Ацп двойного интегрирования реферат

Обновлено: 17.05.2024

Введение
1. АЦП двойного интегрирования
2. Линеаризация статических характеристик АЦП двойного интегрирования
3. Основные параметры АЦП двойного интегрирования
Заключение
Список использованной литературы

Введение

В настоящее время, быстрого развития компьютерной техники, сотовой телефонии, линий связи и передачи информации, существует острая связь в понимании и практическом применении способов кодирования и декодирования информации. Аналого-цифровой преобразователь (АЦП) осуществляет преобразование аналогового сигнала (непрерывный спектр), в сигнал с дискретной формой значений. Цифроаналоговый преобразователь (ЦАП ) производит обратное преобразование цифрового (дискретного) сигнала в аналоговый. Например, путём преобразования в цифровую форму с помощью АЦП, расположенного у источника информации, таких реально существующих переменных, как, температура, скорость и звук, и последующего восстановления тех же самых сигналов с помощью ЦАП, расположенном на оконечном устройстве. Пре Показать все имущества цифровых методов обработки информации могут быть реализованы лишь в том случае, когда АЦП и ЦАП не вносят в эту обработку ограничений по точности и быстродействию эти ограничения удаётся свести к минимуму при использовании интегральных АЦП и ЦАП.
Интеграция схем преобразователей не только существенно улучшила экономические и надёжностные показатели АЦП и ЦАП, уменьшила их габариты с одновременным совершенствованием конструктивного исполнения, но и повысила быстродействие и метрологические характеристики за счёт уменьшения паразитных связей (внутренних емкостей), использования взаимной компенсации и идентичности отдельных элементов интегральных схем. Скрыть

Фрагмент работы для ознакомления

Список литературы

1. Бирюков С.А. Цифровые устройства на интегральных микросхемах. М.: Энергоатомиздат, 2016г.
2. В.А. Нахалов. Электроника. Методические указания по интегральным микросхемам, 2013г.
3. М.И.Богданович, И.Н.Грель, В.А. Прохоренко. Цифровые интегральные микросхемы. Справочник. 2012г.
4. Интегральные микросхемы: Справочник / Под ред. Б.В.Табарина М.: Радио и связь, 2014г.

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Упрощенная схема АЦП, работающего в два основных такта (АЦП двухтактного (двойного) интегрирования), приведена на рис. 7.13.

Преобразование проходит две стадии: стадию интегрирования и стадию счета. В начале первой стадии ключ S1 замкнут, а ключ S2 разомкнут. Интегратор И интегрирует входное напряжение Uвх. Время интегрирования входного напряжения t1

В качестве таймера используется счетчик с коэффициентом пересчета Kсч, так что:

К моменту окончания интегрирования выходное напряжение интегратора составляет

где Uвх.ср. - среднее за время t1 входное напряжение. После окончания стадии

интегрирования ключ S1 размыкается, а ключ S2 замыкается и опорное напряжение Uоп поступает на вход интегратора. При этом выбирается опорное напряжение, противоположное по знаку входному напряжению. На стадии счета выходное напряжение интегратора линейно уменьшается по абсолютной величине, как показано на рис. 7.14. Стадия счета заканчивается, когда выходное напряжение интегратора переходит через нуль. При этом компаратор К переключается и счет останавливается.

Интервал времени, в котором проходит стадия счета, определяется уравнением

Подставив значение Uи(t1) из (7.2) в (7.3) с учетом того, что

где n2 - содержимое счетчика после окончания стадии счета, получим результат

Из этой формулы следует, что отличительной особенностью метода многотактного интегрирования является то, что ни тактовая частота, ни постоянная интегрирования RC не влияют на результат. Необходимо только потребовать, чтобы тактовая частота в течение времени t1+t2 оставалась постоянной. Это можно обеспечить при

использовании простого тактового генератора, поскольку существенные временные

или температурные дрейфы частоты происходят за время несопоставимо большее, чем время преобразования.

При выводе выражений (7.1). (7.5) мы видели, что в окончательный результат входят не мгновенные значения преобразуемого напряжения, а только значения, усредненные за время t1. Поэтому переменное напряжение ослабляется тем сильнее, чем выше его частота.

Способ двойного интегрирования позволяет хорошо подавлять сетевые помехи.

АЦП двойного интегрирования относится к наиболее медленно работающим преобразователям. Однако, высокая точность, низкий уровень шумов и низкая стоимость делают их незаменимыми для применения в щитовых приборах, мультиметрах, цифровых термометрах и т.п. Этому способствует также то, что результаты преобразования в интегрирующих АЦП часто представляются в десятичном коде или же в удобном виде для представления цифр десятичной системы счисления.

Об Энциклопедии измерений

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

При использовании в цифровых мультиметрах аналого-цифрового преобразователя (АЦП) последовательного счёта и последовательного приближения достаточно удобны, но технологически проблема заключается в производстве высокоточной матрицы типа R-2R Причём, чем выше разрядность АЦП, тем точнее должна изготавливаться эта матрица. Более технологичен (и соответственно более дешев) АЦП двойного интегрирования, обобщенная схема которого представлена на рис. 1, а принцип работы пояснен на рис. 2.

Структура АЦП двойного интегрирования

Рис. 1. Структура АЦП двойного интегрирования

Диаграмма напряжений АЦП двойного интегрирования

Рис. 2. Диаграмма напряжений АЦП двойного интегрирования

Основным элементом АЦП двойного интегрирования является интегратор, на вход которого с помощью ключей S1 и S2 может подаваться либо измеряемое напряжение Uвх, либо опорное напряжение от источника опорного напряжения (ИОН) противоположного знака. Выход интегратора связан с компаратором (К), который своим выходом управляет записью значений в регистр. Запуск счётчика и управление ключами осуществляется устройством управления. Генератор тактовых импульсов является высокостабильным узлом данного АЦП.

Вся работа АЦП разделена на две фазы:

  • заряд конденсатора (С) за фиксированный интервал времени (время наполнения счетчика);
  • разряд конденсатора током фиксированного значения (за счет подключения ИОН).

Исходное состояние — на выходе интегратора нулевое значения напряжения, и счётчик в нулевом состоянии. Замыкания ключа S1 — старт преобразования. При этом выходное напряжение интегратора начинает линейно возрастать (Фаза 1) . Этот процесс длится строго заданное время — до переполнения счётчика. Этот сигнал приводит к размыканию ключа S1 и замыканию ключа S2. В результате на вход интегратора подаётся опорное напряжение отрицательного значения. Выходное напряжение интегратора начинает убывать по линейному закону (Фаза 2). Когда напряжение на интеграторе снижается до нуля, срабатывает компаратор и останавливает счётчик и делает запись данных в регистр.

Достоинствами АЦП двойного интегрирования является возможность хорошо подавлять сетевые помехи и требуется меньше прецизионных элементов, важно только обеспечить хорошую стабильность ИОН и генератора. АЦП двойного интегрирования могут имеют разрядность до 18 бит. В тоже время, этот АЦП является медленно действующим. Следует отметить, что с повышением разрядности повышаются требования к работе компаратора. А из курса электроники известно, что чем точнее компаратор, тем хуже он работает на высоких частотах. Обычно, скорость измерений не превышает 3-х измерений в секунду. Это временное ограничение не позволяет построить на основе структуры классического цифрового мультиметра осциллограф (сразу после широкого появления цифровых мультиметров с интерфейсом в конце 90-х годов, некоторые любители пытались обсуждать возможность такого проекта). Как противопоставление невысокой скорости измерений в цифровых мультиметрах используется графическая шкала, расположенная на дисплее мультиметра ниже или выше цифровых показаний измеряемой величины.

Типичными представителями АЦП двойного интегрирования являются отечественные интегральные микросхемы К572ПВ2 (аналог ICL7107) и К572ПВ5 (аналог ICL7106). Тактовая частота (рекомендуемая) для преобразования 50 кГц, время преобразования 0,32 мс (16000 тактов). Тактовая частота 50 кГц обеспечивает полное целое число раз для помехи 50 Гц и, таким образом, помеха будет полностью интегрирована. Источник опорного напряжения для данной микросхемы 0,1. 1 В. При значении 1 В максимальное отображаемое значение ±1,999 В (обычно именно это значение имеют как 3½ разряда). Ток потребления К572ПВ5 около 0,6 мА, что очень важно для ручных переносных приборов.

Подпись заведующего кафедрой________________________Бекирова Л.Р.

Подпись руководителя курсовой работы_________________Рамазанов К.Ш.

Подпись студента____________________________________Наггаев Н.О.

Дата выполнения работы____________________ Оценка________________

Председатель комиссии_____________________________ (Бекирова Л.Р.)

Члены комиссии: 1. ________________________________ (Мамедов Г.А.)

.
ABSTRACT

1.2. Классификация существующих устройств……………………………….

1.3. Разработка структурной схемы…………………………………………….


  1. РАСЧЕТНАЯ ЧАСТЬ…………………………………….

  2. ЗАКЛЮЧЕНИЕ……………………………………………………………….

  3. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………………….

ВВЕДЕНИЕ
Цифро-аналоговые и аналого-цифровые преобразователи АЦП находят широкое применение в различных областях современной науки и техники. Они являются неотъемлемой составной частью цифровых измерительных приборов, систем преобразования и отображения информации, программируемых источников питания, индикаторов на электронно-лучевых трубках, радиолокационных систем, установок для контроля элементов и микросхем, а также важными компонентами различных автоматических систем контроля и управления, устройств ввода – вывода информации ЭВМ. На их основе строят преобразователи и генераторы практически любых функций, цифроуправляемые аналоговые регистрирующие устройства, корреляторы, анализаторы спектра и т. д.

Велики перспективы использования быстродействующих преобразователей в телеметрии и телевидении. Несомненно, серийный выпуск малогабаритных и относительно дешевых АЦП еще более усилит тенденцию проникновения метода дискретно-непрерывного преобразования в сферу науки и техники. Одним из стимулов развития цифро-аналоговых и аналого-цифровых преобразователей в интегральном исполнении в последнее время является широкое распространение микропроцессоров и методов цифровой обработки данных. В свою очередь потребность в АЦП стимулирует их разработку и производство с новыми, более совершенными характеристиками. В настоящее время применяют три вида технологии производства АЦП: модульную, гибридную и полупроводниковую.

При этом доля производства полупроводниковых интегральных схем (ИМС ЦАП и ИМС АЦП) в общем объеме их выпуска непрерывно возрастает и в недалеком будущем, по-видимому, в модульном и гибридном исполнениях будут выпускаться лишь сверхточные и сверхбыстродействующие преобразователи с достаточно большой рассеиваемой мощностью.
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
1.1. Аналого-цифровые преобразователи
Аналого – цифровые преобразователи (АЦП) являются устройствами, которые принимают входные аналоговые сигналы и генерируют соответствующие им цифровые сигналы, пригодные для обработки микропроцессорами и другими цифровыми устройствами.

Принципиально не исключена возможность непосредственного преобразования различных физических величин в цифровую форму, однако эту задачу удается решить лишь в редких случаях из-за сложности таких преобразователей. Поэтому в настоящее время наиболее рациональным признается способ преобразования различных по физической природе величин сначала в функционально связанные с ними электрические, а затем уже с помощью преобразователей напряжение код в цифровые. Именно эти преобразователи имеют обычно в виду, когда говорят об АЦП. На рисунке 1.1 приведены виды АЦП.

Рисунок 1.1 – Виды АЦП

Процедура аналого – цифрового преобразования непрерывных сигналов, которую реализуют с помощью АЦП, представляет собой преобразование непрерывной функции времени U(t), описывающей исходный сигнал, в последовательность чисел , j=0,1,2, отнесенных к некоторым фиксированным моментам времени. Эту процедуру можно разделить на две самостоятельные операции. Первая из них называется дискретизацией и состоит в преобразовании непрерывной функции времени U(t) в непрерывную последовательность . Вторая называется квантованием и состоит в преобразовании непрерывной последовательности в дискретную .

Дискретизация – это представление непрерывной функции (т. е. какого-то сигнала) в виде ряда дискретных отсчетов (по-буржуйски дискрет означает отличный, различный). По-другому можно сказать, что дискретизация – это преобразование непрерывной функции в непрерывную последовательность. На рисунке 2 изображен принцип дискретизации.

Рисунок 1.2 – Принцип дискретизации
При квантовании (рисунок 1.3) шкала сигнала разбивается на уровни. Отсчеты помещаются в подготовленную сетку и преобразуются в ближайший номер уровня квантования.

Рисунок 1.3 – Квантование
1.2 Классификация существующих устройств
Классификация АЦП делится на 3 типа:

- АЦП последовательного приближения, заключается в возможности организации синхронной и циклической работы, производства уменьшения числа разрядов и вывода данных в последовательном коде;

- АЦП считывания, выполняет функцию параллельного преобразования входного напряжения в один из видов цифрового кода: двоичного (прямого или обратного) и с дополнением до двух (прямого или обратного);

- Интегрирующие АЦП, предназначены для применения в измерительной аппаратуре различного назначения.

Основными характеристиками АЦП являются: разрешающая способность, точность и быстродействие. Разрешающая способность определяется разрядностью и максимальным диапазоном входного аналогового напряжения, точность – абсолютной погрешностью полной шкалы, нелинейностью и дифференциальной нелинейностью. Быстродействие АЦП характеризуется временем преобразования т.е. интервалом времени от момента заданного изменения сигнала на входе до появления на выходе, устанавливающегося кода.

По структуре построения АЦП делятся на два типа: с применением ЦАП и без них. В настоящее время в интегральном исполнении реализованы АЦП развёртывающего типа. Развёртывающие АЦП переводят аналоговый сигнал в цифровой последовательный, начиная с младшего значащего разряда до цифрового кода на выходе, соответствующего уровню входного аналогового напряжения АЦП. К этому типу можно отнести АЦП последовательного приближения со счётчиком.

К схемам АЦП без применения ЦАП относятся АЦП двойного интегрирования и параллельного действия. Способ двойного интегрирования позволяет хорошо подавлять сетевые помехи; кроме того, для построения схемы АЦП не требуется ЦАП с высокоточными резистивными матрицами.
1.3 Разработка структурной схемы
В настоящее время, при разработке проектов радиоэлектронных устройств, приоритетными являются разработки, предусматривающие интегральное исполнение.

Исходя из этого, предлагается схема аналого-цифрового преобразователя, обладающая в интегральном исполнении (т.е. выполненная в одном кристалле) более высокими параметрами, чем при изготовлении на дискретных элементах. Так как изготовления прецизионных конденсаторов в интегральном исполнении является сложной технологической проблемой, в предлагаемой разработке из измерительных цепей конденсаторы исключены.

Схема АЦП с буферной памятью состоит из следующих блоков: генератор тактовых импульсов, счётчик формирователь адресов, буферную память составляет динамическое ОЗУ, мультиплексор, регистр последовательного приближения, буферный регистр, компаратор, ЦАП и три логических элемента.

Генератор и счётчик формируют адресные коды в стартстопном или непрерывном режиме. Тактовая частота, с которой производится дискретизация входного аналогового сигнала Ux, зависит от динамических параметров элементов АЦП, главным образом от времени установления ЦАП. С выхода микросхемы памяти мы снимаем восьмиразрядный цифровой код. Время одного измерения равно длительности установления на выходе буферного регистра цифрового кода, отображающего значения амплитуды выборки входного сигнала Ux.

Структурная схема приведена на рисунке 1.4

Рисунок 1.4 – Структурная схема
1.5 Разработка функциональной схемы
Устройство может работать в режимах измерения, хранения измеренной информации и её вывода для индикации или регистрация в цифровой и аналоговой форме представления.

В режиме вывода микросхема памяти включена через мультиплексор в цепь преобразования считываемых с её выхода, по мере возрастания адресов, сигналов в восьмиразрядный параллельный код на выходе буферного регистра и в соответствующий ему аналоговый уровень напряжения на выходе ЦАП. Выходные сигналы можно подать на регистрирующее устройство и индикатор, например на экране осциллографа.

В режиме вывода измерительной информации из накопителя мультиплексор исключает из цепи преобразования компаратор, следовательно, изменения его состояния под воздействием сигнала на входе Ux не влияют на вывод информации.

РРисунок 1.14 – Схема функциональная

Заключение
Аналого-цифровое преобразование используется везде, где требуется принимать аналоговый сигнал и обрабатывать его в цифровой форме.

- специальные видео-АЦП используются в компьютерных ТВ-тюнерах, платах видеовхода, видеокамерах для оцифровки видеосигнала. Микрофонные и линейные аудиовходы компьютеров подключены к аудио-АЦП.

- АЦП являются составной частью систем сбора данных;

- АЦП последовательного приближения разрядностью 8..12 бит и сигма-дельта АЦП разрядностью 16..24 бита встраиваются в однокристальные микроконтроллеры;

- очень быстрые АЦП необходимы в цифровых осциллографах (используются параллельные и конвеерные АЦП);

- современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика. (сигма-дельта АЦП);

- АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора;

- сверхбыстрые АЦП используются в антенных системах базовых станций и в антенных решётках РЛС.

АЦП превратились из базовых устройств, имеющих отдельные ограниченные диапазоны изменения входных сигналов, в более интегрированные, программируемые микросхемы, предлагающие несколько различных диапазонов измерения входных сигналов и программно конфигурируемые интерфейсы.

Читайте также: