. МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ

1.1. Понятие метода исследованиЯ

Метод (греч. methodos – путь к чему-либо) – в самом общем значении – способ достижения цели, определенным образом упорядоченная деятельность.

Метод исследования выбирают исходя из условий проведения и задач исследования. К методу исследования и обеспечивающей его аппаратуре предъявляют следующие требования:

Метод и аппаратура должны обеспечивать получение достоверного результата, то есть степень точности измерений должна соответствовать цели исследования;

Метод и аппаратура не должны влиять на исследуемый процесс, то есть искажать результаты и мешать испытуемому;

Метод и аппаратура должны обеспечивать оперативность получения результата.

Пример. Тренер и спортсмен поставили цель улучшить результат в беге на 100 м на 0,1 с. Спринтер пробегает дистанцию 100 м за 50 шагов, следовательно, время каждого шага должно в среднем быть уменьшено на 0,002 с. Очевидно, для получения достоверного результата, погрешность измерения длительности шага не должна превышать 0.0001 с.

1.2. Этапы измерений

В исследовании какого-либо явления существуют три этапа:

Измерение механических характеристик.

Измерение механических характеристик осуществляется на основе описываемых в этой лекции методов.

Обработка результатов исследования.

В настоящее время для обработки результатов используют специальные компьютерные программы. Так. Например, компьютерная программа Video Motion, предназначенная для атлетизма, позволяет на основе данных видеосъемки рассчитать траекторию, скорость и ускорение движения любой точки тела спортсмена, в том числе и грифа штанги.

Биомеханический анализ и синтез.

На заключительном этапе измерений на основе полученных механических характеристик оценивается техника двигательных действий спортсмена и даются рекомендации по ее совершенствованию.

1.3. Состав измерительной системы

Измерительная система включает в себя:

Устройство для вывода данных.

Датчик – элемент измерительной системы, который непосредственно измеряет (воспринимает) определенную биомеханическую характеристику движения спортсмена. Датчики могут крепиться на спортсмене, спортивном инвентаре и оборудовании, а также опорных поверхностях.

Линия связи служит для передачи информации от датчика к регистрирующему устройству. Линия связи может быть проводной и телеметрической. Проводная связь представляет собой передачу информации через многожильный кабель. Ее достоинством является простота и надежность, недостатком – помехи движениям спортсмена. Телеметрическая связь – передача данных через радиоканал. В этом случае на спортсмене чаще всего расположена передающая антенна, а у регистрирующего устройства есть приемная антенна, посредством которой сигнал воспринимается.

Регистрирующее устройство – прибор, в котором происходит процесс регистрации биомеханических характеристик движений спортсмена.

Долгое время существовала аналоговая форма записи сигнала. Например, аналоговая запись сигнала в видеокамерах на магнитную ленту. В настоящее время широко распространена цифровая форма записи сигнала (в виде последовательности цифр на определенный цифровой носитель, например, DVD-диск).

АЦП – аналого-цифровой преобразователь – устройство, преобразующее аналоговый сигнал в цифровую форму.

ПК – персональный компьютер, в котором происходит обработка поступающего сигнала посредством определенной компьютерной программы. После этого информация о биомеханических характеристиках спортсмена выводится на принтер или монитор.

В настоящее время в области атлетизма (тяжелая атлетика, пауэрлифтинг, бодибилдинг) нашли широкое применение следующие методики исследования:

Оптические методы (кино- и видеосъемка с последующим анализом, оптоэлектронная циклография);

Именно об этих методах мы поговорим подробнее.

ГЛАВА 2. ОПТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Киносъемка – оптический метод исследования. Этот метод относится к бесконтактным средствам измерения. Это особенно важно, поскольку система не мешает спортсмену при выполнении двигательных действий. Основным техническим средством является кинокамера. Для проведения биомеханических исследований чаще всего применяется кинокамеры с высокой частотой съемки (от 100 кадров в секунду и выше). Недостаток киносъемки является необходимость специальной обработки кинопленки. Поэтому в настоящее время в биомеханических исследованиях чаще всего применяются два других оптических метода: видеосъемка и оптоэлектронная циклография.

Видеосъемка – оптический метод исследования, позволяющий фиксировать двигательное действие на видеопленке или электронной матрице видеокамеры. В настоящее время для биомеханических исследований применяют высокоскоростные видеокамеры, позволяющие выполнять съемку до 1000 кадров в секунду и выше.

Примером такой камеры может служить цифровая фотокамера CASIO EXILIM PRO EX-F1 (рис.4.1), позволяющая выполнять скоростную съемку с частотой до 1200 кадр/с. Разрешение матрицы фотокамеры составляет 6,6 Мегапикселов[1]. Для регистрации выполнения спортсменом силовых упражнений данной камерой может использоваться видеосъемка, которую нужно производить с разрешением 1920×1080 пикселей с частотой кадров 60 кадр/с.

2.3. Оптоэлектронная циклография

Оптоэлектронная циклография – оптический метод исследования, состоящий в том, что на суставах спортсмена крепятся активные маркеры – миниатюрные излучатели, работающие в инфракрасном диапазоне спектра электромагнитных волн. Инфракрасный сигнал от датчиков поступает в телевизионную камеру, матрица которой преобразует поступающие сигналы в цифровой вид и передает в компьютер. Посредством оптоэлектронной циклографии в настоящее время двигательные действия спортсменов изучаются не в плоскости, а в трехмерном пространстве. С этой целью вокруг спортсмена устанавливают несколько регистрирующих камер.

Динамометрия – метод, применяемый для оценки силовых способностей спортсмена. Информативным показателем силовых способностей является сила, развиваемая определенной мышечной группой. Для измерения силы мышц используются динамометры, которые делятся на механические и электронные.

Важнейшей деталью механических динамометров является пружина, которая должна работать в области линейной деформации. Это означает, что измеряемая сила прямо пропорциональна удлинению пружины. При измерениях в спорте очень часто применяются кистевые и становые (рис. 4.2) динамометры. Так, например, для измерения силы тяги в пауэрлифтинге используется становой динамометр. Диапазон измерений составляет от 100 Н до1800 Н с погрешностью +/-2 % по всей шкале. Вес 1.8 кг, размер 25,4х6,35 см. Ручка из прочного алюминия с удобным местом для захвата.

Недостатком механических динамометров является оценка одного, чаще всего максимального значения силы. В связи с этим, если необходимо изучить изменение усилия, развиваемого мышечной группой или спортсменом, применяются электронные динамометры. В этом случае датчиком является не пружина, а тензодатчик, а сама методика называется тензодинамометрия.

Метод тензодинамометрии позволяет зарегистрировать усилия, развиваемые спортсменом при выполнении различных физических упражнений.

В процессе выполнения спортивных движений спортсмен оказывает механическое воздействие на самые разнообразные предметы: спортивный снаряд, пол, дорожку, которые в результате этого деформируются. Для того, чтобы измерить значения развиваемых спортсменом усилий, используют специальные тензодатчики, преобразующие механическую деформацию в электрический сигнал. В основе работы тензодатчиков лежит тензоэффект. Суть тензоэффекта – изменение сопротивления проводника при его удлинении.

Тензодатчик представляет собой заклеенную между двумя полосками бумаги проволоку диаметром 0.02-0,05 мм. Он наклеивается на упругий элемент, воспринимающий усилие, задаваемое спортсменом.

В 1938 году были разработаны первые тензодатчики, которые работали на основе тензоэффекта. В 1947 году тензометрия впервые стала применяться в физических исследованиях

В спорте впервые в 1954 году М.П. Михайлюк закрепил тензодатчик на грифе штанги, П.И. Никифоров (1957) разработал тензоплатформу для записи усилий при отталкивании в прыжках в высоту. В 1963 году В.К. Бальсевич использовал тензодинамометрические стельки для анализа бега спринтеров различной квалификации. Им было установлено несколько типов отталкивания.

Методика тензодинамометрии активно применяется в тяжелой атлетике. Одна из ключевых задач тренера заключается в предоставлении информации об ошибках, то есть обратная связь от тренера к спортсмену. Обратная связь является важным элементом обучения. Спортсмен должен получать на регулярной основе информацию, которая позволяет сравнить собственную деятельность с идеалом или моделью. В результате такого сравнения, спортсмен получит знания о своей деятельности и имеет возможность работать на исправление своих ошибок.

Такая методика разработана А.Н. Фураевым (1988) и модернизирована И.П. Кожекиным (1998). Автоматизированный стенд включает в себя тензодинамометрическую платформу, АЦП (аналого-цифровой преобразователь) и компьютер. В экспертной системе компьютера заложены образцы, характеризующие правильное и неправильное выполнение двигательного действия (рывка, прыжка вверх и прыжка в глубину. Сопоставляя полученные результаты, экспертная система, построенная на анализе тензодинамограммы, позволяет спортсмену в реальном масштабе времени получить информацию об ошибках в технике двигательного действия и ввести корректировки чтобы их устранить.

Акселерометрия – биомеханический метод регистрации ускорений движения тела спортсмена, или его отдельных частей, а также ускорений спортивных снарядов. Например, в тяжелой атлетике информативным показателем техники движений спортсмена является ускорение центра масс штанги.

В качестве датчиков используются специальные акселерометры. Принцип действия датчика-акселерометра следующий. К исследуемому объекту прикрепляется масса при помощи связи, обладающей определенной жесткостью. Затем на основе известной массы и жесткости связи определяется ускорение. Основными характеристиками акселерометров являются диапазон и предельная частота изменения измеряемых ускорений.

Если используется трехкомпонентный акселерометр, можно зарегистрировать три составляющих ускорения. Выполняя дифференцирование полученного сигнала, можно рассчитать скорость и перемещение спортивного снаряда, например, грифа штанги.

Электромиография – способ регистрации и анализа биоэлектрической активности мышц.

Суть явления заключается в регистрации электрических потенциалов мышц, которые появляются при возбуждении мышцы. Таким образом, электромиография, является надежным методом регистрации активности мышц.

Чаще всего регистрируются следующие параметры ЭМГ (электромиограммы); длительность электрической активности мышц, частота биопотенциалов, амплитуда биопотенциалов и суммарная электрическая активность мышц.

Длительность электрической активности мышц характеризует время, в течение которого мышца была возбуждена.

Частота и амплитуда биопотенциалов мышцы характеризует степень возбуждения мышцы и характер активности различных ДЕ. Суммарная электрическая активность дает представление об общем уровне напряжения и силы развиваемой мышцей. Чем больше суммарная электрическая активность, тем больше степень напряжения, развиваемая мышцей.

Датчиками, используемыми для регистрации электрической активности, служат серебряные электроды, выполненные в виде небольших кружков (чашечек). Их диаметр составляет не более 10 мм. Внутри этих чашечек для лучшей электропроводности помещается специальная электропроводящая паста. В настоящее время регистрирующим прибором является персональный компьютер.

Одной из первых работ, в которой электромиографическая методика применялась в исследовании двигательных действий штангиста, следует признать диссертационную работу А.С. Степанова (1957). В этом исследовании А.С. Степанов (1957) подверг детальному электромиографическому анализу основные соревновательные упражнения штангистов: толчок, рывок и жим.

В исследовании С.С. Лапенкова (1985) был проведен биомеханический анализ тяжелоатлетических и вспомогательных упражнений с использованием методики электромиографии. При сравнительном анализе движений использовались следующие характеристики ЭМГ: время электрической активности, которое характеризует длительность приложения усилий, развиваемых мышцами, средняя амплитуда ЭМГ, которая взаимосвязана с уровнем развития мышечных усилий. Использование ЭМГ методики и структурного метода распознавания образов позволило оценить эффективность вспомогательных упражнений.

За рубежом серьезные исследования силовых упражнений с применением электромиографической методики были предприняты R.F. Escamilla et al. (2001). Подробному электромиографическому и биомеханическому анализу были подвергнуты присед со штангой на плечах и жим ногами лежа.

Было установлено, что при выполнении приседания активность четырехглавой мышцы бедра и мышц задней поверхности бедра выше, чем при выполнении жима ногами. При этом присед, выполняемый с узкой расстановкой стоп, вызывает большую электрическую активность икроножной мышцы по сравнению с широкой расстановкой стоп.

Был проведен также анализ работы мышц при выполнении силовых упражнений: приседа со штангой на плечах (Н.Б. Кичайкина, А.В. Самсонова, Г.А. Самсонов, 2011). Установлено, что в нижней точке (НТ) электрическая активность большой ягодичной мышцы и мышц-разгибателей бедра (двуглавой бедра и полусухожильной) минимальна.

Положительной особенностью электромиографии являлось то, что она позволяла в разных движениях оценить степень активности скелетных мышц. С этой целью чаще всего применяется изучение суммарной электрической активности мышцы. Кроме того, появилась возможность оценить последовательность активности мышц при выполнении двигательного действия.

ГЛАВА 3.МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА

В настоящее время биомеханика опорно-двигательного аппарата обладает значительным арсеналом методов исследования локомоторной функции, как в статике, так и в динамике, причем изучается не только внешняя картина движения, но и механизмы управления, жизнеобеспечение организма, что дает возможность выявить целый комплекс параметров, характеризующих опорно-двигательный образ. В это понятие включаются не только внешние (механические) проявления движения и реакций окружающей среды, но и условия организации управления движениями, согласованная деятельность всех органов и систем организма. Получаемая в результате биомеханических исследований информация служит основой для определения нормы, позволяет количественно определить степень нарушения локомоторной функции при различных патологических состояниях. Биомеханические исследования достаточно широко используются не только в клинической медицине (функциональная диагностика, ортопедия, травматология, протезирование), но и в спорте, и при разработке различных антропоморфных механизмов (роботы, манипуляторы), и при решении других прикладных задач. Методическая база биомеханических исследований постоянно совершенствуется, используя новейшие достижения науки.

Методы исследования, получившие наибольшее распространение в настоящее время, в клинической биомеханике могут быть классифицированы следующим образом:

I. Соматометричские: антропометрия, фотограмметрия, рентгенография.

II. Кинезиологические: оптические, потенциометрия, электроподография, тензометрия, ихнография.

III. Клинико-физиологические: калориметрия, электромиография, электроэнцефалография и другие методы функциональной диагностики.

Движение лежит в основе жизнедеятельности человека. Разнообразные химические и физические процессы в клетках тела, работа сердца и течение крови, дыхание, пищеварение и выделение; перемещение тела в пространстве и частей тела относительно друг друга; сложнейшая нервная деятельность, являющаяся физиологическим механизмом психики, восприятие и анализ внешнего и внутреннего мира - все это различные формы движения материи.

Основным условием жизни вообще является взаимодействие живого организма с окружающей средой. В этом взаимодействии существенную роль играет двигательная деятельность. Только передвигаясь, животное может находить себе пищу, защищать свою жизнь, производить потомство и обеспечивать его существование. Только при помощи разнообразных и сложных движений человек совершает трудовую деятельность, общается с другими людьми, говорит, пишет и пр. Определенным образом организованная двигательная деятельность является основой физического воспитания и основным содержанием спорта.

Наиболее элементарной формой движения материи является механическое движение, т.е. перемещение тела в пространстве. Закономерности механического движения изучаются механикой. Предметом механики как науки является изучение изменений пространственного расположения тел и тех причин, или сил, которые вызывают эти изменения.

Вскрывая и описывая условия, необходимые для осуществления того или иного механического движения, механика является важной теоретической основой техники, в особенности техники построения разнообразных механизмов. Механическая точка зрения может быть использована и при изучении механических движений человека.

Двигательная деятельность человека практически осуществляется при участии всех органов тела. Однако непосредственным исполнителем функции движения является двигательный аппарат, состоящий из костей, скелета, связок и мышц с их иннервацией и кровеносными сосудами. С механической точки зрения, двигательный аппарат совмещает в себе рабочую машину и машину-двигатель.

Устройство двигательного аппарата является предметом изучения анатомии. Изучение двигательного аппарата как машины-двигателя производится, главным образом, биохимией и физиологией. Изучение его как рабочей машины является задачей особой научной дисциплины - биомеханики.

1.Определение, предмет, задачи и основная теория биомеханики.

Биомеханика(bios – жизнь и mechanike – наука о машинах) – наука о законах механического движения в живых системах, к которым относятся целостные организмы, их отдельные части (органы и ткани), а также объединения организмов (например, в спорте взаимодействующие акробаты, борцы, гребцы).

В биомеханике сочетается применение принципов и методов теоретической механики к изучению строения и функций биологических систем. Как и все тела, живые системы подчинены всем законам, действующим на земле (Всемирного тяготения, законы Ньютона, волновые процессы). Перемещение тела и его отдельных звеньев в пространстве обеспечивается работой мышц, что уже является биологическим по природе.

Область исследований, связанная с приложением механических и биомеханических закономерностей применительно к спорту, стала называться биомеханика спорта.

Биомеханика спорта - изучает движения человека в процессе выполнения физических упражнений.

Биомеханика спорта подразделяется на:

- общую (изучает общие закономерности двигательной деятельности в процессе выполнения физических упражнений);

- частную, которая рассматривает конкретные вопросы выполнения технических действий в отдельных видах спорта;

- дифференциальную (в зависимости от возраста, пола, квалификации, состояния здоровья, уровня физической подготовленности).

Общая задача биомеханики изучить и оценить эффективность приложения сил для достижения поставленной цели. В спорте необходимо изучить, определить эффективность и найти эффективные способы выполнения физических упражнений.

Частные задачи биомеханики спорта состоят в изучении следующих вопросов:

1. Строение, свойства и двигательные функции тела спортсмена. Изучают с точки зрения механики строение и свойства опорно-двигательного аппарата.

2. Изучение, поиск, моделирование рациональных вариантов техники движений.

3. Прогнозирование тенденций изменения параметров техники выполнения спортивных упражнений с ростом мастерства и спортивной результативности, оценки этапных и конечных показателей на различных этапах подготовки.

4. Выявление биомеханических закономерностей выполнения спортивных движений.

5. Биомеханический контроль техники с целью исправления ошибок и повышения спортивно-технического мастерства.

6. Разработка и выбор наиболее эффективных специальных упражнений.

7. Разработка биомеханически целесообразных тренажеров и технических устройств.

8. Изучение и контроль физической и технической подготовленности спортсменов, соревновательной деятельности.

9. Совершенствование спортивного инвентаря, спортивных снарядов и оборудования.

10. Изучение причин и профилактика травм и заболеваний.

Знания по спортивной биомеханики важны не только людям, непосредственно выполняющих спортивные движения, но и тренерам, спортивным врачам, конструкторам спортивного инвентаря.

В ряде задач стоит вопрос об изучении и анализе двигательных действий. В основе, и как основная теория биомеханики, заложен системно-структурный подход, разработанный Д.Д.Донским. Заключается в том, что целостное действие состоит из отдельных движений (это структура), которые взаимодействуют между собой при целостном выполнении этого движения (образуют систему). В основе системно-структурного подхода лежат принципы структурности построения системы движений; целостности – все движения представляют собой единое целое, цельную систему движений, направленное на достижение цели; и принцип целенаправленности – сознательное достижение цели через выполнение двигательных действий.

2. Примеры биомеханики

Давайте рассмотрим простой пример первого случая. Предположим, что в качестве тренера вы наблюдаете, что ваша гимнастка испытывает трудности с выполнением двойного сальто в упражнении на полу. Вы могли бы предложить три гимнастки, чтобы помочь ей успешно завершить трюк: (1) прыгать выше, (2) сделать более плотный обхват и (3) более энергично размахивать руками перед взлетом. Эти предложения могут привести к повышению производительности и основаны на биомеханических принципах. Прыжок выше даст гимнастке больше времени пребывания в воздухе, чтобы завершить сальто. Более плотный обхват приведет к тому, что гимнастка будет вращаться быстрее из-за сохранения углового момента. Еще более энергично размахивая руками перед взлетом, он будет генерировать больше углового момента, что также приведет к тому, что гимнастка будет вращаться быстрее. В общем, это наиболее распространенный тип ситуации, когда биомеханика влияет на результат. Тренеры и учителя используют биомеханику, чтобы определить, какие действия могут улучшить результат.

Вторая общая ситуация, в которой биомеханика способствует повышению эффективности благодаря усовершенствованной технике, возникает, когда исследователи биомеханики разрабатывают новые и более эффективные методы. Несмотря на общее убеждение, что новые и революционные методы регулярно разрабатываются, такие разработки встречаются довольно редко. Возможно, причина в том, что биомеханика как дисциплина — относительно новая наука. Гораздо более общий результат исследований биомеханики — открытие небольших усовершенствований в технике.

Одним из примеров исследований биомеханики, которые значительно повлияли на технику в спорте, произошло в плавании в конце 60-х и начале 70-х годов. Исследование, проведенное Ronald Brown и James "Doc" Counsilman (1971), показало, что подъемные силы, действующие на руку, когда она проходит сквозь воду, имеют гораздо более важное значение для того, чтобы продвигать пловца, чем считалось ранее. Это исследование показало, что вместо того, чтобы тянуть руку по прямой линии назад через воду, пловец должен быстрыми действиями перемещать руку назад и чуть вперед, когда он оттягивается назад для создания тяговых сил подъема (см. фото ниже). Этот метод в настоящее время используется учителями и тренерами по плаванию по всему миру.

Биомеханика занимает особое положение среди наук в физическом воспитании и спорте. Она базируется на анатомии, физиологии и фундаментальных научных дисциплинах - физике (механике), математике, теории управления. Взаимодействие биомеханики с биохимией, психологией и эстетикой дало жизнь новым научным направлениям, которые, едва родившись, уже приносят большую практическую пользу. В их числе "психобиомеханика", энергостатические и эстетические аспекты биомеханики. Более других - медико - биологических и педагогических дисциплин биомеханика использует достижения электронно-вычислительной техники. Но главное, биомеханика служит связующим звеном между теорией и практикой физического воспитания, спорта и массовой физической культурой. Опираясь на знания биомеханики, педагогу лучше учить своих воспитанников различным движениям и анализировать их двигательную деятельность. В связи с тем, что в биомеханике тесто связаны другие науки, сложились различные направления развития биомеханики, т.е. комплексы изучения движений, определенных законов движения, причин и оценки движения как всей живой системы, так и отдельных ее частей.

Список использованной литературы:

1. Ашмарин Б.А., Виноградов Ю.А., Вяткина З.Н., и др. Теория и методика физического воспитания: учеб. Для студентов фак. культ. пед. Ин-тов по спец.03.03. – М.: просвещение, 1990. – 287с.

2. Н.А. Бернштейн Биомеханика и физиология движений. М.: МОДЭК, МПСИ. – 2004 г. . – 688 стр.

3. Основные направления научных исследований в области биомеханики спорта за рубежом (1980-1986): Обзор. информ. / ВНИИ физ. культуры; Подгот. М.П. Дементьевой 33 с.20 см М. Отд. исслед. и разраб. НТИ "Спорт" 1986 1987

Биомеханика мышц

Самсонова, А.В. Биомеханика мышц [Текст]: учебно-методическое пособие / А.В.Самсонова, Е.Н. Комисарова; Под ред. А.В.Самсоновой; СПбГУФК им. П.Ф.Лесгафта. – СПб.: [б.и.], 2008. – 127 с.

Самсонова А.В., Комиссарова Е.Н.

БИОМЕХАНИКА МЫШЦ

В учебно-методическом пособии рассмотрены теоретические и практические аспекты биомеханики мышечной деятельности: строение мышц с точки зрения биомеханики; механика мышечного сокращения; зависимость силы и скорости сокращения мышц от анатомических, физиологических и биомеханических факторов; результирующее действие мышц в организме. Пособие содержит большой фактический материал из практики спорта.

Более подробно функционирование опорно-двигательного аппарата человека и биомеханика мышц описаны в книге:

Самсонова А.В. – главы: 2, 3, 4, 5, 6

Комиссарова Е.Н. – глава 1, глоссарий

СОДЕРЖАНИЕ

Глава 1. Архитектура скелетных мышц

1.2. Макроструктура мышцы

1.3. Микроструктура мышцы

1.5. Теория скользящих нитей

1.6. Состояние мышцы

1.7. Типы скелетных мышечных волокон и их морфофункциональная характеристика

1.8. Влияние различных факторов на состав мышечных волокон

1.9. Контрольные вопросы

Глава 2. Функционирование рецепторного аппарата мышц и суставов

2.1. Рецепторы опорно-двигательного аппарата человека

2.1.1. Мышечные веретена

2.1.2. Рецепторы Гольджи

2.1.3. Рецепторы суставов

2.2. Зависимость частоты импульсации рецепторов от длины, скорости и напряжения мышцы

2.2.3. Зависимость частоты импульсации рецепторов Гольджи от степени напряжения мышцы

2.3. Способы оценки афферентного притока, поступающего от рецепторов мышц

2.4. Уровни построения движений и рецепторы опорно-двигательного аппарата

2.5. Контрольные вопросы

Глава 3. Механика мышечного сокращения

3.1. Биомеханические свойства мышц

3.2. Трехкомпонентная модель мышцы

3.3. Функционирование биомеханической модели мышцы в простейших двигательных задачах

3.4. Контрольные вопросы

Глава 4. Факторы, определяющие силу и скорость сокращения мышцы

4.1. Основные понятия

4.2. Анатомические факторы, определяющие силу и скорость сокращения мышц

4.2.1. Сила и скорость сократительного компонента мышцы

4.2.2. Сила и скорость сокращения мышцы в целом

4.3. Физиологические факторы, определяющие силу и скорость сокращения мышц

4.3.1. Физиологические механизмы регуляции силы и скорости сокращения мышцы

4.3.2. Время сокращения мышцы

4.4. Биомеханические факторы, определяющие силу и скорость сокращения мышц

4.4.1. Длина мышцы

4.4.2. Характер работы мышц

4.4.3. Значение внешней силы

4.5. Контрольные вопросы

Глава 5. Результирующее действие мышц в организме

5.1. Звенья тела как рычаги

5.2. Методы определения морфометрических характеристик мышц нижних конечностей человека

5.2.1. Моделирование ОДА человека и мышц нижних конечностей

5.2.2. Рентгенографический метод определения морфометрических характеристик мышц

5.2.3. Анатомический метод определения морфометрических характеристик мышц

5.2.4. Биомеханический метод определения морфометрических характеристик мышц

5.3. Фазовые траектории мышц &? способ представления результатов, характеризующих моторную функцию мышц

5.4. Программа расчета морфометрических характеристик мышц MORFOMETR

5.5. Контрольные вопросы

Глава 6. Функционирование мышц в спортивных движениях

6.1. Биомеханический анализ физических упражнений

6.2. Обучение двигательным действиям

6.3. Классификация физических упражнений

6.4. Сравнение основного и специальных упражнений

6.5. Оценка функциональной подготовленности спортсменов на основе анализа фазовых портретов мышц

6.6. Контрольные вопросы

ВЫДЕРЖКИ ИЗ КНИГИ

ВВЕДЕНИЕ

Авторы стремились изложить материал предельно просто и доступно. В связи с этим, пособие содержит большое количество иллюстраций, а в конце пособия помещен глоссарий. Отзывы об учебно-методическом пособии просим отправлять по адресу:

ГЛАВА 2

ФУНКЦИОНИРОВАНИЕ РЕЦЕПТОРНОГО АППАРАТА МЫШЦ И СУСТАВОВ

2.1. Рецепторы опорно-двигательного аппарата человека

При изучении анатомии и физиологии (А.С. Солодков, Е.Б. Сологуб, 2001) вы изучали двигательную сенсорную систему. Одним из отделов этой системы являются проприорецепторы, расположенные в мышцах, сухожилиях и суставных сумках. В мышцах расположены мышечные веретена, в сухожилиях – сухожильные органы Гольджи. В суставных сумках расположены рецепторы суставов.

2.1.1. Мышечные веретена

Еще в XIX веке В. Кюне обнаружил в скелетных мышцах структуры, напоминающие веретено. Затем, в начале XX века Нобелевский лауреат Чарльз Скотт Шеррингтон показал, что эти структуры служат чувствительными рецепторами. Мышечные веретена рассеяны по всем скелетным мышцам. Концы их обычно прикрепляются к мышечным волокнам параллельно. Каждое веретено покрыто капсулой, которая расширятся в центре и образует ядерную сумку. Внутри веретена содержатся интрафузальные мышечные волокна. Эти волокна в 2-3 раза тоньше обычных (экстрафузальных) волокон скелетных мышц.

Интрафузальные волокна подразделяются на два типа:

  1. Длинные и толстые (диаметр 20-25 мкм), которые информируют ЦНС о динамическом компоненте движенияскорости изменения длины мышцы. Таких волокон в мышечном веретене не более двух.
  2. Короткие и тонкие (диаметр 10–12 мкм), которые информируют ЦНС о статическом компоненте движения – текущей длине мышцы. Таких волокон в мышечном веретене от 2 до 12.

2.1.2. Рецепторы Гольджи

Нервно-сухожильные веретена (рецепторы Гольджи) открыл в 1903 году Камилло Гольджи. Впоследствии за эти исследования ему была присуждена Нобелевская премия. Рецепторы Гольджи располагаются в месте перехода мышечных волокон в сухожилия. Их длина составляет 0,5-1,0 мм, а диаметр – 0,1- 0,2 мм. Отдельный нервный аксон несет афферентные импульсы в спинной мозг и называется аксоном Ib. Он начинается в виде веточек, проходящих между коллагеновыми волокнами сухожилия (рис. 2.1а). Когда мышечные волокна сокращаются, коллагеновые волокна натягиваются и сжимают нервные веточки, которые начинают импульсировать (рис. 2.1б). Таким образом, в результате последовательного крепления сухожильных органов к мышечным волокнам они возбуждаются при укорочении возбужденной мышцы. Сухожильные рецепторы возбуждаются в 1,5 – 8 раз более эффективно при мышечном сокращении, нежели при пассивном растяжении.

Строение сухожильного органа Гольджи (А.Дж. Мак-Комас, 2001)

Рис. 2.1. Строение сухожильного органа Гольджи (А.Дж. Мак-Комас, 2001)

2.1.3. Рецепторы суставов

Суставные рецепторы подразделяются на несколько типов в зависимости от их реакции на амплитуду, скорость и направление движения в суставе.

Тельца Руффини находятся в капсуле сустава и воспринимают направление и скорость изменения межзвенного угла. Частота их импульсации возрастает с увеличением скорости изменения суставного угла.

Тельца Паччини посылают в ЦНС информацию о положении отдельных частей тела в пространстве и относительно друг друга. Эти рецепторы посылают в ЦНС информацию о значениях межзвенных углов, то есть о положении сустава. Их импульсация продолжается в течение всего периода сохранения межзвенного угла, и она тем больше, чем больше изменения угла.

2.2. Зависимость частоты импульсации рецепторов от длины, скорости и напряжения мышцы

Реакция мышечных веретен на активное или пассивное укорочение мышцы была предсказана в 1928 году Дж. Фултоном и Дж. Писуньери на основе анатомического анализа. Поскольку веретена располагаются параллельно мышечным волокнам, частота разрядов веретенных афферентов при любом укорочении мышцы должна снижаться. В последующем это предположение полностью подтвердилось. Исследования свойств изолированных мышечных веретен, проведенные лауреатом Нобелевской премии Бернардом Катцем (B. Katz, 1950) продемонстрировали, что их растяжение приводит к деполяризации окончаний афферентных волокон. Величина деполяризации при растяжении увеличивается. При этом зависимость частоты импульсации веретенных афферентов от растяжения мышцы близка к линейной. Эту зависимость принято называть статическим ответом веретенного афферента на пассивное растяжение мышцы.

Исследования свойств мышечных веретен свидетельствуют о том, что активность первичных окончаний чувствительного нерва зависит не только от длины, но и от скорости растяжения мышцы. Способность менять частоту своей импульсации в зависимости от скорости удлинения мышцы была названа динамической чувствительностью веретенных афферентов. Зависимость между скоростью растяжения мышц и частотой импульсации первичного афферента также близка к линейной.

2.2.3. Зависимость частоты импульсации рецепторов Гольджи от степени напряжения мышцы

Исследования, проведенные на свободно перемещающихся животных в условиях стационарного режима локомоции, показали, что кривая, отражающая изменение частоты импульсации рецепторов Гольджи во времени полностью соответствует огибающей электромиограммы (рис. 2.2). При этом частота импульсации не превышает 200 имп/с.

Зависимость частоты импульсации рецепторов Гольджи от степени напряжения мышцы при локомоции свободно перемещающейся кошки

Рис. 2.2. Зависимость частоты импульсации рецепторов Гольджи от степени напряжения мышцы при локомоции свободно перемещающейся кошки

Таким образом, рецепторы мышц адекватно реагируют на изменение длины и скорости растяжения мышцы. Связь между этими характеристиками и частотой импульсации афферентов мышечных веретен близка к линейной. Рецепторы Гольджи адекватно отражают развитие напряжения мышцы. Рецепторы суставов реагируют на положение и угловую скорость звеньев опорно-двигательного аппарата.

2.3. Способы оценки афферентного притока, поступающего от рецепторов мышц

С начала XX века и до настоящего времени накоплен богатый материал о свойствах мышечных рецепторов. В основном эти данные были получены на наркотизированных или другим способом обездвиженных животных. Затем исследования были продолжены на децеребрированных животных. Последующие эксперименты, проведенные с помощью вживленных электродов и телеметрической передачи сигналов, убедительно доказали, что у свободно перемещающегося животного разряды первичных афферентов проявляют высокую активность в фазе пассивного растяжения и очень низкую – в фазе активного укорочения.

Одновременно с проведением экспериментов на животных импульсация рецепторов мышц стала изучаться на человеке. С этой целью была разработана методика микронейрографии, суть которой заключается в регистрации афферентной активности мышц посредством тонкого игольчатого электрода, введенного в нерв. Это позволило регистрировать потенциалы действия в нерве у человека при выполнении изометрических напряжений и даже произвольных движений. Было отмечено, что непрерывная афферентная активность возникала при пассивном растяжении мышцы. При быстром движении афферентная активность уменьшалась на время укорочения мышцы. Следует, однако, отметить, что использование этой методики невозможно при исследовании быстрых, мощных высокоамплитудных движений, какими являются движения спортсменов. В настоящее время разработана методика оценки афферентной активности мышц посредством регистрации ВПСМ (вызванных потенциалов спинного мозга). Однако ее особенности также не позволяют использовать этот способ для регистрации афферентного притока при спортивных движениях. Это связано с тем, что помехи, возникающие со стороны других органов тела (сердца, мышц спины), на несколько порядков выше, чем проявляемый сигнал.

Наряду с разработкой методик, позволяющих напрямую регистрировать разряды рецепторов мышц, существуют исследования, моделирующие работу рецепторного аппарата мышц. W.Z. Rymer, J.С. Houk, P.E. Crago (1977) предложили формулу для описания зависимости частоты разрядов мышечных афферентов от степени удлинения и скорости сокращения мышц. В модели, предложенной S.S. Schafer и S. Schafer, (1969) частота разрядов мышечных афферентов зависит не только от удлинения и скорости сокращения мышцы, но и от ускорения.

Методика, позволяющая косвенно судить о функционировании рецепторного аппарата мышц и суставов при выполнении спортивных движений, разработана А.В. Самсоновой (1997). При выполнении двигательных действий можно зарегистрировать изменение межзвенных углов и электрическую активность мышц. Предлагаемая методика дает возможность в каждый момент времени иметь информацию об изменении длины мышцы и скорости ее сокращения. Кроме того, методика позволяет рассчитать значения межзвенных углов и угловое ускорение.

Фазовая траектория двуглавой м. бедра при преодолении барьера спортсменкой высокой квалификации

Рис. 2.3. Фазовая траектория двуглавой м. бедра при преодолении барьера спортсменкой высокой квалификации

Рис. 2.3. Фазовая траектория двуглавой м. бедра при преодолении барьера спортсменкой высокой квалификации

2.4. Уровни построения движений и рецепторы опорно-двигательного аппарата

Афферентация уровня А основана на импульсации мышечных веретен (длина и скорость сокращения мышцы) и рецепторов Гольджи (уровень возбуждения мышцы при ее укорочении). Эта информация очень слабо осознается ЦНС, то есть, по гипотезе Н.А.Бернштейна, этот уровень почти никогда не бывает ведущим.

Афферентация уровня В опирается на информацию, поступающую от суставных рецепторов. Это уровень выступает как ведущий в ряде физических упражнений, таких как наклоны тела вперед и назад, а также циклические движения. Сигналы от суставных рецепторов хорошо осознаются.

2.5. Контрольные вопросы

  1. Какие рецепторы расположены в мышцах?
  2. Какие рецепторы расположены в суставах?
  3. Как называются мышечные волокна, расположенные в мышечных веретенах?
  4. Какую информацию несут в ЦНС мышечные веретена?
  5. Охарактеризуйте функционирование рецепторов Гольджи.
  6. Дайте характеристику рецепторам суставов. О каких изменениях они несут информацию в ЦНС?
  7. Информация каких рецепторов хорошо осознается ЦНС, а каких — плохо?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

ОСНОВНАЯ ЛИТЕРАТУРА

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  1. Бочаров, А.Ф. Биомеханика: Учебное пособие [Текст] / А.Ф. Бочаров, Г.П. Иванова, В.П. Муравьев. – СПб. [б.и.]: СПбГАФК им. П.Ф. Лесгафта, 2000. – 74 с.
  2. Донской, Д.Д. Биомеханика: Учеб. для ин-тов физ. культуры [Текст]/ Д.Д. Донской, В.М. Зациорский. – М.: Физкультура и спорт, 1979. – 264 с.
  3. Иваницкий, М.Ф. Анатомия человека (с основами динамической морфологии): Учеб. для ин-тов физ. культуры [Текст] / Под ред. Б.А. Никитюка, А.А. Гладышевой, Ф.В. Судзиловского. – М.: Физкультура и спорт, 1985. – 544 с.
  4. Козлов И.М. Биомеханические факторы организации спортивных движений: монография [Текст] /И.М.Козлов Санкт-Петербургская гос. академия физ. культуры им. П.Ф.Лесгафта – СПб, [б.и.], 1998.– 141 с.
  5. Коренберг, В.Б. Спортивная биомеханика. Словарь-справочник: Учебное пособие [Текст] / В.Б. Коренберг. – Малаховка [б.и.]: МГАФК, 1999. – 192 с.
  6. Мак-Комас Алан. Дж. Скелетные мышцы. Строение и функции [Текст] /Алан Дж. Мак-Комас.&? Киев: Олимпийская литература, 2001.– 407 с.
  7. Михайлов С.С. Спортивная биохимия: учебник для вузов и колледжей физической культуры [Текст] / С.С.Михайлов; СПбГУФК им. П.Ф.Лесгафта, СПб, [б.и.], 2006. – 230 с.
  8. Петров, В.А. Механика спортивных движений [Текст]./ Петров В.А., Гагин Ю.А. М.: Физкультура и спорт, 1974.– 232 с.
  9. Солодков А.С., Физиология человека. Общая. Спортивная. Возрастная: Учебник [Текст]/ Солодков А.С., Сологуб Е.Б.– М.: Терра-Спорт, Олимпия пресс, 2001.– 520 с. ил.
  10. Теория и методика физической культуры [Текст] / Под ред. проф. Ю.Ф.Курамшина.– М.: Советский спорт, 2004.–463 с.
  11. Энока Р.М. Основы кинезиологии [Текст]. – Киев: Олимпийская литература, 1998.– 399 с.

Как приобрести

Похожие записи:

Effect of KAATSU-training on the maximum voluntary isometric contraction of lower extremity muscles of qualified football players

Изучалось влияние KAATSU-тренинга на изометрическую силу мышц квалифицированных футболистов. Установлено, что интенсивный рост максимальной силы мышц…

Удаление фасции снижает силу мышц

В опытах на диких индейках показано, что удаление фасции снижает силу мышц на 30%. Эти результаты ставят под…

Искусственный интеллект в спортивной тренировке

Описана система комплексного контроля в спорте, построенная на основе искусственного интеллекта. Разработанная система внедрена в подготовку пауэрлифтеров высокой…

Обучение двигательным действиям без ошибок

Учебное пособие доктора педагогических наук, профессора, заведующего кафедрой теории и методики адаптивной физической культуры НГУ им. П.Ф. Лесгафта,…

Гормоны и гипертрофия скелетных мышц

В пособии представлены современные фактические данные о теории и практике увеличения массы скелетных мышц под…

Тейпирование в спорте — книга

Учебное пособие канд. мед. наук, доцента, профессора кафедры спортивной медицины и технологий здоровья НГУ им. П.Ф. Лесгафта Валерия…

Читайте также: