Аксиомы теории вероятностей реферат

Обновлено: 02.07.2024

Министерство образования и науки РФ
Технический институт (филиал)
Федерального государственного автономного образовательного учреждения
высшего профессионального образования
“Северо-Восточный федеральный университет имени М.К.Аммосова”


Реферат
Дисциплина: История и методология ПМиИ
Тема: Аксиоматизация теории вероятностей. КолмогоровВыполнил: студент 2 курса
группы ПМ-12 кафедры МиИ
Пигалев А. В.
Проверила:
Салтецкая Т. В.


В данном реферате я хочу осветить поистине грандиозную научную работуАндрея Николаевича Колмогорова, получившую название аксиоматики Колмогорова.
Великий русский ученый, один из крупнейших математиков XX столетия, достойно признанный чуть ли не всеми авторитетными мировыми сообществами ученых – член Национальной Академии наук США и американской Академии искусств и наук, член Нидерландской Королевской академии наук и Академии наук Финляндии, членАкадемии наук Франции и Германской академии естествоиспытателей "Леопольдина", член Международной академии истории наук и национальных академий Румынии, Венгрии и Польши, почетный член Королевского статистического общества Великобритании и Лондонского математического общества, почетный член Международного статистического института и Математического общества Индии, иностранный член Американского философскогои Американского метеорологического общества, лауреат самых почетных научных премий: премии П.Л.Чебышева и Н.И.Лобачевского АН СССР, Международной премии фонда Бальцана и Международной премии фонда Вольфа, а также государственной и Ленинской премии, награжденный 7-ю орденами Ленина, медалью "Золотая Звезда" Герой Социалистического труда академик Андрей Николаевич Колмогоров сам себя всегда называл"просто профессор Московского университета".
Исследовать деятельность этого поистине гениального человека я и пытаюсь.


2. ИСТОРИЯ АКСИОМАТИЗАЦИИ ТЕОРИИ ВЕРОЯТНОСТЕЙ


До Колмогорова попытки аксиоматизировать теорию вероятностей предпринимали de:Georg Bohlmann (1908), С. Н. Бернштейн (1917),Р. Мизес (1919 и 1928), а также Ломницкий A. (1923) на базе идей Э. Бореля о связи понятий вероятности и меры.
А. Н. Колмогоров под влиянием идей теории множеств, меры, интегрирования, функций сформулировал простую систему аксиом (вообще говоря, не являющуюся единственной), позволившую описать уже существовавшие к тому времени классические разделы теории вероятностей.

Опр.: Под событием понимают любой факт, который может произойти в результате опыта или испытания.

Опр.: Под опытом, или испытанием, понимается осуществление определённого комплекса условий.

Опр.: Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными.

Опр.: Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта. Событие называется невозможным, если оно не может произойти в условиях данного опыта.

Опр.: Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться.

Опр.: Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны.

Опр.: Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.

Вероятность события будем обозначать символом .

Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.

Из формулы следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев: .

Аксиома 1. Каждому событию соответствует определенное число , удовлетворяющее условию и называемое его вероятностью.

Аксиома 2. Вероятность достоверного события равна единице.

Аксиома 3. Вероятность невозможного события равна нулю.

Аксиома 4. (аксиома сложения). Вероятность суммы двух несовместных событий равна сумме их вероятностей.

1. Если нет ни одного случая, благоприятствующего данному событию , то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления , так как в этом случае :

2. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события :

где — число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события :

3. Если событие A влечет за собой событие B, т.е. A ⊂ B, то вероятность события C, где C — разность событий B и A, определяется соотношением P(C) = P(B \ A) = P(B) − P(A).

4. Если событие A влечет за собой событие B, т.е. A ⊂ B, то вероятность события A не может быть больше вероятности события B, т.е. P(A) ≤ P(B).

5. Вероятность любого события заключена между нулем и единицей: 0 ≤ P(A) ≤ 1

6. Вероятность суммы любых двух событий равна сумме вероятностей этих событий минус вероятность их совместного появления: P(A + B) = P(A) + P(B) − P(AB).

7. Вероятность суммы событий не превосходит сумму вероятностей этих событий: P(A + B) ≤ P(A) + P(B).

Равномерный закон распределения

Опр.:Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т.е.


0 при х≤а,

Ее график изображен на рис. 2.

Аксиомы теории вероятностей. Свойства вероятности.

Опр.: Под событием понимают любой факт, который может произойти в результате опыта или испытания.

Опр.: Под опытом, или испытанием, понимается осуществление определённого комплекса условий.

Опр.: Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными.

Опр.: Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта. Событие называется невозможным, если оно не может произойти в условиях данного опыта.

Опр.: Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться.

Опр.: Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны.

Опр.: Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.

Вероятность события будем обозначать символом .

Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.

Из формулы следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев: .

Аксиома 1. Каждому событию соответствует определенное число , удовлетворяющее условию и называемое его вероятностью.

Аксиома 2. Вероятность достоверного события равна единице.

Аксиома 3. Вероятность невозможного события равна нулю.

Аксиома 4. (аксиома сложения). Вероятность суммы двух несовместных событий равна сумме их вероятностей.

1. Если нет ни одного случая, благоприятствующего данному событию , то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления , так как в этом случае :

2. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события :

где — число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события :

3. Если событие A влечет за собой событие B, т.е. A ⊂ B, то вероятность события C, где C — разность событий B и A, определяется соотношением P(C) = P(B \ A) = P(B) − P(A).

4. Если событие A влечет за собой событие B, т.е. A ⊂ B, то вероятность события A не может быть больше вероятности события B, т.е. P(A) ≤ P(B).

5. Вероятность любого события заключена между нулем и единицей: 0 ≤ P(A) ≤ 1

6. Вероятность суммы любых двух событий равна сумме вероятностей этих событий минус вероятность их совместного появления: P(A + B) = P(A) + P(B) − P(AB).

7. Вероятность суммы событий не превосходит сумму вероятностей этих событий: P(A + B) ≤ P(A) + P(B).

Математика – царица наук. Это выражение в своей жизни слышал, наверное, каждый человек. Образованный юрист тоже должен иметь представление о том, что такое высшая математика. Да, по роду своей деятельности ему не нужно выводить какие-либо формулы, высчитывать интегралы. Но все-таки знать, что такое синусы, косинусы, матрицы и другие математические определения ему необходимо.

При этом не следует забывать, что школа дает лишь элементарные математические знания, например, сложение и вычитание, умножение и деление, таблица умножения, то есть то, без чего человек не может обойтись в своей повседневной жизни. Наличие же высшего образования подразумевает под собой нечто большее, в частности, знания по высшей математике.

В данной работе мы не будем углубляться в разнообразные математические термины, не станем интегрировать дифференциальные уравнения, высчитывать матрицы. Мы рассмотрим теорию вероятностей, которая, на наш взгляд, наиболее приближена к юридическим наукам, потому что она развивает логическое мышление человека.

Итак, мы дадим определение случайным событиям, познакомимся с вероятностью событий, узнаем статическое и классическое определение вероятности, заострим внимание на ограниченности классического определения, приведем примеры вычисления вероятностей и сделаем выводы о проделанной работе.

1. Аксиоматика теории вероятностей

1.1 Краткая историческая справка

Первые работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытки создания теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и другие в XVI–XVII вв.).

Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др.

Новый, наиболее плодотворный период связан с именами П.Л. Чебышева (1821–1894) и его учеников А.А. Маркова (1856–1922) и А.М. Ляпунова (1857–1918). В этот период теория вероятностей становится стройной математической наукой. Ее последующее развитие обязано в первую очередь русским и советским математикам (С.Н. Бернштейн, В.И. Романовский, А.Н. Колмогоров, А.Я. Хинчин, Б.В. Гнеденко, Н.В. Смирнов и др.). В настоящее время ведущая роль в создании новых ветвей теории вероятностей также принадлежит российским математикам.

1.2 Предмет теории вероятностей

Наблюдаемые нами события (явления) можно подразделить на следующие три вида: достоверные, невозможные и случайные.

Еще пример, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием, а выпадение снега на экваторе – невозможным событием.

По-иному обстоит дело, если рассматриваются случайные события, которые могут многократно наблюдаться при осуществлении одних и тех же условий S, т.е. если речь идет о массовых однородных случайных событиях. Оказывается, что достаточно большое число однородных случайных событий независимо от их конкретной природы подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.

Итак, предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий.

В последние годы основы теории вероятностей все шире и шире проникают в различные области науки и техники, способствуя их прогрессу.

2. Классификация случайных событий

2.1 Виды случайных событий

Например, стрелок стреляет по мишени, разделенной на четыре области. Выстрел – это испытание. Попадание в определенную область мишени – событие.

События называют несовместным, если появление одного из них исключает появление других событий в одном и том же испытании.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

Пример. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Пример. Появление того или иного числа очков на брошенной игральной кости – равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника и наличие очков не оказывает влияния на выпадение любой грани.

2.2 Определение вероятности

Вероятность – одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них – красные, 3 – синие и 1 – белый. Очевидно, возможность вынуть наудачу из урны цветной (т.е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

Поставим перед собой задачу дать количественную опенку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Элементарные исходы обозначим через w1, w2, w3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w1 – появился белый шар; w2, w3 – появился красный шар; w4, w5, w6 – появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию А (появлению цветного шара) следующие 5 исходов: w2, w3, w4, w5, w6.

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих А; в нашем примере А наблюдается, если наступит w2, или w3, w4, или w5, или w6. В этом смысле событие А подразделяется на несколько элементарных событий (w2, w3, w4, w5, w6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (А) = 5/6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой:

Р(А) = mn, где m – число элементарных исходов, благоприятствующих А, n – число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу.

Из определения вероятности вытекают следующие ее свойства:

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n следовательно,

Р(А) = mn = nn = 1.

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Р(А) = mn = 0n = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 m n = n (n-1) (n-2) … (n-m+1).

Пример. Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?

Решение. Искомое число сигналов: А 2 6 = 6*5 = 30.

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

C m n = n! / (m! (n-m)!).

Пример. Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?

Решение, Искомое число способов: С 2 10 = 10! / (2!*8!) = 1*2*3*4*5*6*7*8*9*10 / 1*2* 1*2*3*4*5*6*7*8 = 45.

Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

A m n = Pm* C m n.

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m+n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана m*n способами.

3.2 Примеры вычисления вероятностей

Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение. Обозначим через А событие – набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Пример 2. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

Решение. Обозначим через В событие – набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т.е. А 2 10= 10*9 = 90. Таким образом, общее число возможных элементарных исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию В лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Решение. Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию А благоприятствует один исход: общее число исходов равно двум. Следовательно, искомая вероятность:

Ошибка этого решения состоит в том, что рассматриваемые исходы не являются равновозможными.

Правильное решение. Общее число равновозможных исходов испытания равно 6*6 = 36 (каждое число выпавших очков на одной кости может сочетаться со всеми числами очков другой кости). Среди этих исходов благоприятствуют событию А только 3 исхода: (1; 3), (3; 1), (2; 2) (в скобках указаны числа выпавших очков). Следовательно, искомая вероятность:

Пример 4. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.

Решение. Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т.е. числу сочетаний из 10 элементов по 6 элементов (C 6 10).

Определим число исходов, благоприятствующих интересующему нас событию А (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять из семи стандартных деталей С 4 7 способами; при этом остальные 6 – 4 = 2 детали должны быть нестандартными; взять же 2 нестандартные детали из 10 – 7 = 3 нестандартных деталей можно С 2 3 способами. Следовательно, число благоприятствующих исходов равно: С 4 7*С 2 3.

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Итак, подводя итог вышесказанному подчеркнем следующее. Случайным событием называется событие, при определенных условиях может либо произойти, либо не произойти. Эти события могут многократно наблюдаться при осуществлении одних и тех же условий. Так вот теория вероятностей как раз и изучает вероятностные закономерности массовых однородных событий.

Существует несколько определений вероятности. Классическое определение вероятности связано с понятием благоприятствующего исхода. Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события. Вероятностью же события называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу (о том что такое полная группа мы говорили ранее). Это определение имеет свой недостаток, потому что в нем подразумевается, что число элементарных исходов испытания конечно. На практике же часто встречаются испытания, число возможных исходов которых бесконечно, с этим и связано другое определение – статистическое, при котором события принимают относительную частоту или число, близкое к ней.

При вычислении вероятностей используют определенные формулы. Например, перестановки, размещения или сочетания. С помощью этих формул можно произвести многие вычисления вероятностей и решить любую задачу, что мы и сделали выше.

Список использованной литературы

1. Информатика и математика для юристов / Под ред. Х.А. Андриашина и др. – М.: ЮНИТИ – ДАНА, 2003.

2. Виленкин И.В., Гробер В.М. Высшая математика для студентов экономических, технических и естественно-научных специальностей вузов. Ростов – на – Дону: Феникс, 2004. – 416 с.;

3. Гмурман В.Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов / В.Е. Гмурман – М.: Высшая школа, 2003. – 479 с.;

4. Высшая математика для экономистов / Под ред. Н.Ш. Кремера и др. – М.: Биржи и банки, 1998 – 356 с.;

5. Общий курс высшей математики для экономистов: Учебник / под ред. В.И. Ермакова. – М.: ИНФРА – М, 2005. – 656 с. – (Высшее образование).

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Содержание
Введение
1. Вероятность как событие
2. Вероятность и информация
3. Аксиомы теории вероятности
Заключение
Список литературы

Каждый эксперимент заканчивается каким-то определенным результатом, который не всегда возможно заранее предугадать. Для того, чтобы формально описать некоторый эксперимент, нужно указать все возможные варианты результатов, которыми этот эксперимент может закончиться. В теории вероятностей такие результаты называются исходами. Множество W всех возможных исходов эксперимента называется пространством элементарных исходов. Предполагается, что эксперимент может закончиться одним и только одним элементарным исходом. В наиболее простом случае все эти исходы можно перечислить:
W = íw1 , w2, . wný, или W= íw1, w2 , . ý.
Такое пространство элементарных исходов называется дискретным.
Простейшим пространством элементарных исходов является такое пространство, в котором все указанные исходы рассматриваемого эксперимента:
1) равновозможны;
2) взаимно несовместны (т.е. в результате эксперимента может произойти один и только один из указанных исходов),
3) все исходы образуют полную группу событий (т.е. никакие другие исходы, кроме перечисленных, не могут произойти).
Такое пространство конечно и называется пространством равновозможных исходов (или симметричным пространством).
ПРИМЕР 1. При бросании симметричной монеты возможны два исхода – выпадение решки или герба. Они удовлетворяют всем трем указанным выше условиям и потому в этом случае пространство элементарных исходов представляется так (здесь буквами Р и Г обозначены решка и герб соответственно):

ПРИМЕР 2. При одновременном бросании двух монет исходы представляют собой упорядоченные пары, состоящих из символов Р и Г. Первый элемент этой пары – результат, выпавший на первой монете, второй элемент – результат на второй монете. Очевидно, что таких пар – четыре:

ПРИМЕР 3. В случае бросания игральной кости может выпасть любое из чисел 1, 2, 3, 4, 5, 6. Поэтому пространство элементарных исходов
ПРИМЕР 4. При одновременном бросании двух игральных костей элементарные исходы представляют собой пары (x, y), где x – число очков, выпавшее на первой кости, а y – число очков на второй кости. Всего таких пар – 36:


Суммой двух событий А и В называется событие АÈВ (А+В), заключающееся в том, что произойдет хотя бы одно из событий А или В (либо событие А, либо событие В либо А и В одновременно).
Произведением (или пересечением) двух событий А и В называется событие АÇВ (АВ), состоящее в одновременном появлении и события А и события В.
Вероятность суммы двух событий вычисляется по формуле (теорема сложения)
.
События А12. Ак образуют полную группу событий, если в результате испытания непременно произойдет одно из них , т.е. .
События А и В называются несовместными (непересекающимися), если они не могут произойти одновременно АÇВ=Æ. Если события несовместны, то
Р(АВ) = 0 и Р(А + В) = Р(А) + Р(В).
Задача 1. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?
Решение. Событие A= можно представить в виде суммы , где события и означают выборку пуговиц красного и синего цвета соответственно. Вероятность вытащить две красные пуговицы равна , а вероятность вытащить две синие пуговицы . Так как события и не могут произойти одновременно, то в силу теоремы сложения

Помимо обычной (безусловной) вероятности можно рассматривать так называемую условную вероятность, вычисляемую при условии, что событие B произошло. Такую вероятность (вероятность А при условии В) обозначают Р(А|В) и вычисляют с помощью одной из двух формул:

Из этой формулы вытекает формула для вероятности произведения двух событий (теорема умножения)
.
Формула умножения для трех событий:
.
Задача 2. В семье – двое детей. Какова вероятность, что старший ребенок – мальчик, если известно, что в семье есть дети обоего пола?
Решение. Пусть А=, B=. Будем считать, что рождения мальчика и рождение девочки – равновероятные события. Если рождение мальчика обозначить буквой М, а рождение девочки – Д, то пространство всех элементарных исходов состоит из четырех пар: . В этом пространстве лишь два исхода (МД и ДМ) отвечают событию B. Событие AB означает, что в семье есть дети обоего пола и старший ребенок – мальчик, это значит, что второй (младший) ребенок – девочка. Этому событию AB отвечает один исход – МД. Таким образом, |AB|=1, |B|=2 и

Задача 3. Мастер, имея 10 деталей, из которых 3 – нестандартных, берет и проверяет детали одну за другой, пока нему не попадется стандартная. Какова вероятность, что он проверит ровно две детали.
Решение. Событие А= означает, что при такой проверке первая деталь оказалась нестандартной, а вторая – стандартная. Значит, , где = < первая деталь оказалась нестандартной >и =. Очевидно, что вероятность кроме того, (так как перед взятием второй детали у мастера осталось 9 деталей, из которых только 2 нестандартные и 7 стандартных). По теореме умножения

Событие А не зависит от В, если появление события В не меняет значения вероятности события А, т.е. условная вероятность равна безусловной: Р(А/В) = Р(А). Аналогично определяется независимость события B от A. Оказывается, что свойство независимости на самом деле симметрично относительно событий A и B, и потому определение независимости двух событий принимает более простой вид:
два события A и B независимы, если справедливо равенство
Р(АВ) = Р(А) × Р(В).
Это равенство можно использовать также как удобный критерий независимости при практической проверке независимости двух событий.
Задача 4. В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут один белый шар, если из каждого ящика вынуто по одному шару.
Решение. Событие A= можно представить в виде суммы , где события и означают выборку одного белого шара из первого и второго ящика соответственно. Вероятность вытащить белый шар из первого ящика равна , а вероятность вытащить белый шар из второго ящика . Кроме того, в силу независимости и имеем: . По теореме сложения получаем:
.
Пусть событие А может быть реализовано только при условии появления одного из событий Hi, i = 1. n. Предположим, что события Hi несовместны, образуют полную группу (т.е. в результате испытания непременно произойдет одно из них) и вероятности их до опыта известны.. Такие события Hi называются гипотезами. Тогда вероятность события А можно вычислить с помощью формулы полной вероятности:
.
Задача 5. Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй — 3 студента, а третий — 21 студентов (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго — только 10%, зато у третьего — 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.
Решение. Обозначим через – гипотезы, состоящие в том, что слабо подготовившийся студент отвечал первому, второму и третьему экзаменатору соответственно. По условию задачи
, , .
Пусть событие A=. Тогда снова в силу условия задачи
, , .

В заключении подведем основные итоги работы.
Итак, в работе были рассмотрены вероятность как событие, классическая вероятностная модель, аксиомы теории вероятности.
Опыт, эксперимент, наблюдение явления называются испытанием. Испытаниями, например, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенным на каждую грань числом очков — от одного до шести).
Результат (исход) испытания называется событием. Событиями являются: выпадение герба или выпадение цифры, попадание в цель или промах, появление того или иного числа очков на брошенной игральной кости.
Можно ли как-то измерить возможность появления некоторого случайного события? Другими словами, можно ли охарактеризовать эту возможность некоторым числом?
Всякое испытание влечет за собой некоторую совокупность исходов — результатов испытания, т. е. событий. Во многих случаях возможно перечислить все события, которые могут быть исходами данного испытания.
Определение 1. Говорят, что совокупность событий образует полную группу событий для данного испытания, если его результатом обязательно становится хотя бы одно из них.
Определение 2. События U1, U2, . U, образующие полную группу попарно несовместимых и равновозможных событий, будем называть элементарными событиями.
Определение 3. Событие А называется благоприятствующим событию Б, если наступление события А влечет за собой наступление события В.
Определение 4 (классическое определение вероятности). Вероятностью Р(А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Р(А) = m/n.
Из приведенного классического определения вероятности вытекают следующие ее свойства.
1. Вероятность достоверного события равна единице.
Действительно, достоверному событию должны благоприятствовать все n элементарных событий, т.е. m = n, и, следовательно,

2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприятствовать ни одно из элементарных событий, т.е. m = 0, откуда

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

1. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965.
2. Боровков А.А. Математическая статистика. М.: Наука, 1984.
3. Коршунов Д.А., Чернова Н.И. Сборник задач и упражнений по математической статистике. Новосибирск: Изд-во Института математики им. С.Л.Соболева СО РАН, 2001.
4. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, Т.2, 1984.

Читайте также: