Биохимия в спорте реферат

Обновлено: 07.07.2024

В мышечной ткани человека содержится 72-80% воды и 20-28% сухого остатка от массы мышцы. Вода входит в состав большинства клеточных структур и служит растворителем для многих веществ. Большую часть сухого остатка образуют белки и другие органические соединения.
Среди белков мышечной ткани выделяют три основные группы: саркоплазматические белки, на долю которых приходится около 35%, миофибриллярные белки, составляющие около 45%, и белки стромы, количество которых достигает 20%

Содержание

1.Химический состав мышечной ткани. Структура и свойства сократительных белков.
2.Химический состав мочи человека и его изменения под воздействием физических нагрузок различной продолжительности и мощности.
3. Биохимическое обоснование методов развития специальной выносливости в Вашем виде спорта.

Вложенные файлы: 1 файл

спортивная биохимия.docx

Кафедра теории и методики физической культуры,

педагогики и психологии

Тема: Спортивная биохимия

Студент 3 курса 2 группы

Ипатьев Сергей Николаевич

1.Химический состав мышечной ткани. Структура и свойства сократительных белков.

2.Химический состав мочи человека и его изменения под воздействием физических нагрузок различной продолжительности и мощности.

3. Биохимическое обоснование методов развития специальной выносливости в Вашем виде спорта.

1.Химический состав мышечной ткани. Структура и свойства сократительных белков.

В мышечной ткани человека содержится 72-80% воды и 20-28% сухого остатка от массы мышцы. Вода входит в состав большинства клеточных структур и служит растворителем для многих веществ. Большую часть сухого остатка образуют белки и другие органические соединения.

Основные белки мышц

Среди белков мышечной ткани выделяют три основные группы: саркоплазматические белки, на долю которых приходится около 35%, миофибриллярные белки, составляющие около 45%, и белки стромы, количество которых достигает 20%

Миофибриллярные белки включают сократительные белки миозин, актин и актомиозин, а также регуляторные белки тропомиозин, тропонин и альфа- и бета-актины. Миофибриллярные белки обеспечивают сократительную функцию мышц.

Миозин является одним из основных сократительных белков мышц, составляющий около 55% от общего количества мышечных белков. Из него состоят толстые нити (филаменты) миофибрилл. Молекулярная масса этого белка – около 470 000. В молекуле миозина различают длинную фибриллярную часть и глобулярные структуры (головки). Фибриллярная часть молекулы миозина имеет двуспиральную структуру. В составе молекулы выделяют шесть субъединиц: две тяжелые полипептидные цепи (молекулярная масса 200 000) и четыре легкие цепи (молекулярная масса 1500-2700), расположенные в глобулярной части. Основной функцией фибриллярной части молекулы миозина является способность образовывать хорошо упорядоченные пучки миозиновых филаментов или толстые протофибриллы. На головках молекулы миозина расположены активный центр АТФ-азы и актинсвязывающий центр, поэтому они обеспечивают гидролиз АТФ и взаимодействие с актиновыми филаментами.

Актин – второй сократительный белок мышц, который составляет основу тонких нитей. Известны две его формы – глобулярный G-актин и фибриллярный F-актин. Глобулярный актин – это шарообразный белок с молекулярной массой 42 000. На его долю приходится около 25% общей массы мышечного белка. В присутствии катионов магния актин подвергается нековалентной полимеризации с образованием нерастворимого филамента в виде спирали, получившего название F-актин. Обе формы актина не обладают ферментативной активностью. Каждая молекула G-актина способна связывать один ион кальция, который играет важную роль в инициировании сокращения. Кроме того, молекула G-актина прочно связывает одну молекулу АТФ или АДФ. Связывание АТФ G-актином обычно сопровождается его полимеризацией с образованием F-актина и одновременным расщеплением АТФ до АДФ и фосфата. АДФ остается связанной с фибриллярным актином.

Тропомиозин – это структурный белок актиновой нити, представляющий собой вытянутую в виде тяжа молекулу. Две его полипептидные цепи как бы обвивают актиновые нити. На концах каждой молекулы тропомиозина расположены белки тропониновой системы, наличие которой характерно для поперечно-полосатых мышц.

Тропонин является регуляторным белком актиновой нити. Он состоит из трех субъединиц: ТнТ, Тнl и ТнС. Тропонин Т (ТнТ) обеспечивает связывание этих белков с тропомиозином. Тропонин I (Тнl) блокирует (ингибирует) взаимодействие актина с миозином. Тропонин С (ТнС) – это кальцийсвязывающий белок, структура и функции которого подобны широко распространенному в природе белку кальмодулину. Тропонин С, как и кальмодулин, связывает четыре иона кальция на молекулу белка и имеет молекулярную массу 17 000. В присутствии кальция изменяется конформация тропонина С, что приводит к изменению положения Тн по отношению к актину, в результате чего открывается центр взаимодействия актина с миозином.

Таким образом, тонкий филамент миофибриллы поперечно-полосатой мышцы состоит из F-актина, тропомиозина и трех тропониновых компонентов. Кроме этих белков, в мышечном сокращении участвует белок актин. Обнаруживается он в зоне Z-линии, к которой крепятся концы F-актиновых молекул тонких нитей миофибрилл.

2.Химический состав мочи человека и его изменения под воздействием физических нагрузок различной продолжительности и мощности.

Выполнение физических нагрузок приводит также к значительным сдвигам в химическом составе мочи и существенно влияет на ее физико-химические свойства.

После завершения мышечной работы наиболее характерным является появление в моче химических веществ, которые в покое практически отсутствуют. Эти соединения часто называют патологическими компонентами, так как они появляются в моче не только после физических нагрузок, но и при ряде заболеваний. У спортсменов после выполнения тренировочных или соревновательных нагрузок в моче обнаруживаются следующие патологические компоненты: контрактный двигатель что это такое

. Белок. У здорового человека, не занимающегося спортом, в сутки выделяется не более 100 мг белка. Поэтому в порциях мочи, взятых для анализа до тренировки, обычными методами белок не обнаруживается. После выполнения мышечной работы отмечается значительное выделение с мочой белка. Это явление носит название протеинурия. Особенно выраженная протеинурия наблюдается после чрезмерных нагрузок, не соответствующих функциональному состоянию спортсмена. Вероятными причинами протеинурии являются повреждение почечных мембран, возникающее под влиянием мышечных нагрузок, а также появление в крови во время физической работы продуктов деградации тканевых белков - различных полипептидов, легко проходящих через почечный фильтр из кровяного русла в состав мочи.

. Глюкоза. В порциях мочи, полученных до выполнения физической нагрузки, глюкоза практически отсутствует. После завершения тренировки в моче спортсменов общепринятыми методиками нередко обнаруживается значительное содержание глюкозы, что может быть обусловлено двумя основными причинами. Во-первых, как уже отмечалось, при выполнении физических упражнений в крови повышается уровень глюкозы и он может превысить почечный порог, вследствие чего часть глюкозы не будет подвергаться обратному всасыванию в извитых канальцах нефрона и останется в составе мочи. Во-вторых, из-за повреждения почечных мембран нарушается непосредственно процесс обратного всасывания глюкозы в почках, что также ведет к развитию глюкозурии.

. Кетоновые тела. До работы кетоновые тела в моче не обнаруживаются. После соревновательных или тренировочных нагрузок с мочой могут выделяться в больших количествах кетоновые тела - ацето-уксусная и Р-оксимасляная кислоты, а также продукт их распада - ацетон. Это явление называется кетонурией, или ацетонурией. Причины кетонурии аналогичны причинам, вызывающим глюкозурию. Это повышение в крови концентрации кетоновых тел и снижение реабсорбционной функции почек при мышечной работе.

. Лактат. Появление молочной кислоты в моче обычно наблюдается после тренировок, включающих упражнения субмаксимальной мощности. Каждое такое упражнение приводит к резкому возрастанию концентрации лактата в крови и последующему его переходу из кровяного русла в мочу. Таким образом, происходит аккумулирование молочной кислоты в моче. В связи с этим по выделению лактата с мочой можно судить об общем вкладе гликолитического пути ресинтеза АТФ в энергообеспечение всей работы, выполненной спортсменом за тренировку.

Наряду с влиянием на химический состав физические нагрузки приводят к изменению физико-химических свойств мочи. Наиболее существенные изменения следующие:

Плотность. Вследствие повышения роли внепочечных путей выделения воды из организма объем мочи после тренировки или соревнования, как правило, уменьшается. Это, в свою очередь, сказывается на плотности. Данный показатель после работы чаще всего повышайся. В среднем плотность мочи до нагрузок колеблется в пределах 1.010-1,025 г/мл. После тренировки этот показатель может быть равен 1,030-1,035 г/мл и даже еще выше. Одной из причин увеличения плотности мочи является, как отмечалось выше, увеличение внепочечных потерь воды, что приводит к возрастанию концентрации растворенных в моче веществ. Другой причиной повышения плотности мочи после физической работы может оказаться появление в моче веществ, отсутствующих в ней в состоянии покоя.

По плотности можно рассчитать содержание растворенных химических соединений в отдельных порциях мочи. Для этого используется следующая формула:

Сухой остаток = а • 2,6,

где а - величина, численно равная тысячным долям плотности.

Это делает возможным оценивать экскрецию отдельных компонентов мочи в расчете на 1 г сухого остатка, что позволяет исключить влияние плотности мочи на эти показатели.

Кислотность. Вследствие выделения после тренировки с мочой молочной кислоты, а также кетоновых тел, которые тоже являются кислотами, рН мочи снижается. До работы при обычном питании рН мочи равен 5-6. После работы, особенно с использованием интенсивных нагрузок, рН мочи может быть в пределах 4-5, что соответствует примерно десятикратному увеличению концентрации в моче ионов водорода.

В заключение необходимо подчеркнуть, что глубина биохимических сдвигов, возникающих в мышцах, во внутренних органах, в крови и в моче, зависит от мощности и продолжительности физической работы. Чем выше интенсивность работы и чем дольше она длится, тем более глубоки и значительны биохимические изменения в организме спортсмена. Достигнув определенной глубины, биохимические сдвиги оказывают отрицательное влияние на возможность выполнения данной работы и приводят к снижению работоспособности спортсмена, т. е. вызывают утомление.

3. Биохимическое обоснование методов развития специальной выносливости в Вашем виде спорта.

Выносливость - важнейшее двигательное качество, от уровня развития которого во многом зависят достижения атлета. Выносливость можно определить как время работы с заданной мощностью до появления утомления.

В соответствии с характером выполняемой работы выделяют общую и специальную выносливость. Общая выносливость отражает способность спортсмена выполнять неспецифические нагрузки. Такими нагрузками, например, для футболиста могут быть кросс, лыжные гонки, плавание, подвижные игры и т.п., а также выполнение физической работы бытового характера. Специальная выносливость характеризует выполнение физических нагрузок, специфических для определенного вида спорта и требующих технической, тактической и психологической подготовки спортсмена.

Первостепенное значение для проявления выносливости имеет уровень развития молекулярных механизмов образования АТФ - непосредственного источника энергии для обеспечения мышечного сокращения и расслабления

В зависимости от способа энергообеспечения выполняемой работы выделяют алактатную, лактатную и аэробную выносливость. Нередко используются термины." алактатиый, лактатный и аэробный компоненты выносливости.

Алактатная выносливость характеризуется наибольшим временем работы в зоне максимальной мощности. В зависимости от вида нагрузки можно выделить скоростную, скорости о-силовую и силовую алактатную выносливость. Главным источником энергии при мышечной работе максимальной мощности является креатинфосфатная реакция. Поэтому развитие алактатной выносливости обусловлено внутримышечными запасами креатинфосфата. Как уже отмечалось, более богаты креатинфосфатом белые мышечные волокна. В связи с этим большей алактатной выносливостью обладают мышцы с преобладанием белых волокон. Содержание креатинфосфата в мышцах можно существенно повысить, используя специальные упражнения. Принцип построения такой тренировки в интервальном режиме был описан выше, при рассмотрении энергообеспечения скоростно-силовых качеств.

Биохимическая оценка алактатной выносливости может быть дана путем определения суточного выделения с мочой креатинина. Этот показатель характеризует общие запасы в организме креатинфосфата. Рост алактатной выносливости обычно сопровождается увеличением суточного выделения креатинина. Другим критерием, характеризующим развитие алактатной выносливости, является алактатный кислородный долг, измеренный после завершения работы максимальной мощности.

Лактатная выносливость характеризует выполнение физических нагрузок в зоне субмаксимальной мощности. Основным источником энергии при работе с такой мощностью служит анаэробный распад мышечного гликогена до молочной кислоты, называемый гликолизом. Возможности гликолитического способа получения АТФ в значительной степени зависят от запасов мышечного гликогена. Чем выше дорабочая концентрация гликогена в мышцах, тем дольше он будет использоваться в гликолизе. Отсюда следует, что мышцы с преобладанием белых, богатых креатинфосфатом и гликогеном волокон обладают также и выраженной лактатной выносливостью. Другим фактором, определяющим лактатную выносливость, является резистентность мышечных клеток и всего организма в целом к возрастанию кислотности вследствие накопления лактата в мышцах и в крови.

Читайте также: