Аксиоматический метод в математике реферат

Обновлено: 05.07.2024

Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике.
Аксиоматический метод построения научной теории заключается в следующем : выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них.

Работа содержит 1 файл

Аксиоматический метод в геометрии.doc

Аксиоматический метод в геометрии

Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике.

Аксиоматический метод построения научной теории заключается в следующем : выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них.

Основные понятия выделяются следующим образом. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными.

Когда мы доказываем утверждение, теорему, то опираемся на предпосылки, которые считаются уже доказанными. Но эти предпосылки тоже доказывались, их нужно было обосновать. В конце концов, мы приходим к недоказываемым утверждениям и принимаем их без доказательства. Эти утверждения называются аксиомами. Набор аксиом должен быть таким, чтобы, опираясь на него, можно было доказать дальнейшие утверждения.

Выделив основные понятия и сформулировав аксимы, далее мы выводим теоремы и другие понятия логическим путём. В этом и заключается логическое строение геометрии. Аксиомы и основные понятия составляют основания планиметрии.

Так как нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем представить основные понятия в виде объектов любой природы, которые обладают свойствами, указанными в аксиомах.

После формулировки и доказательства первых геометрических утверждений становится возможным доказывать одни утверждения (теоремы) с помощью других. Доказательства многих теорем приписываются Пифагору и Демокриту. Гиппократу Хиосскому приписывается составление первого систематического курса геометрии, основанного на определениях и аксиомах. Этот курс и его последующие обработки назывались "Элементы".

Потом, в III в. до н.э., в Александрии появилась книга Евклида с тем же названием, в русском переводе "Начала". От латинского названия "Начал" произошёл термин "элементарная геометрия". Несмотря на то, что сочинения предшественников Евклида до нас не дошли, мы можем составить некоторое мнение об этих сочинениях по "Началам" Евклида. В "Началах" имеются разделы, логически весьма мало связанные с другими разделами. Появление их объясняется только тем, что они внесены по традиции и копируют "Начала" предшественников Евклида.

"Начала" Евклида состоят из 13 книг. 1 - 6 книги посвящены планиметрии, 7 - 10 книги - об арифметике и несоизмеримых величинах, которые можно построить с помощью циркуля и линейки. Книги с 11 по 13 были посвящены стереометрии.

"Начала" начинаются с изложения 23 определений и 10 аксиом. Первые пять аксиом - "общие понятия", остальные называются "постулатами". Первые два постулата определяют действия с помощью идеальной линейки, третий - с помощью идеального циркуля. Четвёртый, "все прямые углы равны между собой", является излишним, так как его можно вывести из остальных аксиом. Последний, пятый постулат гласил : "Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то, при неограниченном продолжении этих двух прямых, они пересекутся с той стороны, где углы меньше двух прямых".

Пять "общих понятий" Евклида являются принципами измерения длин, углов, площадей, объёмов : "равные одному и тому же равны между собой", "если к равным прибавить равные, суммы равны между собой", "если от равных отнять равные, остатки равны между собой", "совмещающиеся друг с другом равны между собой", "целое больше части".

Далее началась критика геометрии Евклида. Критиковали Евклида по трём причинам : за то, что он рассматривал только такие геометрические величины, которые можно построить с помощью циркуля и линейки; за то, что он разрывал геометрию и арифметику и доказывал для целых чисел то, что уже доказал для геометрических величин, и, наконец, за аксиомы Евклида. Наиболее сильно критиковали пятый постулат, самый сложный постулат Евклида. Многие считали его лишним, и что его можно и нужно вывести из других аксиом. Другие считали, что его следует заменить более простым и наглядным, равносильным ему : "Через точку вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую".

Критика разрыва между геометрией и арифметикой привела к расширению понятия числа до действительного числа. Споры о пятом постулате привели к тому, что в начале XIX века Н. И. Лобачевский, Я. Бойяи и К. Ф. Гаусс построили новую геометрию, в которой выполнялись все аксиомы геометрии Евклида, за исключением пятого постулата. Он был заменён противоположным утверждением : "В плоскости через точку вне прямой можно провести более одной прямой, не пересекающей данную". Эта геометрия была столь же непротиворечивой, как и геометрия Евклида.

Модель планиметрии Лобачевского на евклидовой плоскости была построена французским математиком Анри Пуанкаре в 1882 г.

На евклидовой плоскости проведём горизонтальную прямую (см. рисунок 1). Эта прямая называется абсолютом (x). Точки евклидовой плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре - это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD). Фигура на плоскости Лобачевского - фигура открытой полуплоскости, лежащей выше абсолюта (F). Неевклидово движение является композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского.

Все аксиомы планиметрии Лобачевского непротиворечивы. Определение прямой следующее : "Неевклидова прямая - это полуокружность с концами на абсолюте или луч с началом на абсолюте и перпендикулярный абсолюту". Таким образом, утверждение аксиомы параллельности Лобачевского выполняется не только для некоторой прямой a и точки A, не лежащей на этой прямой, но и для любой прямой a и любой не лежащей на ней точки A

За геометрией Лобачевского возникли и другие непротиворечивые геометрии : от евклидовой отделилась проективная геометрия, сложилась многомерная евклидова геометрия, возникла риманова геометрия (общая теория пространств с произвольным законом измерения длин) и др. Из науки о фигурах в одном трёхмерном евклидовом пространстве геометрия за 40 - 50 лет превратилась в совокупность разнообразных теорий, лишь в чём-то сходных со своей прародительницей - геометрией Евклида.

Аксиометрический метод txt

Аксиоматический метод — это способ построения математической теории, при котором в основу кладутся некоторые положения, принимаемые без доказательства (аксиомы), а все остальные выводятся из них чисто логическим путем. При радикальном применении этого подхода математика сводится к чистой логике, из нее изгоняются такие вещи, как интуиция, наглядные геометрические представления, индуктивные рассуждения и так далее. Исчезает то, что составляет суть математического творчества.

Зачем же вы спросите тогда был придуман этот метод? Для ответа на этот вопрос нам нужно обратиться к самым истокам математики.

2.Аксиомы: два понимания

3. Проблема аксиомы о параллельных прямых

4.Геометрия Лобачевского

Лишь в 19 веке было осознано, что, быть может, это утверждение на самом деле недоказуемо и существует какая-то другая, совсем отличная от нашей геометрия, в которой эта аксиома неверна. Что сделал Лобачевский? Он поступил так, как поступают часто математики, пытаясь доказать какое-то утверждение. Излюбленный прием — доказательство от противного: предположим, что данное утверждение неверно. Что же отсюда следует? Для доказательства теоремы математики пытаются вывести из сделанного предположения противоречие. Но в данном случае Лобачевский получал все новые математические, геометрические следствия из сделанного предположения, но они выстраивались в очень красивую, внутренне согласованную систему, которая тем не менее отличалась от привычной нам евклидовой. Перед его глазами разворачивался новый, непохожий на привычный нам мир неевклидовой геометрии. Это и привело Лобачевского к осознанию того, что такая геометрия возможна. При этом аксиома о параллельных в геометрии Лобачевского явно противоречила нашей обыденной геометрической интуиции: она не только не была интуитивно очевидной, но была с точки зрения этой интуиции ложной .

Однако одно дело представить себе, что такое в принципе возможно, а другое — доказать строго математически, что такая система аксиом для геометрии непротиворечива. Это было достигнуто еще на несколько десятилетий позже в трудах других математиков — Бельтрами, Клейна и Пуанкаре, которые предложили модели аксиом неевклидовой геометрии в рамках обычной евклидовой геометрии. Они фактически установили, что противоречивость геометрии Лобачевского влекла бы противоречивость привычной нам евклидовой геометрии. Верно и обратное, то есть с точки зрения логики обе системы оказываются совершенно равноправными.

5.Создание аксиоматического метода

Именно Гильберт построил первую последовательную и полную систему аксиом для элементарной геометрии, это произошло в самом конце 19 века. Таким образом, аксиоматический метод был фактически создан для того, чтобы доказать невозможность доказательства некоторых, в данном случае геометрических, утверждений.

6.Сущность аксиоматического метода

Если теорему так и не смогли доказать – она становится аксиомой. Так говорил Английский физик-теоретик, один из создателей квантовой механики Поль Дирак.

Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Определить математическое понятие – это значит указать его характерные признаки или свойства, которые выделяют это понятие среди остальных. Обычный способ определения математического понятия заключается в указании: 1) ближнего рода, то есть более общего понятия, к которому относится определяемое понятие; 2) видового отличия, то есть тех характерных признаков или свойств, которые присущи именно этому понятию.

Существуют понятия, которые нельзя определить через другие, более общие понятия. Их в математике называют основными неопределяемыми понятиями . Примерами основных понятий являются точка, прямая, плоскость, расстояние, множество и так далее.

Связи и отношения между основными понятиями формулируются с помощью аксиом.

7.Заключение

В ходе работы я выяснил, что аксиоматический метод, в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определённым содержательным предметным областям.

Отдельно стоит сказать о преподавании математики. Нет ничего хуже, чем строить обучение школьников на выполнении механических действий (алгоритмов) или же на построении формальных логических выводов. Так можно загубить в человеке любое творческое начало. Соответственно, при обучении математике не стоит подходить с позиции строгого аксиоматического метода в смысле Гильберта — не для того он был создан.

АКСИОМАТИЧЕСКИЙ МЕТОД –метод построения теорий, в соответствии с которым разрешается пользоваться в доказательствах лишь аксиомами и ранее выведенными из них утверждениями. Или же способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории.

К концу того же века Дж. Пеанодал аксиоматику натуральных чисел. Далее аксиоматический метод был использован для спасения теории множеств после нахождения парадоксов. При этом аксиоматический метод был обобщен и на логику. Гильберт сформулировал аксиомы и правила вывода классической логики высказываний,а П. Бернайс – логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. В последние десятилетия по мере развития моделей теорииаксиоматический метод стал в почти обязательном порядке дополняться теоретико-модельным.

При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:

- некоторые понятия теории выбираются в качестве основных и принимаются без определения

- каждому понятию теории, которое не содержится в списке основных, дается определение; в нем разъясняется смысл понятия с помощью основных и предшествующих данному понятий

- формулируются аксиомы – предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий

- каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.

Если построение теории осуществляется аксиоматическим методом, а именно, по названным выше правилам, то говорят, что теория построена дедуктивно.

При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.

Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения

Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.

При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.

Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в данном курсе будет не всегда строгим – некоторые доказательства мы опускаем в силу большой сложности, но каждый такой случай будем оговаривать.

Еще один пример аксиоматического построения теории – геометрия Евклида и геометрия Лобачевского.

Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.

Проблема полной аксиоматизации элементарной геометрии — одна из проблем геометрии, возникшая в Древней Греции в связи с критикой этой первой попытки построить полную систему аксиом так, чтобы все утверждения евклидовой геометрии следовали из этих аксиом чисто логическим выводом без наглядности чертежей.


  1. От всякой точки до всякой точки можно провести прямую.

  2. Ограниченную прямую можно непрерывно продолжать по прямой.

  3. Из всякого центра всяким раствором может быть описан круг.

  4. Все прямые углы равны между собой.

  5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

В 1899 году Гильберт предложил первую достаточно строгую аксиоматику евклидовой геометрии. Попытки улучшения евклидовой аксиоматики предпринимались до Гильберта, а именно, Пашем, Шуром, Пеано, Веронезе, однако подход Гильберта, при всей его консервативности в выборе понятий, оказался более успешным.

Истинное начало науки о геометрических фигурах и телах, конечно же, теряется в глубине тысячелетий. Начальное оформление первых геометрических представлений обычно связывают с древнейшими культурами Вавилона и Египта (3-2 тысячелетия до н.э.). С VII века до н.э. начинается период развития геометрии трудами греческих учёных. Пифагорейская школа в VI-V веках до н.э. продолжила геометрические исследования. Её основоположник Пифагор (560-470 или 580-500 г.г. до н.э.) в молодости около двадцати лет учился мудрости в Египте, ещё десяти - в Вавилоне. Несомненно, что в школе Пифагора геометрия сделала первые шаги от узкопрактических утилитарных задач, от геометрии измерения участков земли к обобщениям, абстракциям и рассуждениям.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РФ САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО

КАФЕДРА МАТЕМАТИКИ И

МЕТОДИКИ ЕЁ ПРЕПОДОВАНИЯ

г. Саратов 2008 г.

I. Основные понятия аксиоматической теории.

1.1.Основные этапы развития аксиоматического метода в науке

1.2.Понятие аксиоматической теории

1.3.Как возникают аксиоматические теории.

II.Примеры аксиоматических теорий.

Список используемых источников.

Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях – сформировался на протяжении более чем двухтысячелетней истории развития науки. Особую роль аксиоматический метод играет в математической науке. Можно сказать, что математическая наука достигает совершенства лишь тогда, когда ей удаётся пользоваться аксиоматическим методом, т.е., когда наука принимает характер аксиоматической теории. Более того, развитие науки в двадцатом столетии показало, что математика выделяется в системе наук именно тем, что она, по существу, единственная, использующая аксиоматический метод чрезвычайно широко, и что этот метод в значительной мере обуславливает поразительную эффективность математики в процессе познания окружающего мира и преобразующего воздействия на него.

Целью данной курсовой работы является изучение применения аксиоматического метода к решению математических задач.

Курсовая работа состоит из введения, двух глав, заключения и списка используемых источников.

Во введении описана актуальность темы, сформулирована цель, дана структура курсовой работы.

В первой главе даны основные этапы развития аксиоматического метода и основные понятия аксиоматической теории. Намечен курс дальнейшего исследования.

Во второй главе описывается построение евклидовой геометрии на основе системы аксиом Вейля.

В заключении сформулированы основные выводы к работе. I. ОСНОВНЫЕ ПОНЯТИЯ АКСИОМАТИЧЕСКОЙ ТЕОРИИ

1.1 Основные этапы развития аксиоматического метода в науке.

Формирование современного понимания существа аксиоматического метода происходило на протяжении более чем двухтысячелетней истории развития науки.

Истинное начало науки о геометрических фигурах и телах, конечно же, теряется в глубине тысячелетий. Начальное оформление первых геометрических представлений обычно связывают с древнейшими культурами Вавилона и Египта (3-2 тысячелетия до н.э.). С VII века до н.э. начинается пириод развития геометрии трудами греческих учёных. Пифагорейская школа в VI-V веках до н.э. продолжила геометрические исследования. Её основоположник Пифагор (560-470 или 580-500 г.г. до н.э.) в молодости около двадцати лет учился мудрости в Египте, ещё десяти – в Вавилоне. Несомненно, что в школе Пифагора геометрия сделала первые шаги от узкопрактических утилитарных задач, от геометрии измерения участков земли к обобщениям, абстракциям и рассуждениям.

Читайте также: