Зона проводимости это кратко

Обновлено: 05.07.2024

Зона проводимости , в которую переходит относительно небольшое число электронов из валентной зоны, заполняется частично. Перешедшие электроны занимают преимущественно наиболее низкие уровни, расположенные у дна зоны. [3]

Зона проводимости может возникать и другим способом. Так, у бериллия 25-оболочка заполнена. Но так как свободная 2р оболочка по энергии близка к 2 -оболочке ( уровни бериллия водородоподобны благодаря малому атомному номеру), то зоны, происходящие из 2s - и 2р - состояний атомов в кристалле, перекрываются. [4]

Зона проводимости у металлов заполнена электронами лишь частично. [5]

Зона проводимости должна возникать из s - уровнеи элемента А11, и должна быть тем самым простой. [6]

Зона проводимости - низшая по энергии разрешенная энергетическая зона, не заполненная или заполненная носителями частично при абсолютном нуле температур. [7]

Зона проводимости имеет непараболическую форму; кривизна ее уменьшается с увеличением энергии. [8]

Зона проводимости в кристаллах железа, кобальта и никеля образована перекрыванием соответствующих 4s - и Зс ( - валентных зон. При этом 3i - 30Hbi относительно узки, а плотность заполнения их электронами весьма велика. Поэтому кинетическая энергия электронов, заполняющих эти зоны, относительно мала и они в значительной степени локализованы у своих атомов. Именно направленным взаимодействием неспаренных rf - электронов соседних атомов и объясняется тот факт, что связь в кристаллах переходных металлов носит частично ко-валентный характер. [9]

Зона проводимости оказывается пустой, так как тепловой энергии недостаточно для ее заселения электронами. Вместе с тем валентная зона полностью заполнена электронами, и поэтому они лишены свободы перемещения. Электроны не могут перемещаться вдоль кристалла, даже если к нему прикладывается высокое напряжение, поэтому подобные вещества называются изоляторами. Разумеется, при очень высоких температурах или чрезвычайно больших напряжениях может наступить пробой изолятора, подобно тому как это бывает при проскакивании искр в воздухе. В таких условиях электроны приобретают достаточную энергию, чтобы перескочить через запрещенную зону, и создают проводимость. Однако в этих случаях нередко происходит полная ионизация и разрушение изолятора. [10]

Зона проводимости теллура состоит из двух зон: узкой зоны и перекрывающейся с ней широкой зоны. [11]

Зона проводимости полупроводника может быть образована из нескольких перекрывающихся между собой разрешенных энергетических зон. [13]

Зона проводимости теллура состоит из двух зон: узкой зоны и перекрывающейся с ней широкой зоны. [14]

область значений энергий, разрешенных для электрона в кристалле, в которой электроны могут перемещаться при некоторых внешних воздействиях (электрическое и магнитное поля, градиент температуры и т.п.). Подробнее см. Твёрдое тело.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое "Зона проводимости" в других словарях:

Зона проводимости — Зона проводимости в зонной теории твёрдого тела первая из незаполненных электронами зон (диапазонов энергии, где могут находиться электроны) в полупроводниках и диэлектриках. Электроны из валентной зоны, преодолев запрещённую зону, при… … Википедия

зона проводимости — зона электропроводности — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы зона электропроводности EN… … Справочник технического переводчика

зона проводимости — laidumo juosta statusas T sritis fizika atitikmenys: angl. conduction band vok. Leitfähigkeitsband, n; Leitungsband, n rus. зона проводимости, f; полоса проводимости, f pranc. bande de conductibilité, f; bande de conduction, f … Fizikos terminų žodynas

зона проводимости — laidumo juosta statusas T sritis chemija apibrėžtis Energijos lygmenų, išsidėsčiusių virš valentinės juostos, visuma. atitikmenys: angl. conduction bond rus. зона проводимости … Chemijos terminų aiškinamasis žodynas

зона проводимости — [zone of conductivity] область значений энергии, разрешенных для электрона в кристалле, в которой электроны могут перемещаться при некоторых внешних воздействиях (электрические и магнитные поля, градиент температуры и т.п.); Смотри также: Зона… … Энциклопедический словарь по металлургии

зона проводимости — Низшая по энергии разрешённая энергетическая зона, незаполненная или содержащая некоторое число носителей при абсолютном нуле температур … Политехнический терминологический толковый словарь

ЗОНА ПРОВОДИМОСТИ — см. в ст. Зонная теория … Большой энциклопедический политехнический словарь

зона проводимости полупроводника — зона проводимости Свободная зона полупроводника, на уровнях которой при возбуждении могут находиться электроны проводимости. [ГОСТ 22622 77] Тематики материалы полупроводниковые Синонимы зона проводимости … Справочник технического переводчика

зона проводимости в полупроводнике — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN conduction band … Справочник технического переводчика

Зона проводимости полупроводника — 76. Зона проводимости полупроводника Зона проводимости Свободная зона полупроводника, на уровнях которой при возбуждении могут находиться электроны проводимости Источник: ГОСТ 22622 77: Материалы полупроводниковые. Термины и определения основных… … Словарь-справочник терминов нормативно-технической документации

  • Зона проводимости — в зонной теории твёрдого тела первая из незаполненных электронами зон (диапазонов энергии, где могут находиться электроны) в полупроводниках и диэлектриках. Электроны из валентной зоны, преодолев запрещённую зону, при ненулевой температуре попадают в зону проводимости и начинают участвовать в проводимости, то есть перемещаться под действием электрического поля.

В металлах валентная зона перекрывается с зоной проводимости (запрещённая зона имеет формальную отрицательную ширину), поэтому в них даже при абсолютном нуле присутствуют электроны в зоне проводимости.

При уменьшении размеров системы нижняя граница зоны проводимости, как правило, смещается вверх по энергии относительно уровня Ферми.

Связанные понятия

Валентная зона — энергетическая область разрешённых электронных состояний в твёрдом теле, заполненная валентными электронами.

Ды́рка — квазичастица, носитель положительного заряда, равного элементарному заряду, в полупроводниках.

Подвижность носителей заряда — коэффициент пропорциональности между дрейфовой скоростью носителей и приложенным внешним электрическим полем. Определяет способность электронов и дырок в металлах и полупроводниках реагировать на внешнее воздействие. Размерность подвижности м2/(В·с) или см2/(В·с). Фактически подвижность численно равна средней скорости носителей заряда при напряженности электрического поля в 1 В/м. Стоит заметить, что мгновенная скорость может быть много больше дрейфовой. Понятие подвижности.

Собственный полупроводник или полупроводник i-типа или нелегированный полупроводник (англ. intrinsic — собственный) — это чистый полупроводник, содержание посторонних примесей в котором не превышает 10−8 … 10−9%. Концентрация дырок в нём всегда равна концентрации свободных электронов, так как она определяется не легированием, а собственными свойствами материала, а именно термически возбуждёнными носителями, излучением и собственными дефектами. Технология позволяет получать материалы с высокой степенью.

Носи́тели заря́да — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока.

Запрещённая зо́на — термин из физики твёрдого тела — зона — область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Этот диапазон называют шириной запрещённой зоны и обычно численно выражают в электрон-вольтах.

Эффекти́вная ма́сса — величина, имеющая размерность массы и применяемая для удобного описания движения частицы в периодическом потенциале кристалла. Можно показать, что электроны и дырки в кристалле реагируют на электрическое поле так, как если бы они свободно двигались в вакууме, но с некой эффективной массой, которую обычно определяют в единицах массы электрона me (9,11×10−31 кг). Эффективная масса электрона в кристалле, вообще говоря, отлична от массы электрона в вакууме и может быть как положительной.

Электроны проводимости — это электроны, способные переносить электрический заряд в кристалле, отрицательно заряженные квазичастицы в металлах и полупроводниках, электронные состояния в зоне проводимости.

Рекомбинация — исчезновение пары свободных носителей противоположного заряда в среде с выделением энергии.

Двумерный электронный газ (ДЭГ) — электронный газ, в котором частицы могут двигаться свободно только в двух направлениях, а в третьем они помещены в энергетическую потенциальную яму. Ограничивающий движение электронов потенциал может быть создан электрическим полем, например, с помощью затвора в полевом транзисторе или встроенным электрическим полем в области гетероперехода между различными полупроводниками. Если число заполненных энергетических подзон в ДЭГ превышает одну, то говорят о квазидвумерном.

Плотность состояний — величина, определяющая количество энергетических уровней в интервале энергий на единицу объёма в трёхмерном случае (на единицу площади — в двумерном случае). Является важным параметром в статистической физике и физике твёрдого тела. Термин может применяться к фотонам, электронам, квазичастицам в твёрдом теле и т. п. Применяется только для одночастичных задач, то есть для систем где можно пренебречь взаимодействием (невзаимодействующие частицы) или добавить взаимодействие в качестве.

Ку́перовская па́ра — связанное состояние двух взаимодействующих через фонон электронов. Обладает нулевым спином и зарядом, равным удвоенному заряду электрона. Впервые подобное состояние было описано Леоном Купером в 1956 году, рассмотревшим лишь упрощенную двухчастичную задачу. Коррелированные пары электронов ответственны за явление сверхпроводимости.

Тунне́льный эффект, туннели́рование — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное в классической механике и даже полностью противоречащее ей. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки.

Пространственный заряд — распределённый нескомпенсированный электрический заряд одного знака. Пространственные заряды возникают в вакуумных и газоразрядных лампах в пространстве между электродами, а также в неоднородных областях полупроводниковых приборов, и сильно влияют на прохождение тока через эти области, приводя к нелинейным вольт-амперным характеристикам таких приборов.

Поверхностные состояния, (англ. Surface states) (также поверхностные электронные состояния) — электронные состояния, пространственно локализованные вблизи поверхности твёрдого тела.

Потенциа́льная я́ма — область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение, выполнение которого обычно подразумевается, когда говорится о поле диполя, основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка. Полученные функции будут эффективно.

Поверхность Ферми — поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур.

Электро́нный га́з — модель в физике твердого тела, описывающая поведение электронов в телах с электронной проводимостью. В электронном газе пренебрегается кулоновским взаимодействием между частицами, а сами электроны слабо связаны с ионами кристаллической решетки. Соответствующим понятием для материалов с дырочной проводимостью является дырочный газ.

Магнитная восприимчивость — физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе.

Фоно́н — квазичастица, введённая советским учёным Игорем Таммом. Фонон представляет собой квант колебательного движения атомов кристалла.

Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.

Энергетический уровень — собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики. Каждый уровень характеризуется определённым состоянием системы, или подмножеством таковых в случае вырождения. Понятие применимо к атомам (электронные уровни), молекулам (различные уровни, соответствующие колебаниям и вращениям — колебательные и вращательные уровни), атомным ядрам (внутриядерные.

Спонтанное излучение или спонтанное испускание — процесс самопроизвольного испускания электромагнитного излучения квантовыми системами (атомами, молекулами) при их переходе из возбуждённого состояния в стабильное.

Электри́ческий ди́польный моме́нт — векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на неё внешних полей. Главная после суммарного заряда и положения системы в целом (её радиус-вектора) характеристика конфигурации зарядов системы при наблюдении её издали.

Возбуждение в физике — переход системы из основного энергетического состояния в состояние с большей энергией.

Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом, обусловленным спином частицы. Наиболее часто встречающимся примером такого взаимодействия является взаимодействие электрона, находящегося на одной из орбит в атоме, с собственным спином. Такое взаимодействие, в частности, приводит к возникновению так называемой тонкой структуры энергетического спектра электрона и расщеплению спектроскопических линий атома.

Магнитосопротивление (магниторезистивный эффект) — изменение электрического сопротивления материала в магнитном поле. Впервые эффект был обнаружен в 1856 Уильямом Томсоном. В общем случае можно говорить о любом изменении тока через образец при том же приложенном напряжении и изменении магнитного поля. Все вещества в той или иной мере обладают магнетосопротивлением. Для сверхпроводников, способных без сопротивления проводить электрический ток, существует критическое магнитное поле, которое разрушает.

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества (источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки; элементарным источником магнетизма считают замкнутый ток).

Электронная оболочка атома — область пространства наиболее вероятного нахождения электронов, имеющих одинаковое значение главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не может превышать определенного максимального значения.

Теплово́е движе́ние — процесс хаотичного (беспорядочного) движения частиц, образующих вещество. Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул.

Фотопроводи́мость — явление изменения электропроводности вещества при поглощении электромагнитного излучения, такого как видимое, инфракрасное, ультрафиолетовое или рентгеновское излучение.

В химии валентными электронами называют электроны, находящиеся на внешней (валентной) оболочке атома. Валентные электроны определяют поведение химического элемента в химических реакциях. Чем меньше валентных электронов имеет элемент, тем легче он отдаёт эти электроны (проявляет свойства восстановителя) в реакциях с другими элементами. И наоборот, чем больше валентных электронов содержится в атоме химического элемента, тем легче он приобретает электроны (проявляет свойства окислителя) в химических.

Сегнетоэлектричество — явление возникновения в определенном интервале температур спонтанной поляризации в кристалле, даже в отсутствии внешнего электрического поля, которая может быть переориентирована его приложением. Кристаллы, которым присуще явление сегнетоэлектричества, называются сегнетоэлектриками. Сегнетоэлектрики отличаются от пироэлектриков тем, что при определённой температуре (так называемой диэлектрической точке Кюри) их кристаллическая модификация меняется и спонтанная поляризация пропадает.

Уровни Ландау — энергетические уровни заряженной частицы в магнитном поле. Впервые получены как решение уравнения Шрёдингера для заряженной частицы в магнитном поле Л. Д. Ландау в 1930 году. Решением этой задачи являются волновые функции электрона в гармоническом потенциале. Уровни Ландау играют существенную роль во всех кинетических явлениях в присутствии магнитного поля.

Магнитная анизотропия — зависимость магнитных свойств ферромагнетика от направления намагниченности по отношению к структурным осям образующего его кристалла. Её причиной являются слабые релятивистские взаимодействия между атомами, такие как спин-орбитальное и спин-спиновое.

Диамагнетизм (от греч. dia… — расхождение (силовых линий), и магнетизм) — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.

Неупру́гое рассе́яние — столкновение частиц (включая столкновения с фотонами), сопровождающееся изменением их внутреннего состояния, превращением в другие частицы или дополнительным рождением новых частиц.

Эффект Мейснера, эффект Мейсснера (от нем. Meißner) — полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.

Обменное взаимодействие — взаимодействие тождественных частиц в квантовой механике, приводящее к зависимости значения энергии системы частиц от её полного спина. Представляет собой чисто квантовый эффект, исчезающий при предельном переходе к классической механике.

Межа́томное взаимоде́йствие — электромагнитное взаимодействие электронов и ядра одного атома с электронами и ядром другого атома. Межатомное взаимодействие зависит от расстояния между атомами и электронных оболочек атомов. Мерой межатомного взаимодействия является энергия взаимодействия атомов. Энергия взаимодействия атомов лежит в широком диапазоне. Энергия межатомного взаимодействия является отчётливо выраженной периодической функцией положительного заряда ядра атома.

Упрощённая зонная структура полупроводника и диэлектрика при нулевой абсолютной температуре с изображением нескольких дополнительных зон помимо валентной зоны и зоны проводимости. Уровень Ферми на рисунке обозначен E F > .

Диаграмма заполнения электронных уровней энергии в различных типах материалов в равновесном состоянии. На рисунке по высоте условно показана энергия, а ширина фигур — плотность состояний для данной энергии в указанном материале.
Полутона соответствует распределению Ферми — Дирака (черный — все состояния заполнены, белый — состояние пустое).
В металлах и полуметаллах уровень Ферми E F > находится внутри, по меньшей мере, одной разрешённой зоны. В диэлектриках и полупроводниках уровень Ферми находится внутри запрещённой зоны, но в полупроводниках зоны находятся достаточно близко к уровню Ферми для заполнения их электронами или дырками в результате теплового движения частиц.

Зо́на проводи́мости — в зонной теории твёрдого тела первая зона, целиком или большей частью расположенная над уровнем Ферми. Является энергетически разрешённой для электронов зоной, то есть доступным для электронов диапазоном энергий, в полуметаллах, полупроводниках и диэлектриках.

Аналогом энергии нижней границы зоны проводимости в молекулярных системах (кластерах) является энергия нижней свободной молекулярной орбитали (англ. lowest unoccupied molecular orbital (LUMO) ). При переходе от объёмного материала к системе из единичных атомов край E c > , как правило, поднимается относительно E F > .

Зонная теория - это квантовая механическая теория, которая рассматривает движение электронов в твердом теле.

Зонная теория твердого тела

Согласно теории, свободные электроны могут обладать любой энергией. Электроны в атомах твердого тела могут иметь только определенные дискретные значения энергии. Другими словами, спектр энергии электронов в атомах состоит из разрешенных и запрещенных энергетических зон.

Положения зонной теории

Итак, согласно постулатам Бора, электрон в отдельном атоме может находится на одной из нескольких энергетических орбиталей. Иначе говоря, иметь лишь определенные дискретные значения энергии. Когда атомы образуют молекулу, количество орбиталей расщепляется пропорционально числу атомов в молекуле.

При увеличении количества молекул до макроскопического тела количество орбиталей становится очень большим, а разница между соответствующими им энергиям - очень маленькой. Орбитали сливаются, образуя энергетические зоны.

Валентная зона - в диэлектриках и полупроводниках наивысшая энергетическая зона, которая заполнена полностью при температуре 0 К. Зона проводимости - следующая за валентной зона. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

Зонная теория объясняет различие в электрических свойствах материалов: проводников, полупроводников, диэлектриков. Можно выделить следующие причины различий:

  1. Ширина запрещенных энергетических зон
  2. Разница в заполнении разрешенных энергетических зон электронами.

Зонная структура диэлектриков

Вещество является диэлектриком, когда валентная зона заполнена полностью, в высших зонах нет электронов, также отсутствует перекрытие зон. Такое вещество не проводит ток. Ширина между зонами у диэлектриков условно составляет более 2 электронвольт.

Зонная структура диэлектриков

Зонная структура полупроводников

Вещество является полупроводником, если валентная зона разделена с соседними зонами узкой (менее 2 электронвольт) запрещающей зоной. Отметим, что такое вещество при температуре, близкой к абсолютному нулю, является диэлектриков. Однако при росте температуры электроны из верхней занятой зоны перескакивают в вакантную зону проводимости, и вещество становится электропроводным. Проводимость растет вместе с температурой и концентрацией электронов в зоне проводимости. Соответственно, в заполненной зоне, из которой электроны переходят в зону проводимости, растет концентрация дырок.

Зонная структура полупроводников

Разделение веществ на полупроводники и диэлектрики весьма условно. Вещества с шириной запрещённой зоны более 3—4 эВ и менее 4—5 эВ совмещают свойства диэлектриков и полупроводников.

Зонная структура проводников (металлов)

В металлах валентная зона занята не полностью, и при воздействия на проводник разности потенциалов электроны могут свободно перемещаться из точек с меньшим потенциалом в точку с большим потенциалом.

Зонная структура проводников (металлов)

Также в проводниках зона проводимости пересекается с валентной зоной. Получившаяся зона пересечения заполнена не полностью.

Зонная структура проводников (металлов)

Почему проводимость металлов не растет с увеличением валентности?

Валентность - это способность атома вещества образовать определенное число химических связей. Проще говоря, способность "прикрепить" к себе другой атом.

Однако электропроводность зависит не от количества валентных электронов на один атом, а от числа электронов в валентной зоне, для которых существуют свободные энергетические уровни. Так, у двухвалентных металлов число электронов, которые могут перейти под действием внешнего поля в свободное состояние меньше, чем у одновалентных. Таким образом, электропроводность двухвалентных металлов меньше, чем одновалентных.

Читайте также: