Аналоговые измерительные приборы реферат

Обновлено: 04.07.2024

Электронные аналоговые приборы это приборы, в которых преобразование сигналов осуществляется с помощью аналоговых электронных устройств. Выходной сигнал таких средств является непрерывной функцией измеряемой величины. Электронные приборы применяют при измерении практически всех электрических величин: напряжения, тока, частоты, мощности, сопротивления и т.д. Благодаря применению электронных усилителей удается расширить функциональные возможности средств измерений и обеспечить высокий уровень их характеристик: это, в первую очередь, относится к высокой чувствительности приборов, широкому диапазону измерений, малой мощности потребляемой от измеряемой цепи и т.д.

В настоящее время широкое признание получили такие приборы, как электронно-лучевые осциллографы, электронные вольтметры, омметры, анализаторы спектра и другие. Рассмотрим кратко некоторые из них.

1. Электронные вольтметры.

В электронных вольтметрах измеряемое напряжение преоб­разуется с помощью аналоговых электронных устройств в пос­тоянный ток, который подается на магнитоэлектрический из­мерительный механизм со шкалой, градуированной в единицах напряжения. Электронные вольтметры обладают высокой чувст­вительностью, широким диапазоном измерения напряжении (от десятков нановольт на постоянном токе до десятков киловольт) и большим входным сопротивлением (более 1 МОм), измеряют сигналы до частот порядка сотен, мегагерц.

Упрощенная структурная схема вольтметров постоянного тока показана на рисунке 11.


где ВД – входной делитель напряжения, УПГ – усилитель переменного или постоянного тока, УМ – магнитоэлектрический прибор.

Последовательное соединение делителя напряжения и уси­лителя является характерной особенностью всех электронных вольтметров. Такая структура позволяет делать вольтметры высокочувствительными и многопредельными.

Селективные вольтметры предназначены для измерения действующего значения отдельных гармонических составляющих измеряемого сигнала.

Принцип действия селективного вольтметра заключается в выделении отдельных гармонических составляющих сигнала или сигнала узкой полосы с помощью перестраиваемого полосового фильтра и измерений действующего значения выделенных сигналов.

2. Приборы для измерения частоты и фазы.

В электронных аналоговых частотомерах применяются два способа измерения частоты. Первый, используемый в области звуковых частот, основан на формировании импульсов, имеющих постоянную площадь, ограниченную кривой импульса тока и времени на диафрагме. Частота этих импульсов должна быть равна частоте измеряемого сигнала.

В основе второго, резонансного, способа измерения лежит сравнение частоты колебаний исследуемого источника с собственной частотой колебаний резонансного контура.

Измерительные преобразователи фазы в напряжение построены по принципу формирования прямоугольных импульсов, длительность которых пропорциональна измеряемой фазе.

3. Приборы для измерения мощности и энергии.

Электронные приборы для измерения мощности - электронные ваттметры построены на основе измерительного преобразователя мощности в напряжение, на выходе которого устанавливается измерительный механизм со шкалой, градуированной в единицах мощности. Выпускаются измерительные преобразователи активной, реактивной и полной мощности переменного тока, которые предназначены для работы как в однофазных, так и трехфазных цепях.

4. Электронно-лучевые осциллографы.

Электронно-лучевые осциллографы предназначены для визуального наблюдения, измерения и регистрации электрических сигналов, возможность наблюдения изменяющихся во времени сигналов делает осциллограф очень удобным при определении различных амплитудных и временных параметров наблюдаемых сигналов. Важными достоинствами осциллографа являются широкий частотный диапазон, высокая чувствительность и большое входное сопротивление. По количеству одновремен­но исследуемых сигналов осциллографы могут быть одноканальными и многоканальными (в основном двухканальными), В основе работы любых электронных осциллографов лежит преобразование исследуемых сигналов в видимое изображение, получаемое на экране электроннолучевой трубки.

5. Анализаторы спектра.

Анализаторы спектра, называемые также анализаторами гармоник, предназначены для измерения спектра амплитуд, сигналов. Анализ спектра производится двумя способами: первый способ анализа называется последовательным, посколь­ку гармоники определяются поочередно; второй способ – параллельным (или одновременным), так как гармоники определяют­ся одновременно.

Электронным вольтметром называется прибор, показания которого вызываются током электронных приборов, т. е. энергией источника питания вольтметра. Измеряемое напряжение управляет током электронных приборов, благодаря чему входное сопротивление электронных вольтметров достигает весьма больших значений и они допускают значительные перегрузки.

В электронных вольтметрах конструктивно объединены электронный преобразователь и измерительный механизм. Электронный преобразователь может быть ламповым или полупроводниковым. Измерительный механизм обычно магнитоэлектрический.

Измерительный механизм

Электронный вольтметр состоит из ИЦ, ИМ и ОУ. Конструктивно измерительный механизм может быть выполнен либо с подвижным магнитом, либо с подвижной катушкой. На рис. 2.2 показана конструкция прибора с подвижной катушкой.

Постоянный магнит 1, магнитопровод с полюсными наконечниками 2 и неподвижный сердечник 3 составляют магнитную систему механизма.

В зазоре между полюсными наконечниками и сердечником создается сильное равномерное радиальное магнитное поле, в котором находится подвижная прямоугольная катушка 4, намотанная медным или алюминиевым проводом на алюминиевом каркасе (применяют и бескаркасные рамки). Катушка (рамка) может поворачиваться в зазоре на полуосях 5 и 6. Спиральные пружины 7 и 8 создают противодействующий момент и используются для подачи измеряемого тока от выходных зажимов прибора в рамку (механические и электрические соединения на рисунке не показаны). Рамка жестко соединена и со стрелкой 9. Для балансировки подвижной части имеются передвижные грузики 10. Проходя по проводникам обмотки рамки, ток взаимодействует с магнитным потоком постоянного магнита, что вызывает появление механических сил F, создающих вращающий момент Мвр, стремящийся повернуть рамку.

I - ток, протекающий по обмотке,

B – магнитная индукция в воздушном зазоре

w – число витков обмотки

Это уравнение является выражением вращающего момента для всех электронный вольтметров. Противодействующий момент в приборах необходим для создания однозначного соответствия измеряемой величины определенному углу отклонения подвижной части. В случае, когда противодействующий момент создается спиральной пружиной, противодействующий момент будет

где D — удельный противодействующий момент, зависящий от геометрических размеров и материала пружины (растяжек).

Электронные вольтметры подразделяют на:

1. Установки для поверки вольтметров

2. Вольтметры постоянного тока

3. Вольтметры переменного тока

4. Вольтметры импульсного тока

1. Установки для поверки вольтметров – это приборы, предназначенные для настройки, регулирования и поверки измерителей напряжения. Основой для этих приборов служит источники напряжения калиброванного уровня.

2. Отличительной особенностью электронных вольтметров на постоянном токе – их большое входное сопротивление, благодаря этому их можно применять для измерения напряжения на участке цепи.

3. Наиболее распространенными и универсальными приборами являются электронные вольтметры переменного тока. У них высокая чувствительность и широкие пределы измерений, которые при использовании усилителей и делителей напряжения охватывают область напряжений от единиц микровольт до тысяч вольт; малая входная емкость (единицы пикофарад) и высокое входное активное сопротивление (до десятков мегом); обширный диапазон рабочих частот (от десятков герц до сотен мегагерц); способность выдерживать большие перегрузки.

4. Импульсные предназначены, для измерения одиночных и повторяющихся импульсных и импульсно-моделирующих напряжений в диапазоне длительности от нескольких наносекунд до десятков миллисекунд. Некоторые импульсные используются для измерения амплитудных значений напряжения на переменном токе. Кроме того, можно использовать для измерения постоянного напряжения.

5. Фазочувствительные вольтметры применяются при снятии амплитудно-частотных и фазово-частотных характеристик различных низкочастотных четырехполюсников — усилителей, фильтров и др.

6. Селективные - электронные вольтметры, на входе которых предусмотрены избирающие, подстраивающие устройства. Ими можно измерять высокочастотные напряжения в присутствии помех.

7. Универсальные. Измеряют напряжение, как на постоянном, так и на переменном токе. Позволяют измерять силу тока в цепях постоянного тока.

Вольтметры постоянного тока

Усилитель постоянного тока

Где ВУ – входное устройство, УПТ – усилитель постоянного тока, ИМ – магнитоэлектрический измерительный механизм.

Электронные вольтметры постоянного тока выполняются по схеме, представленной на рис. 2.28. Измеряемое напряжение V подается на входное устройство, представляющее собой многопредельный высокоомный делитель на резисторах. С делителя напряжение поступает на усилитель постоянного тока и далее — на измерительный механизм. Делитель и усилитель постоянного тока ослабляют или усиливают напряжение до значений, необходимых для нормальной работы измерительного механизма. Одновременно усилитель обеспечивает согласование высокого сопротивления входной цепи прибора с низким сопротивлением катушки измерительного механизма.

Для создания высокочувствительных вольтметров постоянного тока (микровольтметров) применяют усилители постоянного тока, построенные по схеме М — ДМ (модулятор — демодулятор).

Генератор управляет работой модулятора и демодулятора, представляющих собой в простейшем случае аналоговые ключи, синхронно замыкая и размыкая их с некоторой частотой. На выходе модулятора возникает однополярный импульсный сигнал, амплитуда которого пропорциональна измеряемому напряжению. Переменная составляющая этого сигнала усиливается усилителем, а затем выпрямляется демодулятором. Применение управляемого демодулятора делает вольтметр чувствительным к полярности входного сигнала.

Недостатками вольтметров являются трудность изменения предела измерений, из-за чего приборы выполняются, как правило, однопредельными, и низкая чувствительность (верхний предел измерений не менее десятков вольт), что определяет преимущественное их использование для измерения высоких напряжений. Необходимость питания от стабильных источников постоянного или переменного напряжения; необходимость в электрической установке стрелки измерителя на нуль или калибровке вольтметра перед началом измерений; сравнительно большая погрешность измерений (до 3—5%). Шкалу любого электронного вольтметра градуируют в среднеквадратических (действующих) значениях напряжения синусоидальной формы. Исключение составляют импульсные вольтметры, шкалу которых градуируют в амплитудных значениях.

Преимущества

Электронные вольтметры обладают высокой чувствительностью, высоким входным сопротивлением, широким диапазоном измеряемых напряжений, могут работать в широком диапазоне частот.

Диапазон измерений

Электронные вольтметры обладают широким диапазоном измеряемых напряжений: от десятков нановольт на постоянном токе до десятков киловольт, работают в частотном диапазоне от постоянного тока до частот порядка сотен мегагерц, входное сопротивление более 1 МОм.

Вольтметры с уравновешивающим преобразованием, как правило, имеют более высокие классы точности: 0,2 – 2,5.

Аналоговые измерительные приборы, как правило, обеспечивают выполнение прямых измерений, отсчет результата измерений производится по шкале. Режим измерений, выполняемых аналоговыми средствами измерений - статический. Большинство аналоговых измерительных приборов - стрелочные с неподвижной шкалой и подвижной стрелкой, перемещение которой (поворот или линейное перемещение) относительно шкалы функционально взаимнооднозначно связано со значением измеряемой величины.

Другие разновидности аналоговых измерительных приборов:

- с неподвижной стрелкой или иным указателем и подвижной шкалой,

- с линейным индикатором в виде совмещенной со шкалой полосы, длина которой функционально взаимно однозначно связана со значением измеряемой величины (например, ртутный термометр).

Рассмотрим метрологическую структурную схему измерений, выполняемых стрелочным измерительным прибором, представленную на рис. 26.

По сравнению с метрологической структурной схемой рис. 8 здесь в составе погрешности применения отсутствует погрешность, вызванная пульсациями и помехами, которые наложены на измеряемую величину и однородны с ней. Это вызвано тем, что механизм, перемещающий стрелку относительно шкалы или, наоборот, шкалу относительно стрелки, обладает значительной инерционностью: время установления показаний прибора равно примерно 1 секунде. Поэтому высокочастотные пульсации и помехи, действующие на большинстве объектов, фильтруются почти полностью.

Примеры погрешностей и приведены выше в пп. 2.2, 3.1.2.

В стрелочном приборе измеряемая величина преобразуется в угол поворота стрелки (или в перемещение шкалы) с некоторой погрешностью . Обратное преобразование и совмещение со шкалой осуществляется за счет того, что отметки на шкале наносятся в соответствии с номинальной обратной функцией и оцифровываются в единицах измеряемой величины. Перенос размеров измеряемой величины на шкалу выполняется путем подачи на вход прибора образцовых значений от специального источника (калибратора), связанного с государственным эталоном через поверочную схему (см. п. 3.6.4). Эти действия также сопровождаются погрешностями, которые обозначены, как .

В конструкторских и нормативных документах на аналоговые измерительные приборы устанавливаются следующие метрологические характеристики:

- диапазон изменения измеряемой величины,

- предел допускаемой основной абсолютной инструментальной погрешности или (гораздо чаще) предел допускаемой основной приведенной инструментальной погрешности (п. 3.4),

- пределы допускаемых дополнительных погрешностей (п. 3.4), вызываемых отклонением каждой из влияющих величин от значений, соответствующих нормальным условиям,

- характеристики параметров, влияющих на погрешность , вызванную взаимодействием прибора с объектом измерений (см. п. 2.2); для вольтметров - это сопротивление или ток полного отклонения стрелки, для амперметров - это собственное сопротивление амперметра.

Нормы на указанные метрологические характеристики устанавливаются следующим образом.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Нормы на предел допускаемой основной абсолютной погрешности устанавливаются в единицах измеряемой величины числом, содержащим не более двух значащих цифр.

Нормы на предел допускаемой основной приведенной, в том числе, относительной погрешности устанавливаются числом, выраженным в процентах, из ряда чисел по ГОСТ 8.401, представленного в п. 3.5.5.

Нормы на предел допускаемой дополнительной погрешности устанавливаются, как на дополнение к пределу основной (абсолютной или приведенной) погрешности в следующих долях от предела основной погрешности:

- для дополнительной погрешности от температуры окружающей среды - на половину или на целый предел основной погрешности при отклонении температуры от нормального значения на каждые 10 град.,

- для остальных влияющих величин - на половину или на целый предел основной погрешности при отклонении каждой влияющей величины (п. 1.2) от нормального значения на весь диапазон изменения каждой влияющей величины в рабочих условиях применения прибора.

Нормы на параметры, влияющие на погрешность , устанавливаются указанием номинального значения и пределов допускаемых отклонений от этого значения.

Кроме записей в нормативной или сопроводительной документации некоторые характеристики и свойства аналоговых измерительных приборов указываются на их шкалах или корпусах в соответствии с ГОСТ 23217.

Обозначения системы прибора:

- прибор магнитоэлектрической системы,

- прибор магнитоэлектрической системы с выпрямителем,

- прибор электродинамической системы,

- прибор ферродинамической системы,

- прибор электромагнитной системы,

- прибор электростатической системы,

- прибор индукционной системы.

Обозначения классов точности прибора (см. п. 3.4)

- обозначение класса точности прибора, численно равное пределу до- пускаемой основной приведенной погрешности, которая определена при нормирующем значении (нормируется, если мульти- пликативная составляющая погрешности мала по сравнении с адди- тивной составляющей); в подобных случаях это означает, что абсо- лютная инструментальная погрешность исправного средства измере- ний в нормальных условиях эксплуатации не должна превышать зна- чения

где - численное обозначение класса точности средства измерения (СИ).

В приведенном примере .

- обозначение класса точности прибора, численно равное пределу до- пускаемой основной относительной погрешности которая определена при нормирующем значении (нормируется, если аддитивная составляющая погрешности мала по сравнении с мультипликативной составляющей); в подобных случаях это означает, что абсолютная инструментальная погрешность исправного средства измерений в нормальных условиях эксплуатации не должна превышать значения

где - численное обозначение класса точности средства измерения (СИ), х - результат измерения.

В приведенном примере .

- обозначение класса точности прибора, численно равное пределу до- пускаемой основной приведенной погрешности которая определена при нормирующем значении (нормируется, когда нулевое значение измеряемой величины находится либо внутри диа- пазона, либо вне его); в подобных случаях это означает, что абсо- лютная инструментальная погрешность исправного средства измере- ний в нормальных условиях эксплуатации не должна превышать зна- чения

где - численное обозначение класса точности средства измерения (СИ).

В приведенном примере .

- обозначение класса точности прибора (только аналогового омметра), численно равное пределу основной приведенной погрешности, которая определена, как выраженное в процентах отношение длины участка шкалы Dl , соответствующего максимальной абсолютной погрешности, к общей длине шкалы L (см. п. 3.4).

Примеры практического применения последнего выражения нормы, которая устанавливается на основную погрешность аналогового омметра, приведены в лабораторном практикуме .

Обозначения вида тока (напряжения)

- постоянный ток (напряжение),

- переменный ток (напряжение),

- постоянный и переменный ток (напряжение),


- нормальное рабочее положение прибора вертикальное (на щите),


- нормальное рабочее положение прибора горизонтальное,


- испытательное напряжение прочности изоляции 500 В,


- испытательное напряжение, превышающее 500 В (здесь 2 кВ),


- прибор не подлежит испытанию прочности изоляции,


- перед использованием прибора внимательно изучить инструкцию

по его эксплуатации,


- зажим не изолирован от высокого напряжения,


- зажим соединен с корпусом, не заземляется,


- зажим соединен с корпусом, заземляется.

Поможем написать любую работу на аналогичную тему

Аналоговые измерительные приборы. Принципы действия, свойства и применения

Аналоговые измерительные приборы. Принципы действия, свойства и применения

Аналоговые измерительные приборы. Принципы действия, свойства и применения

Аналоговыми измерительными приборами называются при­боры, показания которых являются непрерывной функцией изменений измеряемой величины. Аналоговые электромеханические приборы строятся по структурной схеме, представленной на (рис.5.1). Они состоят из измерительной цепи, измерительного механизма и отсчетного устрой­ства.


Рисунок 5.1 – Структурная схема аналогового

Измерительная цепь (ИЦ) содержит резисторы и другие элементы, необ­ходимые для требуемого преобразования измеряемой величины.

Измерительный механизм (ИМ) состоит из подвижной и неподвижной ча­стей. В зависимости от принципа преобразования электромагнитной энергии в энергию движения подвижной части механизма различают магнитоэлектрические, электромагнитные, электродинамические, электростатические и индукционные приборы.

Отсчетное устройство (ОУ) состоит из указателя (стрелочного или свето­вого), связанного с подвижной частью прибора, и неподвижной шкалы, представляющей собой совокупность отметок, нанесенных на лицевой стороне (циферблате) прибора. Расстояние между двумя соседними отметками называется длиной деления или просто делением шкалы.

Цена деления, называемая также постоянной прибора, соответствует изменению измеряемой величины, вызывающему перемещение указа­теля на одно деление.

Уравнение (5.1) называется уравнением преобразования механизма прибора, оно связывает показания прибора со значением измеряемой величину, и характеризует свойства измерительного прибора в целом.

где α – угол поворота подвижной части; W – электрокинетическая сила; λ - величина, зависящая от параметров измерительного механизма.

Магнитоэлектрические приборы

В приборах магнитоэлектрической системы используется взаимодействие поля постоянного магнита с катушкой (рамкой), по которой протекает ток. Конструктивно измерительный механизм может быть выполнен либо с подвижным магнитом, либо с подвижной катушкой. На (рис.5.2) показана конструкция прибора с подвижной катушкой.


Рисунок 5.2 – Измерительный механизм МЭ прибора

Постоянный магнит 1, магнитопровод с полюсны­ми наконечниками 2 и неподвижный сердечник 3 составляют магнитную систему механизма. В зазоре между полюсными наконечниками и сердеч­ником создается сильное равномер­ное радиальное магнитное поле, в ко­тором находится подвижная прямо­угольная катушка (рамка) 4, намо­танная медным или алюминиевым проводом на алюминиевом каркасе.

Уравнение преобразования можно получить, если подставить в фор­мулу (5.1) выражение для вращающего момента Мвр, действующего на подвижную часть магнитоэлектрического механизма

где B – магнитная индукция в воздушном зазоре; w – число витков рамки; S – ее площадь; I – ток, протекающий по рамке.

Коэффициент пропорциональности SI = BwS/W называется чувствительностью магнитоэлектрического механизма к току.

Из группы аналоговых приборов магнитоэлектрические приборы от­носятся к числу наиболее чувствительных и точных. Изменения темпера­туры окружающей среды и внешние магнитные поля мало влияют на их работу. Для измерений в цепях переменного тока требуется предварительное преобразование переменного тока в постоянный.

Амперметры

Магнитоэлектрический механизм позволяет измерять малые постоян­ные токи, не превышающие 20-50 мА. Для того чтобы измерять большие токи, используют измерительные цепи, включающие в себя шунты, представляющие собой манганиновые резисторы, сопротивление которых во много раз меньше сопротивления рамки RА магнито­электрического измерительного механизма. Поэтому при включении шунта параллельно прибору (рис.5.3) основная часть измеряемого тока I проходит через шунт, а ток IА не превышает допустимого значения.


Рисунок 5.3 – Схема включения амперметра с шунтом

Отношение I/IА = n, показывающее, во сколько раз измеряемый ток превышает допустимое значение, называется коэффициентом шунтирования. Со­противление шунта определяется как

Амперметры для измерения сравнительно небольших токов (до не­скольких десятков ампер) имеют внутренние шунты, вмонтированные в корпус прибора. Измерение больших токов (до нескольких тысяч ампер) осуществляют при помощи наружных шунтов, которые имеют определенные номинальные падения напряжения (45, 60, 75, 100 и 300 мВ) и классы точности (0,02; 0,05; 0,1; 0,2; 0,5).

Вольтметры

Схема вольтметра магнитоэлектрической системы приведена (рис.5.4).


Рисунок 5.4 – Схема включения вольтметра

Добавочный резистор Rдоб, включенный последовательно с рамкой измерительного механизма, ограничивает ток полного отклонения I, протекающего через нее, до допустимых значений. При этом падение напряжения на рамке UV зависит от сопротивления рам­ки RV и обычно не должно превышать десятков милливольт. Осталь­ная часть измеряемого напряжения U должна падать на добавочном сопротивлении. Если необходимо получить верхний предел измерения напряжения, в m раз превышающий значение UV, то необходимо вклю­чить добавочный резистор, сопротивление которого легко вычисляется по формуле

Добавочные резисторы изготавливают из термостабильных мате­риалов, например, из манганиновой проволоки. Они могут быть внут­ренними, встроенными в корпус прибора (при напряжениях до 600 В), и наружными (при напряжениях 600-1500 В).

Логометры

Приборы, в которых противодействующий момент со­здается не при помощи упругого элемента, а теми же электромагнит­ными силами, что и вращающий, называются логометрами. У логометров положение подвижной части определяется отношением двух токов. Логометры магнитоэлектрической системы (рис.5.5) имеют подвиж­ную часть из двух жестко скрепленных между собой катушек 1 и 2 (рамок).


Рисунок 5.5 – Устройство логометра

Последние могут свободно вращаться в неравномерном поле постоян­ного магнита. Для создания неравномерного магнитного поля полюсным наконечникам, как и сердечнику, находящемуся между ними, при­дается особая форма. Отклонение указателя прибора равно

Логометры применяются для измерения сопротивления и других электрических величин. Основным достоинством логометрических при­боров является независимость их показаний от напряжения питания.

Электродинамические приборы

Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек, по которым про­текает ток (рис.5.6).


Рисунок 5.6 – Электродинамический измерительный прибор

Внутри неподвижной катушки 1 может вращаться подвижная катушка 2. Поворот осуществляется вращающим моментом, вызванным взаимодействием магнитных полей катушек 1 и 2. Уравнение преобразования прибора для постоянных токов имеет вид

где М – взаимная индуктивность катушки; I1I2 – токи в катушках.

Если по катушкам протекают переменные токи, то это выражение примет вид

Из этого уравнения следует, что перемещения подвижной части механизма при работе на пе­ременном токе зависят как от токов в его катушках, так и от разно­сти фаз между этими токами. Это дает возможность использовать при­боры электродинамической системы не только в качестве амперметров и вольтметров, но и в качестве ваттметров.

В амперметрах катушки соединены последовательно (рис.5.7.а) или параллельно (рис.5.7.б). Последовательное соединение используется в приборах, предназначенных для измерения малых токов (до 0,5 А). При больших токах (до 10 А) катушки вклю­чаются параллельно.


Рисунок 4.7 – Схема соединений катушек амперметра

а) неподвижная, б)подвижная

В последовательной схеме амперметра I1 = I2 = I, φ1 – φ2 = 0, поэто­му уравнение преобразования (4.5) сводится к виду

α = (1/W)(dM/dα)I 2 , (4.6)

т.е. при условии dМ/dα = const угол поворота стрелки α квадратично за­висит от тока, протекающего в катушках.

В этом случае шкала неравномерна. Поэтому расположение и форму катушек выбирают так, чтобы производная dM/dα зависела от угла между подвижной и неподвиж­ной катушками.

В параллельной схеме I1 = kI; I2 = kI, а разность фаз также устанав­ливается равной нулю подбором индуктивностей в цепях катушек.

Вольтметры выполняются по схеме (рис.5.8). Катушки включаются последовательно, ток через них ограничивается добавочным резистором Rдоб.

Уравнение преобразования вольтметра имеет вид

α = (1/W)(dM/dα)(U 2 /R 2 ), (5.7)

где R - общее сопротивление цепи прибора.

Как и в случае амперметров, изменением dM/dα добиваются почти равномерного характера рабочего участка электродинамических вольт­метров.


Рисунок 5.8 – Схема включения катушек вольтметра

Обычно электродинамические вольтметры выполняются многопредельными при помощи нескольких добавочных рези­сторов.

Схема соединения катушек ваттметра и его включения в цепь для измерения мощности, потребляемой на­грузкой Zн , приведена на (рис.5.9).


Рисунок 5.9 – Схема включения ваттметра

Ток I1 в неподвижной катушке равен току нагрузки, а ток I2 в подвижной катушке пропорционален приложенному напряжению:

где Rдоб - сопротив­ление добавочного резистора; r — сопротивление подвижной катушки.

С учетом этого и (5.5) уравнение шкалы для ваттметра

где Р - активная мощность нагрузки.

Погрешности электродинамических приборов возникают из-за темпе­ратурных влияний и наличия внешних магнитных полей. При повыше­нии частоты до нескольких сот герц существенными становятся также частотные погрешности.

Электростатические приборы

Уравнение преобразования электростатического прибора для постоянного тока

α = (1/2W)(dС/dα)U 2 , (5.9)

где С - емкость между пластинами, зависящая от их взаимного распо­ложения; U- измеряемое напряжение. Из (5.9) следует, что показание прибора не зависит от полярности приложенного напряжения.

В случае переменного тока уравнение остается прежним, но только переменная U является действующим значением переменного напряжения.

Достоинства: ши­рокий частотный диапазон, малое потребление энергии, независи­мость показаний от внешних магнитных полей.

Недостатки: низкая чувствительность и невысокую точность.

Электромагнитные приборы

Электромагнитный изме­рительный механизм представлен на (рис.5.10), где 1 - катушка; 2 - сердечник, укрепленный на оси прибора; 3 - спиральная пружина, создающая противодействующий момент; 4 - воздушный успокоитель.


Рисунок 5.10 – Конструкция электромагнитного прибора

Под действием магнитного поля сер­дечник втягивается внутрь катушки. Подвижная часть механизма по­ворачивается до тех пор, пока вращающий момент не уравновесится противодействующим моментом, создаваемым пружиной.

Уравнение преобразования прибора имеет вид

α = (1/2W)(dL/dα)I 2 , (5.10)

где L - индуктивность катушки, зависящая от положения сердечника, а следовательно, и от угла поворота подвижной части.

Из (5.10) следует, что угол поворота подвижной части механизма пропорционален квадрату действующего значения тока, т.е. не за­висит от направления тока. Поэтому электромагнитные приборы оди­наково пригодны для измерений в цепях постоянного и переменного тока.

Достоинства: низкая стоимость, надежность, пригодность для измерения в цепях постоянного и переменного тока.

Недостатки: большое потребление энергии, малая точность и чувствительность, сильное влияние внешних маг­нитных полей.

Заключение: у большинства электромеханических приборов входное сопротивле­ние невелико (килоомы), поэтому они пригодны для измерения напря­жения только в низкоомных цепях. В цепях с высокоомными нагрузками (мегаомы) эти приборы (за исключением электростатических) исполь­зовать нельзя, так как при их включении шунтируется нагрузка и тем самым изменяется электрический режим цепи. Кроме того, малый диапазон частот, большие входные емкости и индуктивности, зависимость входного со­противления от частоты.

Читайте также: