Баббиты реферат по материаловедению

Обновлено: 07.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


электротехническим медно-никелевые сплавы относятся константан, копель и другие сплавы. Благодаря разнообразным ценным свойствам медно-никелевые сплавы, несмотря на дефицитность никеля, находят широкое применение в электротехнике, судостроении, для производства посуды, художественных изделий массового потребления, в медицинской промышленности, пирометрии.

Латунями называют двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк.

Двойные латуни нередко легируют Al, Fe, Ni, Sn, Mn, Pb и другими элементами. Такие латуни называют специальными или многокомпонентными. Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди. Никель увеличивает растворимость цинка в меди. Легирующие элементы увеличивают прочность, но уменьшают пластичность латуни.

Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn и Ni.

Все латуни по технологическому признаку подразделяют на две группы: деформированные, из которых изготовляют листы, ленты, трубы, проволоку и другие полуфабрикаты, и литейные – для фасонного литья.

Литейные латуни обладают хорошей текучестью, мало склонны к ликвации и обладают антифрикционными свойствами.

Когда требуется высокая пластичность, повышенная теплопроводность и важно отсутствие склонности к коррозийному растрескиванию, применяют латуни с высоким содержанием меди. Латуни с большим содержанием цинка обладают более высокой прочностью, лучше обрабатываются резанием, но хуже сопротивляются коррозии.

Деформируемые латуни обладают высокими коррозийными свойствами в атмосферных условиях, пресной и морской воде и применяются для деталей в судостроении. Более высокой устойчивостью в морской воде обладают латуни, легированные оловом, получившие название морских латуней.

Латуни, предназначенные для фасонного литья, от которых требуется повышенная прочность, содержат большое количество специальных присадок, улучшающих их литейные свойства. Эти латуни отличаются лучшей коррозийной стойкостью.

Антифрикционные (подшипниковые) сплавы на оловянной и свинцовой основе

Эти сплавы применяют для заливки вкладышей подшипников скольжения. Они должны иметь достаточную твердость, но не очень высокую, сравнительно легко деформироваться под влиянием местных напряжений, иметь малый коэффициент трения между валом и подшипником.

Кроме того, температура плавления этих сплавов не должна быть высокой, и сплавы должны обладать хорошей теплопроводностью и устойчивостью к коррозии.

Оловянные и свинцовые баббиты. Оловянные баббиты используют в подшипниках турбин крупных судовых дизелей, турбонасосов, турбокомпрессоров, электрических и других тяжелонагруженных машин. Свинцовые баббиты применяют для менее нагруженных подшипников.

Гирич Светлана Анатольевна

Описан феномен и суть явления эффекта памяти механической формы сплавов металлов, материалы с эффектом памяти формы и сферы их применения.

ВложениеРазмер
metally_s_ef_pamyati.docx 35.37 КБ

Предварительный просмотр:

ДЕПАРТАМЕН ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

КОЛЛЕДЖ ГРАДОСТРОИТЕЛЬСТВА И СЕРВИСА № 38

ГБОУ СПО КГиС № 38

Алексеев Дмитрий Михайлович

Гирич Светлана Анатольевна

Любой природный материал обладает своими уникальными качествами. Так многим металлам присущи такие качества, как твердость, прочность и долговечность. Также металлы могут обладать еще одним интереснейшим свойством, о котором не все знают, а именно, металлы могут обладать памятью.

Работы по изучению данного свойства велись и ведутся до сих пор во многих странах. Поэтому тема данной работы весьма актуальна. Для нас кажется весьма привычным и естественным, что пружина всегда возвращается в исходное положение, так же как и изогнутая стальная линейка, и это никого не удивляет. Однако если предел упругости материала будет превышен, то непременно наступит пластическая деформация и тогда предмет уже не примет исходную форму сам, если только не продеформировать материал в противоположном направлении. Но это лишь привычные для нас, общепринятые представления.

Глава 1. Феномен и суть явления. Мартенситное превращение.

Чтобы понять феномен явления его достаточно один раз увидеть. Для эксперимента можно взять металлическую проволоку и изогнуть ее, а затем нагреть. Проволока от нагрева начинает распрямляться и затем восстанавливает свою исходную форму.

Данный феномен происходит потому что при деформации внешние слои материала вытягиваются, а внутренние в свою очередь сжимаются, при этом средние вовсе остаются неизменными. [3]

Такие вытянутые структуры называют мартенситными пластинами, которые не являются чем-то необычным для металлических сплавов. Здесь необычность проявляется в другом: в мартенсит термоупругий в материалах с памятью формы. И начинает проявляться эта термоупругость мартенситных пластин при именно при нагреве, когда появляется внутреннее напряжение, стремящееся вернуть в исходное состояние структуру, а именно растянуть сплюснутые пластины и сжать вытянутые. Поэтому материал восстанавливает свою исходную форму, так ка в целом получается, что он проводит автодеформацию только в обратном направлении. [2]

Все металлы и сплавы имеют свою кристаллическую решетку, параметры которой заданы изначально. Но может осуществляться перестройка этой кристаллической решетки в связи с изменением температуры и давления. В данном случае говорят, что происходит полиморфное превращение, то есть смена типа кристаллической решетки (происходит ее перестройка). Полиморфное превращение может осуществляться при помощи двух способов: воздействия высоких температур, при которой подвижность атомов возрастает и мартенситного превращения.

Что бы понять сущность первого способа можно представить в виде атомов детские кубики, а в виде кристаллической решетки- здание из этих кубиков-атомов. Чтобы осуществить полиморфное превращение, то есть построить из этих же кубиков, но уже другое здание необходимо просто разобрать старое и собрать новое здание. Поскольку путь каждого кубика при перестройке совершенно не связан с другими, то он может оказаться абсолютно в любом месте нового здания. Перестройка решетки по такой схеме может произойти только в случае, когда диффузия, то есть подвижность атомов достаточно высока, для того чтобы осуществить перемещение их на совершенно новые места.

Однако, для того чтобы произвести перестройку кристаллической решетки, когда температура полиморфного превращения не достаточно высока, нужно применять бездиффузионный способ.

При изучении закалки – одного из древнейших и основных процессов термической обработки стали был и обнаружен такой бездиффузионный способ. В результате закалки образуется фаза с новой кристаллической решеткой, то есть мартенсит. Именно поэтому второй способ смены типа кристаллической решетки (полиморфного превращения) получил название мартенситного превращения. [4]

Мартенситное превращение является одним из фундаментальных способов перестройки кристаллической решетки. Данный способ характерен для сталей, чистых металлов, полупроводников, цветных сплавов и полимеров всегда в случае перестройки решетки при отсутствии диффузии.

Если вернуться к примеру с кубиками-атомами, то в случае с мартенситным превращением особенность заключается в том, что отсутствует диффузия и поэтому старое здание невозможно просто разобрать. Здесь кубики перемещаются без разрушения межатомных связей, то есть не отрываясь друг от друга и почти одновременно из старых положений в новые. Мартенситное превращение потому иногда называют сдвиговым, что такое согласованное и коллективное перемещение носит характер сдвига.

Именно кооперативный сдвиг атомов приводит к неизбежному изменению формы объема сплава, а изменение формы и является главной особенностью мартенситного превращения.

С данной особенностью и связан эффект памяти сплавов, однако не все сплавы, которые претерпевают мартенситное превращение, могут обладать памятью. При мартенситном превращении изменение формы является необходимым условием, но все же недостаточным для проявления памяти.

Можно выделить три основных события в истории изучения мартенситных превращений, оказавших непосредственное влияние на формировании нового направления, которое занимается изучением эффекта памяти формы в сплавах и применением данного эффекта.

В данной статье описывалась особенность мартенситного превращения в медном сплаве. Она заключалась в том, что при охлаждении этого медного сплава мартенситные кристаллы росли медленно, а при нагреве и вовсе постепенно исчезали. В данном случае, если провести аналогию с пружиной, можно сказать, что она способна останавливать рост кристалла прежде, чем разрушится сама. Подпружиненным оказывается кристалл мартенсита, что в свою очередь и обеспечивает динамическое равновесие границы между ним и исходной фазой. Получается, что если охлаждать, то граница будет смещаться в одну сторону, а если нагревать- в другую, т.е. обратную.

Описанное явление получило название термоупругого равновесия фаз в твердом теле. Стоит отметить, что изменением формы сопровождается и термоупругое мартенситное превращение, только в данном случае изменение имеет обратимый характер. И именно такое превращение и обеспечивает память металлов.

Второе событие относят к 1958 году, когда на Всемирной выставке в Брюсселе было представлено устройство двух американских ученых: Т. Рида и Д. Либермана. Основой такого устройства служил тонкий длинный стержень из золото-кадмиевого сплава. Один его конец был жестко закреплен в стойке в горизонтальном положении, а на другой вешали груз и под тяжестью он изгибался. Однако необычным было то, что когда стержень нагревали, то он выпрямлялся и спокойно поднимал груз, если же его охлаждали, то он снова становился изогнутым. Таким способом было наглядно продемонстрированно свойство памяти формы у металлов.

В начале 60-х годов в Америке произошло третье ключевое событие, когда в результате поиска прочного, относительно легкого и при этом имеющего способность работать в агрессивных средах, ученые создали сплав никеля с титаном в пропорции один к одному.

Данный сплав при обработке проявил свойство памяти формы, о котором даже не подозревали. Эффект памяти проявлялся очень сильно и это открывало широкие перспективы для использования такого сплава.

Новый материал получил название нитинол- производное от трех слов: никель, титан и название лаборатории НОЛ. Как стало известно позже, и в данном случае свойство памяти формы основывалось на мартенситном превращении. [1]

Глава 2. Материалы с эффектом памяти формы и сферы их применения.

В современном мире существуют сотни сплавов с мартенситным превращением, однако не все из них способны вспоминать свою форму. И известно лишь несколько сплавов, где эффект памяти формы может иметь практическое значение.

Наиболее перспективным и распространенным из всех материалов с памятью формы является нитинол. Именно нитинол часто используют в устройствах и приборах разного назначения. Так происходит еще и потому, что он имеет ряд других полезных свойств помимо памяти формы. Так нитинол обладает высокой коррозионной стойкостью, технологичностью и значительной прочностью. [5]

Таким образом получается довольно прочное соединение, которое способно выдержать давление до 800 атм. Такой тип соединения заменяет собой сварку, предотвращая недостатки сварного шва. Помимо этого, метод можно применять при сборке конструкции, когда сварка труднодоступна из-за переплетения узлов и трубопроводов. Данные втулки нашли свое применение не только а авиационной технике, но и космической, а так же в автомобильной.

Металлы с эффектом памяти формы нашли свое применение в такой важной области нашей жизни, как медицина. С помощью металлов с таким свойством, как память формы были разработаны перчатки, которые применяются в процессе реабилитации, фильтры для введения в сосуды кровеносной системы, зажимы для защемления слабых вен, стержни для коррекции позвоночника при сколиозе, оправа для очков, ортопедические импланты, проволока для исправления зубного ряда и еще огромное множество других полезных и жизненно необходимых медицинских устройств.

Так же свойство эффекта памяти широко применяется в тепловых сигнализациях, а именно в пожарных сигнализациях, противопожарных заслонках, различных сигнальных устройствах для ванн, бойлерных баках тепловой регенерации. Также свойство широко применяется в автомобилестроении, а именно в системах для предотвращения выхлопа газов, которые содержат пары топлива, в устройствах для удаления тепла из радиатора, устройствах для включения противотуманных фар.

Металлы с эффектом памяти применяются и в других различных областях, например, для герметизации корпусов микросхем, изготовления кофеварок, электронных кухонных плит конвекционного типа, чувствительных клапанов кондиционера, при изготовлении электромагнитных кухонных комбайнов, и разнообразных зажимных инструментов. Также сплавы с таким свойством могут быть использованы в качестве рабочего тела холодильников и тепловых насосов.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


электротехническим медно-никелевые сплавы относятся константан, копель и другие сплавы. Благодаря разнообразным ценным свойствам медно-никелевые сплавы, несмотря на дефицитность никеля, находят широкое применение в электротехнике, судостроении, для производства посуды, художественных изделий массового потребления, в медицинской промышленности, пирометрии.

Латунями называют двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк.

Двойные латуни нередко легируют Al, Fe, Ni, Sn, Mn, Pb и другими элементами. Такие латуни называют специальными или многокомпонентными. Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди. Никель увеличивает растворимость цинка в меди. Легирующие элементы увеличивают прочность, но уменьшают пластичность латуни.

Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn и Ni.

Все латуни по технологическому признаку подразделяют на две группы: деформированные, из которых изготовляют листы, ленты, трубы, проволоку и другие полуфабрикаты, и литейные – для фасонного литья.

Литейные латуни обладают хорошей текучестью, мало склонны к ликвации и обладают антифрикционными свойствами.

Когда требуется высокая пластичность, повышенная теплопроводность и важно отсутствие склонности к коррозийному растрескиванию, применяют латуни с высоким содержанием меди. Латуни с большим содержанием цинка обладают более высокой прочностью, лучше обрабатываются резанием, но хуже сопротивляются коррозии.

Деформируемые латуни обладают высокими коррозийными свойствами в атмосферных условиях, пресной и морской воде и применяются для деталей в судостроении. Более высокой устойчивостью в морской воде обладают латуни, легированные оловом, получившие название морских латуней.

Латуни, предназначенные для фасонного литья, от которых требуется повышенная прочность, содержат большое количество специальных присадок, улучшающих их литейные свойства. Эти латуни отличаются лучшей коррозийной стойкостью.

Антифрикционные (подшипниковые) сплавы на оловянной и свинцовой основе

Эти сплавы применяют для заливки вкладышей подшипников скольжения. Они должны иметь достаточную твердость, но не очень высокую, сравнительно легко деформироваться под влиянием местных напряжений, иметь малый коэффициент трения между валом и подшипником.

Кроме того, температура плавления этих сплавов не должна быть высокой, и сплавы должны обладать хорошей теплопроводностью и устойчивостью к коррозии.

Оловянные и свинцовые баббиты. Оловянные баббиты используют в подшипниках турбин крупных судовых дизелей, турбонасосов, турбокомпрессоров, электрических и других тяжелонагруженных машин. Свинцовые баббиты применяют для менее нагруженных подшипников.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Материаловедение: металлы и сплавы

Самостоятельная работа №1

2. Самостоятельная работа № 2

«Диаграмма состояния “железо-цементит”

3. Самостоятельная работа №3

4. Самостоятельная работа № 4

5. Самостоятельная работа № 5

Самостоятельная работа 1

Вариант задания № 9

Объясните, к какой деформации (холодной или горячей), следует отнести прокатку низкоуглеродистой стали, свинца и вольфрама при комнатной температуре.

Горячая деформация производится при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры. Холодная прокатка производится ниже температуры рекристаллизации, сопровождается упрочнением (наклепом) металла. Прокатка низкоуглеродистой стали, свинца и вольфрама при комнатной температуре следует отнести к холодной деформации.

В цветной металлургии холодная прокатка применяется для получения тонких полос, листов и лент из алюминия и его сплавов, меди и ее сплавов, никеля, титана, цинка, свинца и многих других металлов.

Напишите, каким способом надо измерять твёрдость листовой мягкой стали толщиной 1мм.

Твёрдость в большинстве случаев испытывается при статическом характере вдавливания индентора в виде шарика, конуса или пирамиды в тело исследуемого объекта или царапанием поверхностного слоя пирамидой из твёрдого материала (склерометрический метод).

Для определения твёрдости тонких слоёв или мелких образцов используют прибор “Супер-Роквелл”, отличающийся от обычного прибора “ТК” меньшими нагрузками.

Объясните, когда процесс кристаллизации протекает быстрее – при небольшой, большой и очень большой степени переохлаждения? (ответ обосновать).

Пространственные кристаллические решетки образуются в металле при переходе из жидкого состояния в твердое. Этот процесс называется кристаллизацией.

Процесс кристаллизации может протекать только при переохлаждении металла ниже равновесной температуры Тп (температура плавления).

На рис.1. изображены термические кривые, характеризующие процесс кристаллизации металлов при охлаждении с разной скоростью. При очень медленном охлаждении степень переохлаждения невелика (рис.1 кривая ?Т). В этих условиях будет получено крупное зерно. С увеличением степени переохлаждения (кривые ?Т1, ?Т2) число зародышей возрастает в большей мере, чем скорость их роста, и размер зерна в металле уменьшается.

Зерно металла сильно влияет на механические свойства: чем мельче зерно, тем выше вязкость и пластичность.

При увеличении степени переохлаждения скорость образования кристаллов и скорость их роста возрастают, при определенной степени переохлаждения достигают максимума, после чего снижаются.

Самостоятельная работа 2

Вариант Задания № 9

Рис..1. Диаграмма состояния железо – цементит

К углеродистым сталям относятся сплавы железа с углеродом с массовой долей углерода от 0,02 до 2,14 %.

Основными компонентами углеродистых сталей являются железо и углерод.

Железо является полиморфным металлом. При температурах ниже 910° С, железо существует в ? -модификации. Эта аллотропическая модификация железа называется ? -железом. В интервале температур от 910° С до 1392° С существует ? -железо с гранецентрированной кубической решеткой.

Углерод является неметаллическим элементом. В углеродистых сталях эти компоненты взаимодействуют, образуя, и зависимости от их количественного соотношения и температуры, разные фазы, представляющие собой однородные части сплава. Углерод может растворяться как в жидком (расплавленном) железе, так и в различных его модификациях в твердом состоянии. В углеродистых сталях различают следующие фазы (рис.1): жидкий сплав (Ж), твердые растворы -феррит (Ф) и аустенит (А) и химическое соединение цементит (Ц),

Феррит - твердый раствор внедрения углерода в ? -железе. Содержит при нормальной температуре 0,006 % углерода. У феррита низкие твердость (HB = 790 МПа) и прочность (?6 = 245МПа), высокие пластичность (? = 50%, ? = 85%) и ударная вязкость (KCU = 2940кДж/м 2 ).

Аустенит - твердый раствор внедрения углерода в ? -железе, при нормальной температуре в углеродистых сталях в равновесном состоянии не существует.

Цементит - химическое соединение железа с углеродом, карбид железа Fc3C. Содержит 6,67 % углерода. Для цементита характерна высокая твердость (НV = 9800 МПа) и очень низкая пластичность.

Перлит – эвтектоидная механическая смесь феррита и цементита (Ф+Ц). Существует ниже 727° С и содержит 0,8% С.

Определить вид углеродистой стали и белого чугуна по заданному содержанию углерода, отметить эти точки на своей диаграмме.

Линия ликвидус системы. На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллизация аустенита, на участке СD – кристаллизация цементита первичного.

Линия солидус. На участке АН заканчивается кристаллизация феррита (). На линии HJB при постоянной температуре 1499°С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита (), в результате чего образуется аустенит.

На участке JЕ заканчивается кристаллизация аустенита.

На участке ECF при постоянной температуре 1147 o С идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3 % углерода превращается в эвтектическую смесь аустенита и цементита первичного

При 1147°С протекает эвтектическая реакция Lc-AE+Ц.

Жидкость, состав которой соответствует точке С, превращается в эвтектическую смесь аустенита, состав которого соответствует точке Е, и цементита, называемую ледебуритом.

При 727°С протекает эвтектическая реакция A - Фр+Ц.

В отличие от эвтектики, образующейся из жидкости, эвтектоид возникает из твердых фаз. Продукт превращения – эвтектоидная смесь феррита и цементита, называемая перлитом.

Читайте также: