Античная логика и математика реферат

Обновлено: 08.07.2024

Такая формулировка закона исключает возможность противоречия в мышлении. Аристотель не признавал противоречия ни в онтологическом, ни в гносеологическом аспектах. Значительное внимание Аристотель уделил закона исключенного третьего, позднее известному как принцип tertium non datur.

Между членами противоречия нет ничего.

Этот закон, по мнению Аристотеля, не может быть использован для анализа событий будущего.

В творчестве Аристотеля находим также высказывания, которые можно толковать как определенные подходы к осмыслению закона достаточного основания. В трактате "Вторая Аналитика" говорится следующее:

Любое учение и любое обучение основано на определенном уже ранее приобретенном знании . О каждой вещи мы думаем, что знаем ее безусловно, а не софистической, по случайным признакам, когда мы считаем, что знаем причину, по которой эта вещь есть, значит, что она его причина и что это не может быть иначе.

Значительное место в логическом наследии Аристотеля занимает учение о формах мышления. Суждением он называл высказывание о наличии или отсутствии чего-то в чем-то. В языковом контексте суждения всегда является истинным или ложным высказываниям. Термины "истина" и "ложь", по мнению Аристотеля, не могут применяться к ощущения, восприятия и интуиций ума. Однако не каждое предложение он считал суждением. В вопросительных и побудительных предложениях не содержится значение истинности или ложности, следовательно они не являются суждениями.

4. Аристотелевская классификация суждений

Другая форма мышления - понятия, по Аристотелю, - это общее, присущее всем предметам рода или вида, оно отражает сущность вещей. В его произведениях находим классификацию понятий: * тождественны, * контрарные, * контрадиктори, * подчинены, * спивпидпорядковани, * субконтрарни понятия, а также * категории. Процесс мышления, как считал Аристотель, идет от менее общих понятий к более общим и завершается наиболее широкими по объему понятиями - категориями, которые находятся на вершине иерархии понятий.

Крупнейшим достижением в области логики Аристотель считал открытие силлогизма, т.е. рассуждение, в котором при утверждении любого из него необходимо вытекает несколько отличное от того, что утверждается, и именно вследствие того, что это есть. Такое отличное не требует никакого постороннего срока, чтобы следовать из имеющихся суждений с необходимостью. Аристотель подает и более узкое определение силлогизма как умозаключения, в котором один из терминов должен содержаться в утвердительном предпосылки и один должен быть взят в полном объеме, поскольку без общего предпосылки корректный силлогизм невозможен. Силлогизмы первой фигуры он считал совершенными. Аристотель сформулировал следующие общие правила силлогизма:

- Если оба предпосылки отрицательные или частичные, то из них невозможно сделать вывод;

- В силлогизме один посылка должна быть общим, другой утверждающим;

- В силлогизме должно быть три и не более сроки.

Аристотелевская силлогистика была первой дедуктивной системой. Она заложила фундамент формализации процессов мышления и тем самым создала основы формальной логики как науки о законах и формах правильного мышления. На этой системе базировалась концепция исчисления предикатов в современной математической логике. Хотя Аристотель существенно опирался в логических исследованиях на идеи Гераклита, Демокрита, Платона и других древнегреческих мыслителей, он, бесспорно, является новатором, автором гениальных открытий в области логики. Он впервые изложил положения логики в систематическом виде, поэтому по праву считается основоположником логики как науки.

Рассмотрим ряд направлений в области логики, которые развивались после Аристотеля. Его ученики Феофраст и Евдем Родосский продолжали исследования своего учителя. Теофраст внес некоторые уточнения в трактовку операций отрицания и квантификации. Он подчеркивал, что не равнодушен, где ставить возражения: перед глаголом или существительным. Например, суждение "х не знает науку" и "х знает науку" друг друга отрицают. Если поставить частицу "не" перед существительным, а не глаголом, такие суждения не являются отрицательные "х знает науку", "х знает не науку".

Основы пропозиционной логики, или логики высказываний заложено логической школой стоиков. Ее основателем был Зенон из Китиона (336-264), а наибольший вклад в эту область логики сделал Хризипп (281-208). Стоикам принадлежит концепция аксиоматического построения теории, а также осмысление и систематизация несиллогистических и релятивных умозаключений. По мнению стоиков, соблюдение правил формальной логики гарантирует лишь корректность вывода выводу из предпосылок, а не действительную истинность заключения. Логическое учение стоиков было новаторским по сравнению с подходами Аристотеля и его учеников.

Существенный вклад в разработку логической проблематики осуществили мыслители школы, основателем которой был Эпикур (341-270) из Афин. Он считал, что мышление является воспоминанием о прошлом опыте. Эпикур использует индуктивный подход к объяснению возникновения логических форм. Все мысли рождаются с чувств благодаря совпадению, соответствия, сходства и синтеза.

Важным основополагающим принципом эпикуреизма есть такая идея: "Исследовать природу нужно не на основе полых посылок и предубеждений, а так, как того требуют сами явления". На этом положении основывается индукция эпикурейцев - первичными в процессе познания есть явления, а не аксиомы. Наиболее известным последователем Эпикура в области логики был Филодем (110-39) с Гадара, римлянин, современник Цицерона. На основе индукции он разработал метод аналогии, сравнивал факты и явления и соотносил их с другими фактами и явлениями.

Современниками стоиков и эпикурейцев были скептики, которые также интересовались логикой. Представители этой школы Пиррон (365-275), Тимон (320-230), Карнеад (214-129) сделали существенный вклад в теорию аргументации. Каждый высказывание они рассматривали как тезис и антитезис, подчеркивая, что тезис не является правильной, но и антитеза некорректна. Следовательно, и тезис, и антитезис являются ошибочными. Поэтому вполне правомерно сомнение о возможности существования истинных аподиктические суждений.

После долгого периода упадка логической науки в Ш-1V ст. н.э. возникает мистико-идеалистическая философия неоплатонизма. Логические исследования сводятся к комментариям положений Аристотеля. Самым талантливым комментатором аристотелевских работ был Порфирий (232-301). Он написал труд "Введение в" Категорий "Аристотеля", в которой анализируются такие понятия логики: * род, * вид, * видовое отличие, * собственная признак ", * случайная признак". Порфирий поставил вопрос об онтологическом статусе понятий, то есть о том, соответствует общим понятием что-то в реальной действительности и в каком смысле существуют эти универсалии - в зависимости от того или рядом с ними. Считается, что Порфирий заложил основы исчисления классов. В "Введении" Порфирия содержатся положения об отличной признак, по сути, отделяет одну вещь от другой.

Достижения логики римской эпохи античности стали промежуточным звеном между логическим учением Аристотеля, его последователей и логическими идеями Средневековья. В римский период наблюдается сближение проблематики логики с задачами Ритарыки. Организация общественной жизни Древнего рифму обусловила большую популярность ораторского искусства, благодаря чему была разработана латиномовна терминология. Значительный вклад в категориальный аппарат логики сделал М. Т. Цицерон (106-43). Он ввел ряд терминов, важных для развития логики: "evidente" - отчетливое представление, "varietas" - разнообразие, "differentia" - разница, "notio" - понятие, "propositio" - посылка силлогизма, "partitio" - разделение целого на части , "disparatus" - противоречивый, "complementum" - дополнения и др.

Диалектическая проблематика, заключавшаяся в искании общего, рождается в недрах материалистической теории. Эта наивно-материалистически поставленная проблема с самого начала уже потребовала диалектики. Поставив проблему сущности и предприняв известную попытку решения её, милетские философы тем самым уже бросили искру в будущий костёр мышления. Мысль начинает брезжить в поисках понятийного осмысления действительности.

Логическим результатом этого явилась философия Гераклита, которую можно причислить к школе ионийских философов, т. к. в ней на более высоком уровне получают своё логическое подтверждение отдельные робкие подходы к объективной диалектике.

Следующая предпосылка формирования первых форм теоретических знании связана с тем культурным переворотом, который произошел в Древней Греции в VIII—VI вв. до н.э. – переход от традиционного общества к нетрадиционному.

Возникла необходимость совмещения раннее дифференцированных профессий, возрастание роли слова, подчиненность ему (одни решают, другие исполняют), что впоследствии приводит к осознанию роли закона (номоса) в жизни общества, равенства всех перед ним. Закон выступает и как знание для всех. Систематизация законов, устранение в них противоречий – это уже рациональная деятельность, опирающаяся на логику.

В других концепциях упор делается на особенности общественной психологии древних греков, обусловленные социальными, политическими, природными и другими факторами. Хозяйственную и политическую жизнь античного полиса пронизывает дух соревнования, конкуренции. Причем этот дух присущ чаще всего формам деятельности, лишенным утилитарного значения. В это время в социуме стали стимулироваться творческие задатки индивидуумов, даже если сначала плоды их деятельности были практически бесполезны.

Представления древних греков о мире, его возникновении, развитии и строении получили название натурфилософских. Натурфилософией (философией природы) называют преимущественно философски-умозрительное истолкование природы, рассматриваемой в целостности, и опирающееся на некоторые естественнонаучные понятия.

Особенности греческого мышления, которое было рациональным, теоретическим, что в данном случае равносильно созерцательному, наложили отпечаток на формирование знаний в этот период. Основная деятельность мыслителя состояла в созерцании и осмыслении созерцаемого. Для создания моделей Космоса нужен был достаточно развитый математический аппарат. Важнейшей вехой на пути создания математики, как теоретической науки, была пифагорейская школа. В основе картины мироздания лежал принцип: началом всего является число. Числовые отношения – ключ к пониманию мироустройства.

Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к новым формам опыта, открывая неизвестные ранее веши, их свойства и отношения.

К началу IV в. до н.э. Гиппократом Хиосским было представлено первое в истории человечества изложение основ геометрии, базирующейся на методе математической индукции. Первая геометрическая модель Космоса была разработана Эвдоксом (IV в. до н.э.) и получила название модели гомоцентрических сфер. Последним этапом в создании гомоцентрических моделей была модель, предложенная Аристотелем.

Среди значимых натурфилософских идей античности представляют интерес атомистика и элемеитаризм. Атомистика возникла в процессе решения космогонической проблемы, поставленной Парменидом Элейским (около 540–450 гг. до н.э.). В античности известны два пути поиска единого, неизменного и неуничтожающегося в многообразии изменчивого, возникающего и уничтожающегося:

1) все сущее построено из двух начал: начала неуничтожимого, неизменного, вещественного и оформленного и начала разрушения, изменчивости, невещественности и бесформенного. Первое – атом, второе — пустота, ничем не наполненная протяженность. Такое решение было предложено Левкиппом (V в. до н. э.), Демокритом (около 460—370 гг. до н. э.).

2) космос образован четырьмя элементами-стихиями: огнем, воздухом, водой, землей и двумя силами: любовью и враждой.

Платон (427—347 гг. до н. э.) объединил учение об элементах и атомистическую концепцию строения вещества и приписывает частицам, из которых состоят элементы, формы четырех правильных многогранников – куба, тетраэдра, октаэдра и икосаэдра. Им соответствуют земля, огонь, воздух, вода.




Аристотель (384–322 гг. до н.э.) создал всеобъемлющую систему знаний о мире, наиболее адекватную сознанию своих современников. В эту систему вошли знания из области физики, этики, политики, логики, ботаники, зоологии, философии и др.

Продолжение к 18. Становление первых форм теоретического знания в античности. Античная логика и математика. Средневековые университеты. Алхимия, астрономия и астрология.

Чтобы объяснить процессы движения, изменения развития, которые происходят в мире, Аристотель вводит четыре вида причин: материальные, формальные, действующие и целевые.

Велика заслуга Аристотеля в создании формальной логики. Он впервые представил приемы рассуждений как целостное образование и сделал их предметом научного исследования. Вместе с тем он вслед за Гераклитом, Зеноном Эгейским и Платоном глубоко разрабатывал диалектику, доведя ее до высшей в античности формы.

В этот период появляются зачатки астрономии – науки о строении и развитии космических тел, образуемых ими систем и Вселенной в целом. Древнейшая наука, возникшая из практич. Потребностей человека в предсказании сезонных явлений, счета времени, определение местоположения на поверхности Земли). В противовес ей астрология – учение о существующей связи между расположением небесных светил и историч. событиями, судьбами людей и наородов, особенно стало распространяться в среднее века вместе с алхимией.

Также тесно связаны физика и этика у Эпикура (342—270 гг. до н.э.), который считал, что все вещи потенциально делимы до бесконечности, но реально такое деление превращало бы вещь в ничто, поэтому надо мысленно где-то остановиться. Поэтому атом Эпикура – это мысленная конструкция, результат остановки деления вещи на некотором пределе.

Возникают библиотеки, наиболее крупной из которых была Александрийская. К концу данного периода письменность входит в обыденную повседневную жизнь, вовлекается в процесс обучения. II—I вв. до н.э. характеризуются упадком эллинистических государств как под воздействием взаимных войн, так и под ударами римских легионеров, теряют свое значение культурные центры, приходят в упадок библиотеки, научная жизнь замирает.

Расцвет Римской империи связан

с девятитомной энциклопедией Марка Терренция Варрона (116–27 гг. дон.э.), содержавшей знания из области грамматики, логики, риторики, геометрии, арифметики, астрономии, теории музыки, медицины и архитектуры. Веком позже шеститомный компендиум, посвященный сельскому хозяйству, военному делу, медицине, ораторскому искусству, философии и праву, составляет Авл Корнелий Цельс. Энциклопедическими работами были труды Гая Плиния Секунда Старшего (23–79 гг. н.э.), Луция Аннея Сенеки (4 г. до н.э. – 65 г. н.э.).

В середине IX в. под началом епископа Льва, прозванного Математиком, была открыта высшая школа, где собирались хранившиеся в монастырях старинные книги. Лев Математик в своих трудах по механике и математике впервые использовал буквы как математические символы, подойдя тем самым вплотную к основанию алгебры.

В центры научных знаний превращались монастыри. При монастырях и церквях, начиная с VI в., существовали школы, обеспечивающие необходимый для священнослужителей уровень образования. Но школы давали и элементы светского образования. Но по сравнению с римской эпохой содержание преподаваемых знаний было значительно урезано, так как приспосабливалось к выполнению религиозно-церковных и богословских функций. Грамматика, например, сводилась к изучению правил латинского языка, языка Священного писания. Риторика была сведена церковью к умению составления проповедей, а затем и к умению составления различных документов и т.д. В первой половине XI в. из монастырских школ возникают университеты, но уже как светские учебные заведения.

Знания, которые формируются в эпоху Средних веков в Европе, вписаны в систему средневекового миросозерцания, для которого характерно стремление к всеохватывающему знанию, что вытекает из представлений, заимствованных из античности: подлинное знание – это знание всеобщее, аподиктическое (доказательное). Но обладать им может только творец, только ему доступно знать, и это знание только универсальное. В этой парадигме нет места знанию неточному, частному, относительному, неисчерпывающему.

Зарождение первых форм теоретического знания традицион­но связывают с античностью. Носителями знаний были жрецы, в зависимости от уровня посвящения, обладавшие той или иной суммой знаний. Знания существовали в религиоз­но-мистической форме, и только жрецы могли читать священные книги и как носители практических знаний имели власть над людь­ми. Они накапливали знания в области математики, химии, ме­дицины, фармакологии, психологии, искусно владели гипнозом. Искусное мумифицирование свидетельствует о том, что древние египтяне имели определенные достижения в области медицины, химии, хирургии, физике, ими была разработана иридодиагнос­тика.

Так как любая хозяйственная деятельность была связана с вы­числениями, то был накоплен большой массив знаний в области математики: вычисление площадей, подсчет произведенного про­дукта, расчет выплат, налогов; использовались пропорции, так как распределение благ велось пропорционально социальным и профессиональным рангам. Для практического употребления со­здавалось множество таблиц с готовыми решениями. Специфика освоения мира шумерской и другими цивилиза­циями Древней Месопотамии обусловлена способом мышления, в корне отличающимся от европейского: нет рационального ис­следования мира, теоретического решения проблем, а чаще всего для объяснения являющегося используются аналогии из жизни людей.

В мифе, как правило, происходит отождествление различных ^предметов, явлений, событий (Солнце=золото, вода=молоко=кровь). Для выполнения отождествления необходимо было овладеть операцией выделения существенных признаков, а также научиться сопоставлять различные предметы, явления по выделенным признакам.

Рассматривая переход от традиционного общества к нетради­ционному, в котором возможно создание науки, развитие фило­софии, искусства, М. К. Петров считает, что для традиционного общества характерна личностно-именная и профессионально-имен­ная трансляция культуры. Каждая семья, являющаяся группой связанных кровным родством людей, — носитель определенной профессии. Большинство профессий наследственные. Семья яв­ляется транслятором освоенных профессиональных навыков из поколения в поколение.

Общество такого типа может развиваться либо через совер­шенствование приемов и орудий труда, повышения качества про­дукта, либо за счет увеличения профессий путем их отпочкова­ния. В этом случае объем и качество знаний, передаваемых из поколения в поколение, увеличивается благодаря специализации. Но при таком развитии наука появиться не могла, ей не на что было бы опереться, уж ли не на знания и навыки, передаваемые от отца сыну? Кроме того, в таком обществе невозможно совме­щение разнородных профессий без снижения качества продукции. Что же тогда послужило причиной разрушения традиционного общества, положило конец развитию через специализацию?

По мнению М. К. Петрова, такой причиной стал пиратский корабль. Для людей, живущих на берегу, всегда существует угро­за с моря, поэтому гончар, плотник обязательно должен быть еще и воином. Но и пираты на корабле — это тоже бывшие гончары и плотники. Следовательно, возникает настоятельная необходимость совмещения профессий. А защищаться и нападать можно только сообща, значит, необходима интеграция, которая гибельна для профессионально дифференцированного традиционного общества. Это означает и возрастание роли слова, подчиненность ему (одни решают, другие исполняют), что впоследствии приводит к осоз­нанию роли закона (номоса) в жизни общества, равенства всех перед ним. Закон выступает и как знание для всех. Систематиза­ция законов, устранение в них противоречий — это уже рацио­нальная деятельность, опирающаяся на логику.

В концепции А. И Зайцева упор делается на особенности об­щественной психологии древних греков, обусловленные соци­альными, политическими, природными и другими факторами. Хозяйственную и политическую жизнь античного полиса прони­зывает дух соревнования, конкуренции.

Около V в. до н. э. усиливаются демократические тенденции в жизни греческого общества, приводящие к критике аристокра­тической системы ценностей, среди которых важнейшее место занимал атлетический агон. Но атональный дух не умер, он пере­местился в сферу культуры. В это время в социуме стали стиму­лироваться творческие задатки индивидуумов, даже если сначала плоды их деятельности были практически бесполезны. Стимули­руются публичные споры по проблемам, не имеющим никакого прямого отношения к обыденным интересам спорящих, что спо­собствовало развитию критичности, без которой немыслимо на­учное познание.

Открыв для себя класс отрицательных чисел, математика де­лает следующий шаг. Она распространяет на них все те операции, которые были приняты для положительных чисел, и таким пу­тем создает новое знание, характеризующее ранее не исследован­ные структуры действительности. Описанный способ построения знаний распространяется не только в математике, но и в есте­ственных науках (метод выдвижения гипотез с их последующим обоснованием опытом).

С этого момента заканчивается преднаука. Поскольку науч­ное познание начинает ориентироваться на поиск предметных структур, которые не могут быть выявлены в обыденной практи­ке и производственной деятельности, оно уже не может разви­ваться, опираясь только на эти формы практики. Возникает по­требность в особой форме практики, обслуживающей развиваю­щееся естествознание, — научном эксперименте. Зачатки подоб­ного метода формирования знаний можно наблюдать в античности.

Древние греки пытаются описать и объяснить возникновение, развитие и строение мира в целом и вещей, его составляющих. Эти их представления получили название натурфилософских. На­турфилософией (философией природы) называют преимуществен­но философски-умозрительное истолкование природы, рассмат­риваемой в целостности, опирающееся на некоторые естественно-научные понятия. Некоторые из этих идей востребованы и сегод­няшним естествознанием.

Важнейшей вехой на пути созда­ния математики как теоретической науки были работы пифаго­рейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим ком­понентам была уже философско-рациональным образом миро­здания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения клю­чом к пониманию мироустройства И это создавало особые пред­посылки для возникновения теоретического уровня математики.

Именно эта установка характеризует переход от чисто эмпи­рического познания количественных отношений (познания, при­вязанного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полу­ченных абстракций новые, осуществляет прорыв к новым фор­мам опыта, открывая неизвестные ранее веши, их свойства и от­ношения.

К началу IV в. до н. э. было представлено Гиппократом Хиос­ским первое в истории человечества изложение основ геометрии, базирующейся на методе математической индукции. Достаточно полно была изучена окружность, так как для греков круг являлся идеальной фигурой и необходимым элементом их умозрительных построений. Немногим позже стала развиваться геометрия объемных тел — стереометрия. Теэтетом была создана теория правильных многогранников, он указал способы их построения, вьфазил их ребра через радиус описанной сферы и доказал, что никаких других правильных выпуклых многогранников существо­вать не может.

Особенности греческого мышления, которое было рациональ­ным, теоретическим, что в данном случае равносильно созерца­тельному, наложили отпе­чаток на формирование знаний в этот период. Основная деятельность ученого состояла в созерцании и осмыслении созерцаемого. А что же созерцать, как не небесный свод, по которому дви­жутся небесные светила? Без сомнения, наблюдения над небом производились и в чисто практических целях в интересах навига­ции, сельского хозяйства, для уточнения календаря. Но не это было для греков главным. Надо было не столько фиксировать видимые перемещения небесных светил по небесному своду и предсказывать их сочетания, а разобраться в смысле наблюдае­мых явлений, включив их в общую схему мироздания. Причем в отличие от Древнего Востока, который накопил огромный мате­риал подобных наблюдений и использовал их в целях предсказа­ний, астрология в Древней Греции не находила своего применения.

Первая геометрическая модель Космоса была разработана Эвдоксом (IV в. до н. э.) и получила название модели гомоцентри­ческих сфер. Затем она была усовершенствована Калиппом. Пос­ледним этапом в создании гомоцентрических моделей была мо­дель, предложенная Аристотелем. В основе всех этих моделей лежит представление о том, что Космос состоит из ряда сфер или оболочек, обладающих общим центром, совпадающим с центром Земли. Сверху Космос ограничен сферой неподвижных звезд, ко­торые совершают оборот вокруг мировой оси в течение суток. Все небесные тела (Луна, Солнце и пять в то время известных пла­нет: Венера, Марс, Меркурий, Юпитер, Сатурн) описываются си­стемой взаимосвязанных сфер, каждая из которых вращается рав­номерно вокруг своей оси, но направление оси и скорость движе­ния для различных сфер могут быть различными. Небесное тело прикреплено к экватору внутренней сферы, ось которой жестко связана с двумя точками следующей по порядку сферой, и т. д. Таким образом, все сферы находятся в непрерывном движении.

Во всех гомоцентрических моделях расстояние от любой планеты до центра Земли всегда остается одинаковым, поэтому неюзможно объяснить видимые колебания яркости таких планет, как Марс, Венера, следовательно, вполне резонно, что могли появиться иные модели Космоса.

И к таким моделям можно отнести гелиоцентрические моде­ли Гераклида Понтийского (IV в. до н. э.) и Аристарха Самосского (Ш в. до н. э.), но они не имели в то время широкого распространения и приверженцев, потому что гелиоцентризм расходился с традиционными воззрениями на центральное положение Земли как центра мира и гипотеза о ее движении встречала активное сопротивление со стороны астрономов.

Среди значимых натурфилософских идей античности пред­ставляют интерес атомистикой элементаризм. Как считал Ари­стотель, атомистика возникла в процессе решения космогоничес­кой проблемы, поставленной Парменидом Элейским (около 540— 450 гг. до н. э.). Если проинтерпретировать мысль Парменида, то проблема будет звучать так: как найти единое, неизменное и неуничтожающееся в многообразии изменчивого, возникающего и уничтожающегося. В античности известны два пути решения этой проблемы.

Второй путь решения проблемы Парменида связывают с Эмпедоклом (около 490—430 гг. до н. э.). По его мнению, Космос образован четырьмя элементами-стихиями: огнем, воздухом, во­дой, землей и двумя силами: любовью и враждой. Элементы не подвержены качественным изменениям, они вечны и непреходящи, однородны, способны вступать друг с другом в различные комбинации в разных пропорциях. Все вещи состоят из элементов.

Так как некоторые элементы могут переходить друг в друга, то и преобразования одних многогранников в другие может про­исходить за счет перестройки их внутренних структур. Для этого необходимо найти в этих фигурах общее. Таким общим для тет­раэдра, октаэдра и икосаэдра является грань этих фигур, пред­ставляющая собой правильный (равносторонний) треугольник. Куб из этих фигур не может быть получен, и только одна стихия, которая не может переходить в три другие, должна быть сопос­тавлена ему — это земля. Но равносторонний треугольник и квад­рат, являющийся гранью куба, не элементарные частицы. Если в квадрате провести диагонали, а в равностороннем треугольнике высоты, то полученные прямоугольные треугольники — равно­бедренный и с углами 30° и 60° соответственно и будут истинны­ми элементами мира.

Аристотель (384—322 гг. до н.э.) создал всеобъемлющую си­стему знаний о мире, наиболее адекватную сознанию своих со­временников. В эту систему вошли знания из области физики, этики, политики, логики, ботаники, зоологии, философии. Согласно Аристотелю, истинным бытием обладает не идея, не число (как, например, у Платона), а конкретная еди­ничная вещь, представляющая сочетание материи и формы. Ма­терия — это то, из чего возникает вещь, ее материал. Но чтобы стать вещью материя должна принять форму. Абсолютно бесфор­менна только первичная материя, в иерархии вещей лежащая на самом нижнем уровне. Над ней стоят четыре элемента, четыре стихии. Стихии — это первичная материя, получившая форму под действием той или иной пары первичных сил — горячего, сухого, холодного, влажного. Сочетание сухого и горячего дает огонь, сухого и холодного — землю, горячего и влажного — воздух, хо­лодного и влажного — воду. Стихии могут переходить друг в дру­га, вступать во всевозможные соединения, образуя разнообраз­ные вещества.

Чтобы объяснить процессы движения, изменения развития, которые происходят в мире, Аристотель вводит четыре вида при­чин: материальные, формальные, действующие и целевые. На примере с бронзовой статуей философ показывает, что матери­альная причина — бронза, действующая — деятельность ваятеля, формальная — форма, в которую облекли бронзу, целевая — то, ради чего ваялась статуя.

Для Аристотеля не существует движения помимо вещи. На основании этого он выводит четыре вида движения: в отношении сущности — возникновение и уничтожение; в отношении количе­ства — рост и уменьшение; в отношении качества — качествен­ные изменения; в отношении места — перемещение. Виды дви­жения не сводимы друг к другу и друг из друга не выводимы. Но между ними существует некоторая иерархия, где первое движение — перемещение. Согласно Аристотелю, движение непрерыв­но, вечно и для осуществления его должен существовать первый неподвижный и тоже вечный двигатель. Движение по прямой для него не является вечным, так как прямая не бесконечна. Что­бы быть бесконечным, движение должно быть круговым, только шар движется и в то же самое время покоится, так как занимает одно и то же место.

Эпоху эллинизма (IV в. до н. э. — I в. до н. э.) считают наи­более блестящим периодом становления научного знания. В это время хотя и происходило взаимодействие культур греческой и восточной на завоеванных землях, но преобладающее значение имела все-таки греческая культура. Основной чертой эллинисти­ческой культуры стал индивидуализм, вызванный неустойчивос­тью социально-политической ситуации, невозможностью для че­ловека влиять на судьбу полиса, усилившейся миграцией населе­ния, возросшей ролью правителя и бюрократии. Это отразилось как на основных философских системах эллинизма — стоицизме, скептицизме, эпикуреизме, неоплатонизме, так и на некоторых натурфилософских идеях. Так, в физике стоиков Зенош Катионского (336—264 гг. до н. э.), Клеанфа изАссоса (331—232 гг. до н. э.), Хрисигта из Сол (281—205 гг. до н. э.) большое значение придавалось законам, по которым существует Природа, т. е. ми­ровому порядку, которому, осознав его, должны с радостью под­чиняться стоики.

Согласно стоикам, мир представляется единым и взаимосвя­занным потоком событий, где все имеет причину и следствие. И эти всеобщие и необходимые связи они называли роком или судь­бой. Наряду с причинной обусловленностью явлений, существует их определенная направленность к благой, прекрасной и разум­ной цели. Следовательно, кроме судьбы стоики признают и бла­готворное провидение (rcpovoux), что свидетельствует о тесной свя­зи стоической физики и этики.

Также тесно связаны физика и этика у Эпикура (342—270 гг. до н. э.), который считал, что все вещи потенциально делимы до бесконечности, но реально такое деление превращало бы вещь в ничто, поэтому надо мысленно где-то остановиться. Поэтому атом Эпикура — это мысленная конструкция, результат остановки де­ления вещи на некотором пределе.

П—I вв. до н.э. характеризуются упадком эллинистических государств как под воздействием взаимных войн, так и под удара­ми римских легионеров, теряют свое значение культурные цент­ры, приходят в упадок библиотеки, научная жизнь замирает.

В античности появляются такие системы знаний, которые мож­но представить как первые теоретические модели, рвущие узы натурфилософских схем и претендующих на самостоятельную зна­чимость. Но отсутствие экспериментальной базы не дает возмож­ности рождения подлинно теоретического естествознания и на­уки в целом.

Античная философия продемонстрировала, как можно планомерно развертывать представление о различных типах объектов и способах их мысленного освоения. Она дала образцы построения знаний о таких объектах. Это поиск единого основания (первоначал и причин) и выведение из него следствий (необходимое условие теоретической организации знаний). Эти образцы оказали бесспорное влияние на становление теоретического слоя исследований в античной математике.

греческий полис принимал социально значимые решения, пропуская их через фильтр конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство, в ходе которого ссылки на авторитет, особое социальное положение индивида, предлагающего предписание для будущей деятельности, не считались серьезной аргументацией. Диалог велся между равноправными гражданами, и единственным критерием была обоснованность предлагаемого норматива. Этот сложившийся в культуре идеал обоснованного мнения был перенесен античной философией и на научные знания. Именно в греческой математике мы встречаем изложение знаний в виде теорем: “дано — требуется доказать — доказательство”. Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь мы находим только нормативные рецепты решения задач, излагаемые по схеме: “Делай так!”… “Смотри, ты сделал правильно!”

Характерно, что разработка в античной философии методов постижения и развертывания истины (диалектики и логики) протекала как отражение мира сквозь призму социальной практики полиса. Первые шаги к осознанию и развитию диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на народном собрании). Что же касается логики, то ее разработка в античной философии началась с поиска критериев правильного рассуждения в ораторском искусстве и выработанные здесь нормативы логического следования были затем применены к научному рассуждению.

Применение образцов теоретического рассуждения к накопленным на этапе преднауки знаниям математики постепенно выводили ее на уровень теоретического познания. Уже в истоках развития античной философии были предприняты попытки систематизировать математические знания, полученные в древних цивилизациях, и применить к ним процедуру доказательства. Так, Фалесу, одному из ранних древнегреческих философов, приписывается доказательство теоремы о равенстве углов основания равнобедренного треугольника (в качестве факта это знание было получено еще в древнеегипетской и вавилонской математике, но оно не доказывалось в качестве теоремы). Ученик Фалеса Анаксимандр составил систематический очерк геометрических знаний, что также способствовало выявлению накопленных рецептов решения задач, которые следовало обосновывать и доказывать в качестве теорем.

Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным образом мироздания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения ключом к пониманию мироустройства. И это создавало особые предпосылки для возникновения теоретического уровня математики. Задачей становилось изучение чисел и их отношений не просто как моделей тех или иных практических ситуаций, а самих по себе, безотносительно к практическому применению. Ведь познание свойств и отношений чисел теперь представало как познание начал и гармонии космоса. Числа представали как особые объекты, которые нужно постигать разумом, изучать их свойства и связи, а затем уже, исходя из знаний об этих свойствах и связях, объяснить наблюдаемые явления. Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений (познания, привязанного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к новым формам опыта, открывая неизвестные ранее вещи, их свойства и отношения.

В пифагорейской математике, наряду с доказательством ряда теорем, наиболее известной из которых является знаменитая теорема Пифагора, были осуществлены важные шаги к соединению теоретического исследования свойств геометрических фигур со свойствами чисел. Связи между этими двумя областями возникающей математики были двухсторонними. Пифагорейцы стремились не только использовать числовые отношения для характеристики свойств геометрических фигур, но и применять к исследованию совокупностей чисел геометрические образы.

Разработка теоретических знаний математики проводилась в античную эпоху в тесной связи с философией и в рамках философских систем. Практически все крупные философы античности — Демокрит, Платон, Аристотель и др. — уделяли огромное внимание математическим проблемам. Они придали идеям пифагорейцев, отягощенным многими мистико-мифологическими наслоениями, более строгую рациональную форму. И Платон, и Аристотель, хотя и в разных версиях, отстаивали идею, что мир построен на математических принципах, что в основе мироздания лежит математический план. Эти представления стимулировали как развитие собственно математики, так и ее применение в различных областях изучения окружающего мира. В античную эпоху уже была сформулирована идея о том, что язык математики должен служить пониманию и описанию мира. Как подчеркивал Платон, “Демиург (Бог) постоянно геометризирует”, т.е. геометрические образцы выступают основой для постижения космоса. Развитие теоретических знаний математики в античной культуре достойно завершилось созданием первого образца научной теории — евклидовой геометрии. В принципе ее построение, объединившее в целостную систему отдельные блоки геометрических задач, решаемых в форме доказательства теорем, знаменовали формирование математики в особую, самостоятельную науку.

Вместе с тем в античности были получены многочисленные приложения математических знаний к описаниям природных объектов и процессов. Прежде всего это касается астрономии, где были осуществлены вычисления положения планет, предсказания солнечных и лунных затмений, предприняты смелые попытки оценить размеры Земли, Луны, Солнца и расстояний между ними (Аристарх Самосский, Эратосфен, Птолемей). В античной астрономии были созданы две конкурирующие концепции строения мира: гелеоцентрические представления Аристарха Самосского (предвосхитившие последующие открытия Коперника) и геоцентрическая система Гиппарха и Птолемея. И если идея Аристарха Самосского, предполагавшая круговые движения планет по орбитам вокруг Солнца, столкнулась с трудностями при объяснении наблюдаемых перемещений планет на небесном своде, то система Птолемея, с ее представлениями об эпициклах, давала весьма точные математические предсказания наблюдаемых положений планет Луны и Солнца. Основная книга Птолемея “Математическое построение” была переведена на арабский язык под названием “Аль-магисте” (великое), и затем вернулась в Европу как “Альмагест”, став господствующим трактатом средневековой астрономии на протяжении четырнадцати веков.

В античную эпоху были сделаны также важные шаги в применении математики к описанию физических процессов. Особенно характерны в этом отношении работы великих эллинских ученых так называемого александрийского периода (около 300—600 гг. н э.) — Архимеда, Евклида, Герона, Паппа, Птолемея и др. В этот период возникают первые теоретические знания механики, среди которых в первую очередь следует выделить разработку Архимедом начал статики и гидростатики (развитая им теория центра тяжести, теория рычага, открытие основного закона гидростатики и разработка проблем устойчивости и равновесия плавающих тел и т.д.). В александрийской науке был сформулирован и решен ряд задач, связанных с применением геометрической статики к равновесию и движению грузов к наклонной плоскости (Герон, Папп); были доказаны теоремы об объемах тел вращения (Папп), открыты основные законы геометрической оптики — закон прямолинейного распространения света, закон отражения (Евклид, Архимед).

Все эти знания можно расценить как первые теоретические модели и законы механики, полученные с применением математического доказательства. В александрийской науке уже встречаются изложения знаний, не привязанные жестко к натурфилософским схемам и претендующие на самостоятельную значимость.

До рождения теоретического естествознания как особой, самостоятельной и самоценной области человеческого познания и деятельности оставался один шаг. Оставалось соединить математическое описание и систематическое выдвижение тех или иных теоретических предположений с экспериментальным исследованием природы. Но именно этого последнего шага античная наука сделать не смогла.

Она не смогла развить теоретического естествознания и его технологических применений. Причину этому большинство исследователей видят в рабовладении — использовании рабов в функции орудий при решении тех или иных технических задач. Дешевый труд рабов не создавал необходимых стимулов для развития солидной техники и технологии, а следовательно, и обслуживающих ее естественнонаучных и инженерных знаний.

Читайте также: