Акустико эмиссионный метод неразрушающего контроля реферат

Обновлено: 04.07.2024

Метод АЭ основан на регистрации и анализе акустических волн, возникающих в процессе пластической деформации и разрушения (роста трещин) контролируемых объектов. Это позволяет формировать адекватную систему классификации дефектов и критерии оценки состояния объекта, основанные на реальном влиянии дефекта на объект. Другим источником АЭ-контроля является истечение рабочего тела (жидкости или газа) через сквозные отверстия в контролируемом объекте.

Характерными особенностями метода АЭ контроля, определяющими его возможности и область применения, являются следующие:

  • метод АЭ-контроля обеспечивает обнаружение и регистрацию только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности;
  • метод АЭ-контроля обладает весьма высокой чувствительностью к растущим дефектам - позволяет выявить в рабочих условиях приращение трещины порядка долей мм. Предельная чувствительность акустико-эмиссионной аппаратуры по теоретическим оценкам составляет порядка 1*10 -6 мм 2 , что соответствует выявлению скачка трещины протяженностью 1 мкм на величину 1 мкм;
  • свойство интегральности метода АЭ-контроля обеспечивает контроль всего объекта с использованием одного или нескольких преобразователей АЭ-контроля, неподвижно установленных на поверхности объекта;
  • метод АЭ позволяет проводить контроль различных технологических процессов и процессов изменения свойств и состояния материалов;
  • положение и ориентация объекта не влияет на выявляемость дефектов;
  • метод АЭ имеет меньше ограничений, связанных со свойствами и структурой материалов;
  • особенностью метода АЭ, ограничивающей его применение, является в ряде случаев трудность выделения сигналов АЭ из помех. Это объясняется тем, что сигналы АЭ являются шумоподобными, поскольку АЭ есть стохастический импульсный процесс. Поэтому, когда сигналы АЭ малы по амплитуде, выделение полезного сигнала из помех представляет собой сложную задачу.

При развитии дефекта, когда его размеры приближаются к критическому значению, амплитуда сигналов АЭ и темп их генерации резко увеличивается, что приводит к значительному возрастанию вероятности обнаружения такого источника АЭ.

Метод АЭ может быть использован для контроля объектов при их изготовлении, в процессе приемочных испытаний, при периодических технических обследованиях, в процессе эксплуатации.

АЭ-контроль технического состояния обследуемых объектов проводится только при создании в конструкции напряженного состояния, инициирующего в материале объекта работу источников АЭ. Для этого объект подвергается нагружению силой, давлением, температурным полем и т.д. Выбор вида нагрузки определяется конструкцией объекта и условиями его работы, характером испытаний и приводится в "Программе работ по АЭ контролю объектов".

Схемы применения акустико-эмиссионного метода контроля

Метод АЭ рекомендуется использовать для контроля промышленных объектов по следующим схемам, представляющим собой, как правило, варианты сочетания с другими методами неразрушающего контроля.

  1. Проводят АЭ контроль объекта. В случае выявления источников АЭ в месте их расположения проводят контроль одним из регламентируемых методов неразрушающего контроля (ПК): ультразвуковым (УЗК), радиационным, магнитным (МПД), проникающими веществами и другими, предусмотренными нормативно-техническими документами. Данную схему рекомендуется использовать при контроле объектов, находящихся в эксплуатации. При этом сокращается объем применяемых методов неразрушающего контроля, поскольку в случае использования регламентируемых методов необходимо проведение сканирования по всей поверхности (объему) контролируемого объекта.
  2. Проводят контроль одним или несколькими методами НК. При обнаружении недопустимых (по нормам регламентируемых методов контроля) дефектов или при возникновении сомнения в достоверности применяемых методов НК проводят контроль объекта с использованием метода АЭ. Окончательное решение о допуске объекта в эксплуатацию или ремонте обнаруженных дефектов принимают по результатам проведенного АЭ контроля.
  3. В случае наличия в объекте дефекта, выявленного одним из методов НК, метод АЭ используют для слежения за развитием этого дефекта. При этом может быть использован экономный вариант системы контроля, с применением одноканальной или малоканальной конфигурации акустико-эмиссионной аппаратуры.
  4. Метод АЭ в соответствии с требованиями нормативно-технических документов к эксплуатации сосудов, работающих под давлением, применяют при пневмоиспытании объекта в качестве сопровождающего метода, повышающего безопасность проведения испытаний. В этом случае целью применения АЭ контроля служит обеспечение предупреждения возможности катастрофического разрушения. Рекомендуется использовать метод АЭ в качестве сопровождающего метода и при гидроиспытании объектов.
  5. Метод АЭ может быть использован для оценки остаточного ресурса и решения вопроса относительно возможности дальнейшей эксплуатации объекта. Оценка ресурса производится с использованием специально разработанных методик, согласованных в установленном порядке. При этом достоверность результатов зависит от объема и качества априорной информации о моделях развития повреждений и состояния материала контролируемого объекта

Порядок применения метода акустической эмиссии

  1. АЭ контроль проводят во всех случаях, когда он предусмотрен нормативно-техническими документами или технической документацией на объект.
  2. АЭ контроль проводят во всех случаях, когда нормативно-технической документацией на объект предусмотрено проведение неразрушающего контроля одним из регламентируемых методов, но по техническим или другим причинам проведение такого контроля невозможно.
  3. Допускается использование АЭ контроля вместо регламентируемых методов неразрушающего контроля по согласованию в установленном порядке.

Оценка результатов АЭ контроля

После обработки принятых сигналов результаты контроля представляют в виде идентифицированных и классифицированных источников АЭ.

При принятии решения по результатам АЭ контроля используют данные, которые должны содержать сведения обо всех источниках АЭ, их классификации и сведения относительно источников АЭ, параметры которых превышают допустимый уровень. Допустимый уровень источника АЭ устанавливает исполнитель при подготовке к АЭ контролю конкретного объекта.

Классификацию источников АЭ выполняют с использованием следующих параметров сигналов: суммарного счета, числа импульсов, амплитуды (амплитудного распределения), энергии (либо энергетического параметра), скорости счета, активности, концентрации источников АЭ. В систему классификации также входят параметры нагружения контролируемого объекта и время.

Выявленные и идентифицированные источники АЭ рекомендуется разделять на четыре класса:

  • Источник I класса - пассивный источник.
  • Источник II класса - активный источник.
  • Источник III класса - критически активный источник.
  • Источник IV класса - катастрофически активный источник.

Выбор системы классификации источников АЭ и допустимого уровня (класса) источников рекомендуется осуществлять каждый раз при АЭ контроле конкретного объекта, используя данные, приведенные в приложении 3 (ПБ 03-593-03). В некоторых зарубежных нормативно-технических документах приняты другие системы классификации (приложение 3 ПБ).

Рекомендуемые действия персонала, выполняющего АЭ контроль при выявлении источников АЭ того или иного класса, следующие:

  1. регистрируют и следят за развитием ситуации в процессе выполнения данного контроля;
  2. отмечают в отчете и записывают рекомендации по проведению дополнительного контроля с использованием других методов.
  1. регистрируют и следят за развитием ситуации в класса процессе выполнения данного контроля;
  2. предпринимают меры по подготовке возможного сброса нагрузки.
  1. производят немедленное уменьшение нагрузки до 0, либо до величины, при которой класс источника АЭ снизится до уровня II или III класса;
  2. после сброса нагрузки проводят осмотр объекта и при необходимости контроль другими методами.

Каждый более высокий класс источника АЭ предполагает выполнение всех действий, определенных для всех источников более низких классов.

Окончательная оценка допустимости выявленных источников АЭ и индикаций при использовании дополнительных видов НК осуществляется с использованием измеренных параметров дефектов на основе нормативных методов механики разрушения, методик по расчету конструкций на прочность и других действующих нормативных документов.

Правила (ПБ-03-593-03) предназначены для применения при проведении акустико-эмиссионного контроля:

  1. Емкостного, колонного, реакторного, теплообменного оборудования химических, нефтехимических и нефтеперерабатывающих производств
  2. Изотермических хранилищ
  3. Хранилищ сжиженных углеводородных газов под давлением
  4. Резервуаров нефтепродуктов и агрессивных жидкостей
  5. Оборудования аммиачных холодильных установок
  6. Сосудов, аппаратов
  7. Технологических трубопроводов (газопроводов, продуктопроводов, промысловых магистральных трубопроводов нефти и газа)
  8. Трубопроводов пара и горячей воды и их элементов.

Сравнительная оценка методов неразрушающего контроля (НК) и метода акустической эмиссии (АЭ):

Принципы акустического метода неразрушающего контроля. Анализ вибрационного метода контроля, метода акустической эмиссии. Техническая диагностика объектов транспортировки и хранения нефти и газа. Описание основных дефектов оборудования трубопроводов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 27.04.2020
Размер файла 333,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Акустические методы неразрушающего контроля

Акустические волны в зависимости от частоты колебаний делятся на несколько диапазонов: инфразвуковые волны с частотами колебаний ниже 16 Гц, звуковые волны с частотами от 16 до 20000 Гц, ультразвуковые волны с частотами от 20000 до 10 9 Гц и гиперзвуковые волны с частотами выше 10 9 Гц.

Акустический метод - это метод, основанный на регистрации параметров упругих волн, возбуждаемых и возникающих в контролируемом объекте.

В общем случае этот метод включает контроль энергетических характеристик колебаний, дающих представление о состоянии диагностируемого объекта и изменении амплитуд вибрации в широком диапазоне частот, и позволяет уточнить место и характер возникающего нарушения.

В соответствии с ГОСТ 23829-85 акустические методы НК подразделяют на две большие группы: активные и пассивные методы (рисунок 2.4).

Рисунок 2.4- Классификация акустических методов контроля

Активные методы основаны на излучении и приеме упругих волн, пассивные - только на приеме волн, источником которых служит сам объект контроля (ОК), например образование трещин сопровождается возникновением акустических колебаний, выявляемых акустико-эмиссионным методом.

Активные методы делят на методы отражения, прохождения, комбинированные (использующие как отражение, так и прохождение), собственных колебаний и импедансные.

Методы отражения основаны на анализе отражения импульсов упругих волн от неоднородностей или границ ОК, методы прохождения - на влиянии параметров ОК на характеристики прошедших через него волн. Комбинированные методы используют влияние параметров ОК как на отражение, так и на прохождение упругих волн. В методах собственных колебаний о свойствах ОК судят по параметрам его свободных или вынужденных колебаний (их частотам и величине потерь).

1.Вибрационный метод контроля

Основы измерения вибрации. Вибрация - это механические колебания тела. Самый простой вид вибрации - это колебание или повторяющееся движение объекта около положения равновесия. Этот тип вибрации называется общей вибрацией, потому что тело перемещается как единое целое и все его части имеют одинаковую по величине и направлению скорость.

Колебательное движение твердого тела может быть полностью описано в виде комбинации шести простейших типов движения: поступательного в трех взаимно перпендикулярных направлениях (х, у, z в декартовых координатах) и вращательного относительно трех взаимно перпендикулярных осей (Ох, Оу, Оz). Любое сложное перемещение тела можно разложить на эти шесть составляющих. Поэтому о таких телах говорят, что они имеют шесть степеней свободы.

Вибрация тела вызывается силами возбуждения. Эти силы могут быть приложены к объекту извне или возникать внутри него самого. Вибрация конкретного объекта полностью определяется силой возбуждения, ее направлением и частотой. Именно по этой причине вибрационный анализ позволяет выявить силы возбуждения при работе машины. Эти силы зависят от состояния машины, и знание их характеристик и законов взаимодействия позволяет диагностировать дефекты последней.

Измерения амплитуды вибрации. Для описания и измерения механических вибраций используются следующие понятия:

· Максимальная Амплитуда (Пик) - это максимальное отклонение от нулевой точки, или от положения равновесия.

· Размах (Пик-Пик) - это разница между положительным и отрицательным пиками. Для синусоидального колебания размах в точности равен удвоенной пиковой амплитуде, так как временная реализация в этом случае симметрична

· Среднеквадратическое значение амплитуды (СКЗ) равно квадратному корню из среднего квадрата амплитуды колебания. Для синусоидальной волны СКЗ в 1,41 раза меньше пикового значение, однако такое соотношение справедливо только для данного случая.

СКЗ является важной характеристикой амплитуды вибрации. Для ее расчета необходимо возвести в квадрат мгновенные значения амплитуды колебаний и усреднить получившиеся величины по времени. Для получения правильного значения, интервал усреднения должен быть не меньше одного периода колебания. После этого извлекается квадратный корень и получается СКЗ.

Нелинейности роторных машин. Вибрация машины - это, фактически отклик на силы, вызванные ее движущимися частями. Вибрацию измеряют в разных точках машины и находят значения сил. Измеряя частоту вибрации, предполагают, что и вызывающие ее силы имеют те же частоты, а ее амплитуда пропорциональна величине этих сил. То есть предполагают, что машина является линейной системой.

По мере того, как машина изнашивается, увеличиваются ее зазоры, появляются трещины и разболтанность и т.д., ее отклик будет все больше отклоняться от линейного закона, и в результате характер измеряемой вибрации может стать совершенно отличным от характера возбуждающих сил.

2.Метод акустической эмиссии

Термины и определения. Методика акустико-эмиссионной диагностики (контроля) - технологические операции с указанием их параметров по выполнению акустико-эмиссионной диагностики (контроля) конкретного объекта.

Чувствительный элемент преобразователя акустической эмиссии - часть преобразователя, где происходит непосредственное преобразование акустического сигнала в электрический.

Техническое состояние - состояние, которое характеризуется в определенный момент времени, при определенных условиях внешней среды значениями параметров, установленных технической документацией на объект.

Шум - непрерывный сигнал, не связанный с наличием дефектов в объекте и мешающий обнаружению сигналов акустической эмиссии и измерению их параметров.

Помеха - импульсный сигнал, имеющий акустическую или электромагнитную природу происхождения, не связанный с наличием дефектов в объекте.

Испытания - техническая операция, заключающаяся в установлении одной или нескольких характеристик объекта в соответствии с установленной процедурой.

Порог аппаратуры акустической эмиссии - параметр настройки аппаратуры, выраженный в вольтах, выше значения которого сигналы акустической эмиссии принимаются и обрабатываются.

Предельная чувствительность аппаратуры акустической эмиссии - параметр аппаратуры акустической эмиссии, выраженный в вольтах, соответствующий среднеквадратическому значению собственных тепловых (или электронных) шумов аппаратуры с подключенным преобразователем АЭ, приведенный ко входу.

Рабочее давление - избыточное давление, характеризующее эксплуатационные качества сосуда, гарантируемые заводом-изготовителем, или установленное экспертной организацией по результатам обследования его технического состояния при восстановлении технического паспорта и указанное в удостоверении о качестве изготовления сосуда.

Пробное давление - избыточное давление, которым следует проводить испытание сосуда на прочность.

Испытательное давление - избыточное давление, которым следует проводить испытание сосуда на прочность в сопровождении акустико-эмиссионного контроля. На рисунке 2.2 приведена схема АЭ контроля на трубопроводе.

1 - преобразователь АЭ (приемник); 2 - блок усиления; 3 - блок фильтрации; 4 - центральный блок сбора и обработки информации на базе индустриального компьютера; 5 - объект контроля; 6 - источник АЭ; t1 - время прихода сигнала на первый приемник; t2 - время прихода сигнала на второй приемник

Рисунок 2.2 - Схема АЭ контроля на трубопроводе

АЭ при многократном нагружении. При повторном нагружении АЭ резко уменьшается и вновь начинает регистрироваться после достижения максимальной нагрузки первого цикла. Это явление называют эффектом Кайзера. Он особенно хорошо проявляется на гладких образцах и хуже - на образцах с надрезом. Последнее свидетельствует о накоплении повреждений при повторных нагрузках.

На рисунке 2.3 показан рост числа N импульсов АЭ от числа и циклов нагружения при малоцикловых испытаниях образца с надрезом. Участок АВ соответствует первому циклу, суммарный счет импульсов здесь быстро растет. В окрестностях точки В рост замедляется в 10-100 раз, а на участке ВС суммарный счет остается практически постоянным.

Рисунок 2.3 - Эффект Кайзера

В этом проявляется эффект Кайзера. В процессе циклических нагрузок происходит медленное накопление повреждений в металле образца, после чего эффект Кайзера перестает действовать и пред моментом появления видимой трещины происходит ускоренный рост N (участок CD), и далее медленное увеличение с ростом трещины (DE). При достижении определенного размера трещины происходит разрушение, сопровождающееся ростом N (EF).

3.Техническая диагностика объектов транспортировки и хранения нефти и газа (ТХНГ)

Главными задачами технической диагностики являются предупреждение, поиск и локализация аварийных состояний технических систем.

Для определения технического состояния объектов с учетом временного фактора обычно рассматриваются три типа задач:

· определение состояния, в котором находится объект в настоящее время;

· предсказание состояния, в котором окажется объект в некоторый будущий момент времени;

· определение состояния, в котором находился объект в некоторый момент времени в прошлом.

В соответствии с классификацией функциональная структура технического диагностирования магистрального трубопровода охватывает стадии его строительства и эксплуатации по всем временным формам диагнозов.

Дефекты магистрального и технологического оборудования трубопроводов

Любая трубопроводная конструкция, формируемая в реальных условиях, неизбежно претерпевает изменения, связанные с накоплением дефектов, что приводит к снижению ее надежности. Главная причина дефекта - отклонение рабочего параметра от нормативного значения задаваемого, как правило, обоснованным допуском. Поскольку дефект, не выявленный при строительстве, является потенциальным очагом отказа, а вероятность отказа зависит от размера дефекта, условий его изменения при эксплуатации.

Обобщенная схема классификации дефектов объектов трубопроводного транспорта приведена на рисунке 3.1.

Рисунок 3.1 - Классификация дефектов

Дефект магистрального и технологического нефтепровода - это отклонение геометрического параметра стенки трубы, сварного шва, показателя качества материала трубы, не соответствующее требованиям действующих нормативных документов и возникающее при изготовлении трубы, строительстве или эксплуатации нефтепровода, а также недопустимые конструктивные элементы и соединительные детали, установленные на магистральные и технологические нефтепроводы и обнаруживаемые внутритрубной диагностикой, визуальным или приборным контролем или по результатам анализа исполнительной документации объекта.

Дефекты геометрии трубы - это дефекты, связанные с изменением ее формы. К ним относятся:

· вмятина - локальное уменьшение проходного сечения трубы в результате механического воздействия, при котором не происходит излома оси нефтепровода;

· гофра - чередующиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси и уменьшению проходного сечения нефтепровода;

· овальность - дефект геометрии, при котором сечение трубы имеет отклонение от круглости, а наибольший и наименьший диаметры находятся во взаимно перпендикулярных направлениях.

Дефекты стенки трубы, к ним относятся:

· потеря металла - изменение номинальной толщины стенки трубы, характеризующееся локальным утонением в результате механического или коррозионного повреждения или обусловленное технологией изготовления;

· риска (царапина, задир) - потеря металла стенки трубы, происшедшая в результате взаимодействия стенки трубы с твердым телом при взаимном перемещении;

· расслоение - несплошность металла стенки трубы;

· расслоение с выходом на поверхность (закат, плена прокатная) - расслоение, выходящее на внешнюю или внутреннюю поверхность трубы;

· расслоение в околошовной зоне - расслоение, примыкающее к сварному

· трещина - дефект в виде узкого разрыва металла стенки труб;

· эрозионное разрушение внутренней поверхности трубопровода - повреждения внутренней поверхности стенки трубопровода: представляет собой последовательное разрушение поверхностного слоя стенки под влиянием механического или электромеханического воздействия взвешенных в движущемся потоке твердых частиц, а также частиц жидкости. При преобладании твердых частиц наблюдается механическая эрозия.

4.Тесты

акустический контроль неразрушающий дефект

1. Дефектом называется:

· Повреждение трубопровода, выявленное при визуальном осмотре;

· Каждое отдельное несоответствие продукции установленным требованиям;

· Повреждение трубопровода, выявленное с помощью прибора;

· Отклонение положения трубопровода от проектного положения.

2. Дефект относится к проектным:

· Непровар в сварном шве;

· Не соответствие норм реальным условиям;

3. Дефект относится к эксплуатационным:

· Непровар в сварном шве;

· Не соответствие норм реальным условиям;

· Нарушение режимов эксплуатации трубопровода.

4. Вмятиной называется:

· Дефект геометрии, при котором сечение трубы имеет отклонение от круглости, а наибольший и наименьший диаметры находятся во взаимно перпендикулярных направлениях;

· Локальное уменьшение проходного сечения трубы в результате механического воздействия, при котором не происходит излома оси нефтепровода;

· Чередующиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси и уменьшению проходного сечения нефтепровода;

· Несплошность металла стенки трубы.

5. Гофрой называется:

· Дефект геометрии, при котором сечение трубы имеет отклонение от круглости, а наибольший и наименьший диаметры находятся во взаимно перпендикулярных направлениях;

· Локальное уменьшение проходного сечения трубы в результате механического воздействия, при котором не происходит излома оси нефтепровода;

· Чередующиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси и уменьшению проходного сечения нефтепровода;

· Несплошность металла стенки трубы.

6. Овальностью называется:

· Дефект геометрии, при котором сечение трубы имеет отклонение от круглости, а наибольший и наименьший диаметры находятся во взаимно перпендикулярных направлениях;

· Локальное уменьшение проходного сечения трубы в результате механического воздействия, при котором не происходит излома оси нефтепровода;

· Чередующиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси и уменьшению проходного сечения нефтепровода;

· Несплошность металла стенки трубы.

7. Расслоением называется:

· Дефект геометрии, при котором сечение трубы имеет отклонение от круглости, а наибольший и наименьший диаметры находятся во взаимно перпендикулярных направлениях;

· Локальное уменьшение проходного сечения трубы в результате механического воздействия, при котором не происходит излома оси нефтепровода;

· Чередующиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси и уменьшению проходного сечения нефтепровода;

· Несплошность металла стенки трубы.

8. Трещиной называется:

· Локальное уменьшение проходного сечения трубы в результате механического воздействия, при котором не происходит излома оси нефтепровода;

· Чередующиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси и уменьшению проходного сечения нефтепровода;

· Дефект в виде узкого разрыва металла стенки труб;

· Несплошность металла стенки трубы.

9. Акустико-эмиссионный методом контроля называется:

· Вид неразрушающего контроля, основанный на анализе взаимодействия магнитного поля с контролируемым объектом;

· Метод неразрушающего контроля, основанный на выделении и анализе параметров сигналов акустической эмиссии;

· Вид неразрушающего контроля, основанный на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте;

· Метод неразрушающего контроля, основанный на генерации ионизирующего излучения веществом контролируемого объекта без активации его в процессе контроля.

Подобные документы

Электромагнитные методы неразрушающего контроля. Особенности вихретокового метода неразрушающего контроля. Основные методы возбуждения вихревых токов в объекте. Дефектоскопы многоцелевого назначения. Использование тепловых метода неразрушающего контроля.

реферат [782,1 K], добавлен 03.02.2009

Определения в области испытаний и контроля качества продукции, понятие и контроль. Проверка показателей качества технических устройств. Цель технического контроля. Классификация видов и методов неразрушающего контроля. Электромагнитные излучения.

реферат [552,7 K], добавлен 03.02.2009

Принципиальная схема оптико-акустического газоанализатора. Избирательное поглощение инфракрасного излучения определяемым компонентом анализируемой газовой смеси. Очевидные преимущества ОА-метода, прибор для реализации. Системы контроля утечки газа.

курсовая работа [529,6 K], добавлен 20.12.2013

Разработка автоматизированного дефектоскопа для сдаточного ультразвукового контроля бесшовных стальных труб. Методы и аппаратура контроля. Способ ввода ультразвука в изделие. Тип преобразователя и материала пьезоэлемента. Функциональная схема устройства.

курсовая работа [1,3 M], добавлен 14.01.2015

Электрические методы неразрушающего контроля. Диэлектрическая проницаемость и тангенс угла диэлектрических потерь электроизоляционных материалов. Работа электропотенциальных приборов. Электропотенциальный метод с использованием четырех электродов.

Содержание
Введение………………………………………………………………………….3
1 Сущность метода акустико-эмиссионного контроля………………………..4
2 Источники АЭ…………………………………………………………………..8
3 Аппаратура АЭ диагностики………………………………………………….12
4 Сравнительная оценка методов неразрушающего контроля (НК) и метода акустической эмиссии (АЭ)..……………………………………………………17
5 Области применения метода АЭ……………………………………………..19
Заключение……………………………………………………………………….21
Список использованных источников…………………………………………..23

Рисунок 4 – Имитатор акустико-эмиссионных сигналов
Имитатор АЭ сигналов (калибратор) предназначен для:
- проверки работоспособности АЭ системы;
- калибровки преобразователей акустической эмиссии (ПАЭ), установленных на объекте контроля;
- определения скорости распространения и степени затухания упругих колебаний в объекте контроля;
- проверки правильности вычисления АЭ системой локационных координат источников акустической эмиссии непосредственно перед проведением контроля.
Измеритель тензометрический двухканальный или тензометр (рис. 5) – это прибор, который используется при акустико-эмиссионном методе.

Рисунок 5 – Измеритель тензометрический двухканальный (тензометр)
Тензометры применяются для измерения деформации тензорезисторов, которая может быть вызвана изменением силы, нагрузки, крутящего момента, давления, веса, вибрации и других механических и физических параметров.
Акустический течеискатель (рис. 6) предназначен для поиска мест утечек в водопроводах. Выдающиеся функциональные возможности позволяют прибору находить даже очень маленькие утечки.
Посредством установок фильтров прибор оптимально настраивается для измерений и подавляются помехи окружающей среды. Оптическая ЖК-индикация и простое управление облегчают продолжительную работу при поиске утечек. При схеме бесшумной настройки в памяти сохраняется актуальное значение измерения. При помощи регулировки громкости и чувствительности прибор настраивается оптимальный поиск утечек. Встроенный диодный фонарик облегчает работу в ночное время.
Рисунок 6 – Акустический течеискатель Hydrolux HL10
Особенности акустического течеискателя Hydrolux HL10:
- отличные свойства приема звука;
- три установки фильтров;
- простое управление;
- отключение звука / запись измерений;
- 10 ступенчатая индикация уровня шума.
4 Сравнительная оценка методов неразрушающего контроля (НК) и метода акустической эмиссии (АЭ)
Акустическая эмиссия отличается от большинства методов неразрушающего контроля (МНК) в двух ключевых аспектах. Во-первых, источником сигнала служит сам материал, а не внешний источник, т.е. метод является пассивным (а не активным, как большинство других методов). Во- вторых, АЭ обнаруживает движение дефекта, а не статические неоднородности, связанные с наличием дефектов, т.е. АЭ обнаруживает развивающиеся, а потому наиболее опасные дефекты. Перечень основных отличий приведен в табл. 2.
Таблица 2
Метод акустической эмиссии Традиционные методы НК
Трудоемкость подготовительных работ и контроля в десятки (сотни) раз меньше Большая трудоемкость подготовительных работ и контроля
Обнаруживаются и локализуются наиболее опасные (развивающиеся под действием эксплуатационных нагрузок) виды дефектов Невозможность распознавания дефектов, которые развиваются под действием эксплуатационных нагрузок
Контроль может осуществляться в условиях реальной эксплуатации или при воздействии эквивалентных испытательных нагрузок при кратковременном останове Для проведения контроля требуется полное прекращение эксплуатации объекта
Обнаруживает движение дефектов Обнаруживают геометрическую форму дефектов
Требует нагруженияНе требует нагруженияКаждое нагружение уникально Контроль воспроизводим
Чувствителен к структуре материала Менее чувствительны к материалу
Менее чувствительны к геометрииБолее чувствительны к геометрииТребует доступ только в местах установки датчиков Требуют доступ ко всей поверхности объекта
Контролирует конструкцию за один цикл нагруженияПостепенное сканирование участков конструкции
Основные проблемы: сильное влияние
шума Основные проблемы: сильное влияние геометрии
Таким образом, основными преимуществами метода АЭ перед традиционными методами неразрушающего контроля являются следующие.
1. Интегральность метода АЭ. Используя один или несколько датчиков, установленных неподвижно на поверхности объекта, можно проконтролировать весь объект целиком (100% контроль). Это свойство метода акустической эмиссии особенно полезно при исследовании труднодоступных (недоступных) поверхностей контролируемого объекта.
2. В отличие от сканирующих методов неразрушающего контроля, метод акустической эмиссии не требует тщательной подготовки поверхности объекта контроля. Следовательно, выполнение акустико-эмиссионного контроля и его результаты не зависят от состояния поверхности и качества ее обработки. Изоляционное покрытие (если оно имеется) снимается только в местах установки датчиков.
3. Обнаружение и регистрация только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам (или по другим косвенным признакам – форме, положению, ориентации дефектов), а по степени их опасности (влияние на прочность) для контролируемого объекта.
4. Высокая производительность метода АЭ, во много раз превосходящая производительность традиционных методов неразрушающего контроля.
5. Дистанционность метода АЭ – возможность проведения контроля при значительном удалении оператора от исследуемого объекта. Это позволяет эффективно использовать метод АЭ для контроля (мониторинга) ответственных крупногабаритных конструкций, протяженных или особо опасных объектов без вывода их из эксплуатации и вреда для персонала.
6. Возможность отслеживания различных технологических процессов и оценка технического состояния объекта в режиме реального времени, что позволяет предотвратить аварийное разрушение контролируемого объекта.
7. Максимальное соотношение эффективности и стоимости.
5 Области применения метода АЭ
Явление акустической эмиссии наблюдается в широком диапазоне материалов, структур и процессов. Наиболее крупномасштабная АЭ связана с существованием сейсмический волн, в то время как наименьший масштабный уровень эмиссии вызывается дислокационным движением в нагруженных металлических структурах. Между этими двумя видами АЭ существует широкий диапазон масштабов эмиссии: от лабораторных испытаний до промышленного контроля.
При лабораторных испытаниях использование АЭ контроля ставит своей целью изучение процессов деформации и разрушения материала. Метод позволяет по сигналам эмиссии наблюдать за поведением материала при нагружении. Поскольку АЭ отклик зависит от структуры материала и режима деформирования, разные материала при различных способах нагружения сильно отличаются друг от друга по акустико-эмиссионному поведению. Существует 2 основных фактора, приводящих к высокой эмиссивности – хрупкость и гетерогенность материала. Вязкие механизмы разрушения приводят к низкой эмиссивности (по энергии и числу сигналов).
При тестировании продукции метод АЭ используется для проверки и контроля сварных соединений, термически сжатых бандажей. Метод также используется во время операций, связанных с формообразованием, таких как уплотнение или при прессовании. В целом АЭ контроль может применяться во всех случаях, когда имеют место процессы нагружения, приводящие к постоянному деформированию материалов.
При тестировании конструкций АЭ используется для контроля сосудов давления, хранилищ, труб и трубопроводов, авиационных и космических аппаратов, электрических заводов, мостов, железнодорожных цистерн и вагонов, грузовых транспортных средств, а также многих других типов объектов. АЭ контроль производится и на новом, и на бывшем в эксплуатации оборудованиии. Он включает обнаружение трещин, сварных дефектов и других.
Акустико-эмиссионная аппаратура является чрезвычайно чувствительной к любым видам структурных перемещений в широком частотном диапазоне работы (обычно от 20 кГц до 1200 кГц). Оборудование способно регистрировать не только рост трещин или развитие пластической деформации, но и процессы затвердевания, кристаллизации, трения, ударов, течеобразований и фазовых переходов. Ниже перечислены основные направления использования АЭ метода контроля:
контроль процесса сварки;
контроль износа и соприкосновения оборудования при автоматической механической обработке;
контроль износа и потерь смазки на объектах, связанных с вращением и трением компонент;
обнаружение и контроль течей, кавитации, потоков жидкости в объектах;
контроль химических реакторов, включающий контроль коррозионных процессов, жидко-твердого перехода, фазовых превращений.
Когда процессы типа ударов, трения, течей и другие возникают на фоне контроля развития трещин и коррозии, они становятся источниками нежелательных шумов, которые являются основной преградой на пути широкого использования АЭ в качестве метода контроля.
Основными областями применения АЭ контроля являются:
нефтегазовая и химическая промышленность;
трубопрокатные и металлургические предприятия;
тепловая и атомная энергетика;
железнодорожный транспорт;
подъемные сооружения;
мостовые конструкции;
авиационно-космическая техника;
бетонные и железобетонные сооружения.
Заключение
Метод акустической эмиссии позволяет получать огромные массивы информации, оперативно и с минимальными затратами регулировать и продлевать эксплуатационный цикл ответственных промышленных объектов, помогает в прогнозировании вероятности возникновения аварийных разрушений и катастроф.
Широкие возможности метод АЭ предоставляет и при исследовании различных свойств материалов, веществ, конструкций.
На сегодняшний день без применения акустико-эмиссионного контроля и мониторинга уже невозможны создание и надежная эксплуатация многих опасных производственных объектов.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Акустическая эмиссия представляет собой явление генерации волн напряжений, вызванных внезапной перестройкой в структуре материала. Классическими источниками АЭ является процесс деформирования, связанный с ростом дефектов, например, трещины или зоны пластической деформации. Внезапное движение источника эмиссии вызывает возникновение волн напряжений, которые распространяются в структуре материала и достигают пьезо-электрического преобразователя.

Работа состоит из 1 файл

Акустико-эмиссионный контроль.doc

Акустическая эмиссия представляет собой явление генерации волн напряжений, вызванных внезапной перестройкой в структуре материала. Классическими источниками АЭ является процесс деформирования, связанный с ростом дефектов, например, трещины или зоны пластической деформации. Внезапное движение источника эмиссии вызывает возникновение волн напряжений, которые распространяются в структуре материала и достигают пьезо-электрического преобразователя. По мере роста напряжений, активизируются многие из имеющихся в материале объекта источников эмиссии. Электрические сигналы эмиссии, полученные в результате преобразования датчиком волн напряжений, усиливаются, регистрируются аппаратурой и подвергаются дальнейшей обработке и интерпретации.

Итак, источником акустико-эмиссионной энергии служит поле упругих напряжений в материале. Без напряжений нет и эмиссии, поэтому АЭ контроль обычно проводится путем нагружения контролируемого объекта. Это может быть проверочный контроль перед запуском объекта, контроль изменений нагрузки во время работы объекта, испытания на усталость, ползучесть или комплексное нагружение. Очень часто конструкция нагружается произвольным способом. В этом случае использование АЭ контроля позволяет получать дополнительную ценную информацию о поведении конструкции под действием нагрузки. В других случаях эмиссия используется по причинам экономичности и безопасности; для таких задач разрабатываются специальные процедуры нагружения и тестирования.

Взаимосвязь с Другими Методами Контроля

Акустическая эмиссия отличается от большинства методов неразрушающего контроля (МНК) в двух ключевых аспектах. Во-первых, источником сигнала служит сам материал, а не внешний источник, т.е. метод является пассивным (а не активным, как большинство других методов контроля). Во-вторых, в отличие от других методов АЭ обнаруживает движение дефекта, а не статические неоднородности, связанные с наличием дефектов, т.е. АЭ обнаруживает развивающиеся, а потому наиболее опасные дефекты.

Как известно среди МНК не существует ни одного такого метода, который мог бы решить проблему оценки целостности объекта оптимально с учетом таких основных факторов, как получение наиболее низкой себестоимости работ и достижения технической адекватности результатов контроля. Лучшим решением проблемы является применение комбинации различных методов НК. Благодаря тому, что АЭ резко отличается по своим возможностям от традиционных методов контроля, на практике оказывается очень полезным совмещать АЭ с другими методами.

Основное преимущество метода АЭ связано с возможностью проведения неразрушающего контроля всего объекта целиком за один цикл нагружения. Данный метод является дистанционным, он не требует сканирования поверхности объекта для поиска локальных дефектов. Необходимо просто правильным образом расположить нужное число датчиков и использовать их для осуществления локации источника волн напряжений. Возможности, связанные с дистанционным использованием метода, дают большие преимущества по сравнению с другими методами контроля, которые требуют, например, удаления изоляционных оболочек, освобождения контейнеров контроля от внутреннего содержания или сканирования больших поверхностей.

Типичный пример использования АЭ заключается в определении местоположения дефектных участков, после чего для более точного определения природы дефектов используются другие МНК.

Диапазон Применения Метода

Явление акустической эмиссии наблюдается в широком диапазоне материалов, структур и процессов. Наиболее крупномасштабная АЭ связана с существованием сейсмический волн, в то время как наименьший масштабный уровень эмиссии вызывается дислокационным движением в нагруженных металлических структурах. Между этими двумя видами АЭ существует широкий диапазон масштабов эмиссии, от лабораторных испытаний до промышленного контроля. При лабораторных испытаниях использование АЭ контроля ставит своей целью изучение процессов деформации и разрушения материала. Метод позволяет в реальном времени по сигналам эмиссии наблюдать за поведением материала при нагружении. Поскольку АЭ отклик зависит от структуры материала и режима деформирования, разные материала при различных способах нагружения в сильной степени отличаются друг от друга по своему акустико-эмиссионному поведению.

Существует 2 основных фактора, приводящих к высокой эмиссивности – это хрупкость и гетерогенность материала. Вязкие механизмы разрушения, например, слияние пор в мягких сталях, напротив, приводят к низкой эмиссивности (по энергии и числу сигналов).

При тестировании продукции метод АЭ используется для проверки и контроля сварных соединений, термически сжатых бандажей. Метод также используется во время операций, связанных с формообразованием, таких как уплотнение или при прессовании. В целом АЭ контроль может применяться во всех случаях, когда имеют место процессы нагружения, приводящие к постоянному деформированию материалов.

При тестировании конструкций АЭ используется для контроля сосудов давления, хранилищ, труб и трубопроводов, авиационных и космических аппаратов, электрических заводов, мостов, железнодорожных цистерн и вагонов, грузовых транспортных средств, а также многих других типов объектов. АЭ контроль производится и на новом, и на бывшем в эксплуатации оборудовании. Он включает обнаружение трещин, сварных дефектов и других. Процедуры, связанные с использованием АЭ метода были опубликованы Американским Обществом Инженеров Механиков (American Society Mechanical Engineering – ASME), Американским Обществом Контроля и Материалов (American Society for Testing and Materials – ASTM) и другими организациями.

Успешные результаты конструкционного тестирования можно наблюдать в тех случаях, когда возможности и достоинства метода АЭ правильно используются в контексте конкретных исследований и когда применяются корректные технические решения и специализированное оборудование АЭ.

Акустико-эмиссионная аппаратура является чрезвычайно чувствительной к любым видам структурных перемещений в широком частотном диапазоне работы (обычно от 20 кГц до 1200 кГц). Оборудование способно регистрировать не только рост трещин или развитие пластической деформации, но и процессы затвердевания, кристаллизации, трения, ударов, течеобразований и фазовых переходов. Ниже перечислены основные приложения, в которых используется АЭ метода контроля:

• Контроль процесса сварки

• Контроль износа и соприкосновения оборудования при автоматической механической обработке

• Контроль износа и потерь смазки на объектах, связанных с вращением и трением компонент

• Детектирование потерянных частей и частиц оборудования

• Обнаружение и контроль течей, кавитации и потоков жидкости в объектах

• Контроль химических реакторов, включающий контроль коррозионных процессов, жидко-твердого перехода, фазовых превращений.

Когда процессы типа ударов, трения, течей и другие возникают на фоне контроля развития трещин и коррозии, они становятся источниками нежелательных шумов. Было предложено множество различных технических решений с целью снижения и избавления от этих шумовых помех. Следует заметить, что шумы являются основной преградой на пути широкого использования АЭ в качестве метода контроля. Важной задачей является их исследование и по возможности устранение с целью повышения чувствительности метода.

Одной из важнейших проблем АЭ технологии является предохранение от шумов. Огромный прогресс наблюдается с тех пор, когда в начале 70-х для избежания регистрации помех от уличного транспорта и работающего в дневное время технологического оборудования, АЭ эксперименты проводились по ночам в подземных лабораториях на малошумящих испытательных машинах.

Использование современных технологий АЭ контроля сегодня позволяет проводить измерения также и на шумных объектах.

Первый шаг АЭ контроля заключается в выборе подходящего частотного диапазона тестирования. Акустический фоновый шум, как известно, является более высоким на низких частотах. Практически для 90% испытаний подходящий частотный диапазон заключен между 100 и 300 кГц. В шумящей среде (например, на электрических силовых станциях) для снижения шумов, исходящих от потоков жидкости, необходимо работать на более высоких частотах, в районе 500 кГц. Вследствие того, что использование высоких частот приводит к снижению диапазона обнаружения (расстояния между приемными датчиками уменьшается), между частотным диапазоном и ограничением шумов существует связь.

К источникам акустических шумов относятся потоки жидкости в насосах и задвижках; процессы трения, например, трение конструкций в местах опор; процессы, связанные с ударами, например, капли дождя или биение кабеля о конструкцию под воздействием порывов ветра. К источникам электрических и электромагнитных шумов можно отнести земляные контуры, включенные силовые цепи, радио и навигационные передатчики, а также электрические штормы.

Существуют различные пути решения проблемы снижения шумов. Во-первых, иногда шум можно снизить или даже прервать непосредственно в источнике. Во-вторых, воздействие акустического шума можно ограничить путем создания демпфирующих барьеров в стратегических точках конструкций. Проблема снижения электрических шумов, которая возникает в основном в связи с недостаточным заземлением и экранированием, решается при помощи использования правильных технологий, например, за счет применения дифференциальных датчиков или совмещенных датчиков со встроенными предусилителями. Если использование таких датчиков не позволяет окончательно решить данную проблему, ее приходится решать уже на программном и/или аппаратном уровне.

Для получения удовлетворительной чувствительности часто используется технология плавающего порога, которая является весьма эффективной при условии, что не происходит существенной потери АЭ данных. Развиваются методы выборочного отбора и записи данных, базирующиеся на факторах времени, нагрузки или местоположения в пространстве. Кроме того, в связи с тем, что источники шумов по характеристикам формы сигналов отличаются от настоящей эмиссии, связанной с дефектами, их отделяют путем реализации и использования математических методов дискриминации на компьютере. Такую машинную обработку можно проводить и сразу же после измерения, и во время процесса отображения информации (графического фильтрования), и уже после испытаний в процессе послетестовой обработки, используя программы послетестовой фильтрации или специального пакета, предназначенного для анализа формы сигналов.

Благодаря развитию и использованию этих методик, АЭ контроль внедрился в разнообразные сферы производства и в дальнейшем можно ожидать продолжение этого процесса. В качестве примеров приложений, в которых снижение шума являлось ключом к успешному использованию АЭ контроля, можно назвать мониторинг в процессе сварки и обнаружение усталостных растущих трещин в конструкции летящего самолета.

При деформации твердого материала, находящегося в состоянии напряжения, генерируются и распространяются упругие колебания. Именно это явление положено в основу акустико-эмиссионного контроля, призванного обнаружить слабые места в трубопроводах и теплообменниках, сосудах и резервуарах, колоннах и реакторах, в сварных швах, деталях и узлах каких-либо механизмов.

Контроль акустической эмиссией может проводиться только в том случае, если проверяемый объект находится под нагрузкой. Поэтому для получения результатов проверки на него оказывается воздействие физической силой, полем низких или высоких температур, повышенным давлением. Выбор нагрузки зависит от особенностей объекта, а также условий его эксплуатации.

Дефекты, которые выявляет акустическая эмиссия

Акустическая эмиссия – это пассивный метод неразрушающего контроля. Главная цель ее использования – это выявление трещин, разломов, расслоений, коррозийных процессов. При этом она помогает находить не статические, а развивающие дефекты. Именно они являются наиболее опасными, так как грозят серьезными неприятностями в самом ближайшем будущем.

В отличие от других методов НК, контроль акустической эмиссией не требует применения каких-либо внешних источников сигнала. Он предполагает улавливание упругих колебаний, генерируемых самим проверяемым объектом, благодаря чему обеспечивается высокая точность обнаружения деформаций.

Приборы для акустико-эмиссионного контроля включают в себя два преобразователя и комплект устройств для получения информации с датчиков, ее обработки и вывода на периферийное оборудование, каждый из которых регистрирует время улавливания сигнала.

Сам контроль осуществляется следующим образом:

  • Преобразователи располагаются на разном расстоянии от одного и того же объекта
  • Фиксируется время обнаружения сигнала первым (t1) и вторым (t2) приемниками
  • Вычисляется разница во времени (t2 - t1)
  • Определяются точные координаты местонахождения дефекта

Проведение аттестации и обучение специалистов по неразрушающему контролю

Аттестация специалистов по НК

Преимущества акустико-эмиссионного контроля

  • Выявление опасных дефектов на стадии их развития. Это позволяет не только своевременно обнаружить деформацию, но и в дальнейшем отслеживать состояние проверяемого объекта, планировать срочные меры по устранению проблемы, если она достигнет своего предельного состояния
  • Возможность проводить проверку на расстоянии. Это актуально, если речь идет о протяженных трубопроводах или крупном технологическом оборудовании. Также дистанционный контроль позволяет работать с потенциально опасными или опасными объектами. Причем останавливать их работу не придется
  • Полный контроль за объектом с использованием минимального количества датчиков. В нашем случае, приемников
  • Возможность наблюдать за оборудованием или трубопроводом постоянно, снимая показания буквально в режиме онлайн. Это гораздо практичнее, чем периодические проверки, в промежутках между которыми может случиться что угодно
  • Универсальность. Благодаря высокой чувствительности приборов можно использовать акустико-эмиссионный контроль для любых материалов – металла, пластика, дерева и прочих
  • Отсутствие необходимости в специальной подготовке объекта к проверке. Оборудование может устанавливаться на поверхностях с любой степенью загрязненности, причем дает при этом неизменно точные результаты. Единственное требование – снятие изоляционного слоя в местах монтажа датчиков

Метод контроля акустической эмиссией применяется в основном для определения точного местонахождения дефекта. В дальнейшем требуется использование других методов НК, чтобы получить максимально точные результаты

К минусам можно отнести разве что необходимость привлечения к работе с оборудованием квалифицированных специалистов, знающих все тонкости акустической эмиссии, а также потребность в постоянной нагрузке объекта в процессе проведения контрольных мероприятий.

Основные сферы применения акустико-эмиссионного контроля – это:

  • Химическая промышленность
  • Предприятия нефтегазовой сферы
  • Мосты, эстакады, иные сооружения
  • Железные дороги и ж/д транспорт
  • Атомная и тепловая энергетика
  • Металлургические комбинаты
  • Металлопрокатные предприятия
  • Заводы железобетонных изделий, а также ЖБ здания и сооружения
  • Авиационная и космическая техника

Возможность отслеживать развитие трещин, разломов и иных дефектов с помощью оборудования АЭ позволяет планировать ремонтные работы или профилактическое обслуживание, предотвращать аварийные ситуации.

Оборудование для акустико-эмиссионного контроля

Приборы для акустико-эмиссионного контроля – это многоканальные системы, которые включают в себя следующее оборудование:

  • Кабельные линии для подключения датчиков и приемников
  • Модули, обрабатывающие принятые акустические сигналы и осуществляющие их преобразование
  • Усилители сигнала
  • Модули настройки и калибровки оборудования
  • Компьютеры с установленным специализированным ПО, которое обрабатывает информацию и выводит ее на дисплей в понятном для оператора виде. Кроме того, ЭВМ обеспечивает возможность настройки оборудования, ввода команд, отслеживания результатов контроля

На подключаемые к приборам периферийные устройства осуществляется вывод следующих данных:

Читайте также: