Ядро солнца это в астрономии кратко

Обновлено: 06.07.2024

Ядро — единственное место на Солнце, в котором энергия и тепло получается от термоядерной реакции, остальная часть звезды нагрета этой энергией. Вся энергия ядра последовательно проходит сквозь слои, вплоть до фотосферы , с которой излучается в виде солнечного света и кинетической энергии .

Зона лучистого переноса

Над ядром, на расстояниях примерно от 0,2—0,25 до 0,7 радиуса Солнца от его центра, находится зона лучистого переноса. В этой зоне перенос энергии происходит главным образом с помощью излучения и поглощения фотонов . При этом направление каждого конкретного фотона, излучённого слоем плазмы, никак не зависит от того, какие фотоны плазмой поглощались, поэтому он может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлучённый фотон (изначально возникший в ядре) достигает конвективной зоны , согласно современным моделям Солнца, может лежать в пределах от 10 тысяч до 170 тысяч лет (иногда встречающаяся цифра в миллионы лет считается завышенной).

Перепад температур в данной зоне составляет от 2 млн К на поверхности до 7 млн К в глубине. При этом в данной зоне отсутствуют макроскопические конвекционные движения, что говорит о том, что адиабатический градиент температуры в ней больше, чем градиент лучевого равновесия. Для сравнения, в красных карликах давление не может препятствовать перемешиванию вещества и зона конвекции начинается сразу от ядра. Плотность вещества в данной зоне колеблется от 0,2 (на поверхности) до 20 (в глубине) г/см³.

Конвективная зона Солнца

Гранулы Солнца (снимок телескопа DKIST , январь 2020)

Изображение солнечного пятна , окруженного грануляцией (снимок телескопа DKIST , январь 2020).

Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества. С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причём оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией , а подповерхностный слой Солнца толщиной примерно 200 000 км, где она происходит, — конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа до менее 1/1000 плотности земного воздуха .

По современным данным, роль конвективной зоны в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества. Термики в конвективной зоне вызывают на поверхности гранулы (которые по сути являются вершинами термиков) и супергрануляцию . Скорость потоков составляет в среднем 1—2 км/с, а максимальные её значения достигают 6 км/с. Время жизни гранулы составляет 10—15 минут, что сопоставимо по времени с периодом, за который газ может однократно обойти вокруг гранулы. Следовательно, термики в конвективной зоне находятся в условиях, резко отличных от условий, способствующих возникновению ячеек Бенара . Также движения в этой зоне вызывают эффект магнитного динамо и, соответственно, порождают магнитное поле , имеющее сложную структуру.

Атмосфера Солнца

Движение гранул на поверхности Солнца, снятое шведским солнечным телескопом .

Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года

Фотосфера

Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единиц. В абсолютных величинах фотосфера достигает толщины, по разным оценкам, от 100 до 400 км. Из фотосферы исходит основная часть оптического (видимого) излучения Солнца, излучение же из более глубоких слоёв до нас уже не доходит. Температура по мере приближения к внешнему краю фотосферы уменьшается с 6600 К до 4400 К. Эффективная температура фотосферы в целом составляет 5772 К. Она может быть рассчитана по закону Стефана — Больцмана , согласно которому мощность излучения абсолютно чёрного тела прямо пропорциональна четвёртой степени температуры тела. Водород при таких условиях сохраняется почти полностью в нейтральном состоянии. Фотосфера образует видимую поверхность Солнца, по которой определяются размеры Солнца, расстояние от Солнца и т. д. Так как газ в фотосфере является относительно разреженным, то скорость его вращения много меньше скорости вращения твёрдых тел. При этом газ в экваториальной и полярных областях, движется неравномерно — на экваторе он делает оборот за 24 дня, на полюсах — за 30 дней.

Хромосфера

Изображение Солнца, полученное при наблюдении в телескоп с фильтром Hα , отчётливо показывает его хромосферу

Хромосфера (от др.-греч. χρῶμα — цвет, σφαῖρα — шар, сфера) — внешняя оболочка Солнца толщиной около 2000 км , окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом, вызванным тем, что в видимом спектре хромосферы доминирует красная H-альфа линия излучения водорода из серии Бальмера . Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами . Число спикул, наблюдаемых одновременно, составляет в среднем 60—70 тыс. Из-за этого в конце XIX века итальянский астроном Секки , наблюдая хромосферу в телескоп , сравнил её с горящими прериями . Температура хромосферы увеличивается с высотой от 4000 до 20 000 К (область температур больше 10 000 К относительно невелика).

Плотность хромосферы невелика, поэтому яркость недостаточна для наблюдения в обычных условиях. Но при полном солнечном затмении , когда Луна закрывает яркую фотосферу, расположенная над ней хромосфера становится видимой и светится красным цветом. Её можно также наблюдать в любое время с помощью специальных узкополосных оптических фильтров. Кроме уже упомянутой линии H-альфа с длиной волны 656,3 нм , фильтр также может быть настроен на линии Ca II K (393,4 нм) и Ca II H (396,8 нм).

Основные хромосферные структуры, которые видны в этих линиях:

  • хромосферная сетка , покрывающая всю поверхность Солнца и состоящая из линий, окружающих ячейки супергрануляции размером до 30 тыс. км в поперечнике;
  • флоккулы — светлые облакоподобные образования, чаще всего приуроченные к районам с сильными магнитными полями — активным областям, часто окружают солнечные пятна ;
  • волокна и волоконца (фибриллы) — тёмные линии различной ширины и протяжённости, как и флоккулы, часто встречаются в активных областях.

Корона

Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO

Видимый спектр солнечной короны состоит из трёх различных составляющих, названных L, K и F компонентами (или, соответственно, L-корона, K-корона и F-корона; ещё одно название L-компоненты — E-корона. K-компонента — непрерывный спектр короны. На его фоне до высоты 9—10′ от видимого края Солнца видна эмиссионная L-компонента. Начиная с высоты около 3′ ( угловой диаметр Солнца — около 30′) и выше виден фраунгоферов спектр, такой же как и спектр фотосферы . Он составляет F-компоненту солнечной короны. На высоте 20′ F-компонента доминирует в спектре короны. Высота 9-10′ принимается за границу, отделяющую внутреннюю корону от внешней. Излучение Солнца с длиной волны менее 20 нм , полностью исходит из короны. Это означает, что, например, на распространённых снимках Солнца на длинах волн 17,1 нм (171 Å ), 19,3 нм (193 Å), 19,5 нм (195 Å), видна исключительно солнечная корона с её элементами, а хромосфера и фотосфера — не видны. Две корональные дыры , почти всегда существующие у северного и южного полюсов Солнца, а также другие, временно появляющиеся на его видимой поверхности, практически совсем не испускают рентгеновское излучение.

Солнечный ветер

Искажение магнитного поля Земли под действием солнечного ветра

Из внешней части солнечной короны истекает солнечный ветер — поток ионизированных частиц (в основном протонов, электронов и α-частиц), распространяющийся с постепенным уменьшением своей плотности, до границ гелиосферы . Солнечный ветер разделяют на два компонента — медленный солнечный ветер и быстрый солнечный ветер. Медленный солнечный ветер имеет скорость около 400 км/с и температуру 1,4—1,6⋅106 К и по составу близко соответствует короне. Быстрый солнечный ветер имеет скорость около 750 км/с, температуру 8⋅105 К, и по составу похож на вещество фотосферы. Медленный солнечный ветер вдвое более плотный и менее постоянный, чем быстрый. Медленный солнечный ветер имеет более сложную структуру с регионами турбулентности.

В среднем Солнце излучает с ветром около 1,3⋅1036 частиц в секунду. Следовательно, полная потеря массы Солнцем (на данный вид излучения) составляет за год 2—3⋅10−14 солнечных масс. Потеря за 150 млн лет эквивалентна земной массе. Многие природные явления на Земле связаны с возмущениями в солнечном ветре, в том числе геомагнитные бури и полярные сияния .

Солнце, звезда, космос, огонь, жар, красное, иллюстрация

Солнце является основным источником энергии для Земли и всей Солнечной системы. Без него жизнь на нашей планете была бы невозможна. Неслучайно у многих древнейших цивилизаций (например, у египтян) именно бог Солнца считался верховным божеством, которому все остальные Боги были подчинены. Однако современная наука может рассказать о нашем светиле значительно больше, чем древнеегипетские мифы. Какие процессы протекают внутри Солнца, какова история этой звезды, и какое будущее ожидает ее через миллиарды лет?

Общая характеристика

Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.

С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.

Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.

Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).

Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.

Таблица “Основные физические характеристики Солнца”

Солнце, структура, строение, схема, диаграмма, рисунок

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.

Зона лучистого переноса

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:

Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Магнитное поле Солнца

Солнце, звезда, магнитное поле

У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.

В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.

Жизненный цикл Солнца


Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.

Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.

Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.

Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.

Орбита и расположение Солнца в галактике Млечный путь

Млечный путь, солнце, карта, схема, иллюстрация, галактика, звезды, космос

Солнце вместе со всей Солнечной системой вращается относительно центра Млечного пути, в котором располагается огромная черная дыра. Расстояние от нее до нашего светила составляет 26 тыс. св. лет. Один оборот Солнечная система совершает примерно за 225-250 млн лет. Скорость движения звезды относительно центра галактики составляет 225 км/с.

Исследование Солнца

Солнце, космический зонд, изучение, исследование, иллюстрация

Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.

В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.

В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.

Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.

Интересные факты о Солнце

Солнце, закат, небо, облака, вечер

Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.

Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.

Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.

Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.

Внутреннее строение Солнца можно условно разделить на три зоны по характеру процессов, которые связаны с выделением и передачей энергии.

Внутреннее строение Солнца

Солнечное ядро

Ядро – это центральная часть звезды. Оно имеет радиус 150 – 175 тыс. км, что составляет 20 – 25% солнечного радиуса. Ядро, по сути, является термоядерным реактором, ибо реакции такого типа в нём и происходят. Плотность ядра в 150 раз превышает плотность воды, а температура центра его больше 14 000 000° К. Скорость вращения звезды вокруг своей оси в ядре заметно выше, нежели на поверхности. Каждую секунду посредством термоядерной реакции в излучение обращаются 4,26 млн. тонн вещества. Но топлива солнечной кочегарки достаточно для нескольких миллиардов лет работы.

Зона лучистого переноса

В этой зоне перенос энергии происходит главным образом с помощью излучения и поглощения фотонов. При этом направление каждого конкретного фотона, излучённого слоем плазмы, никак не зависит от того, какие фотоны плазмой поглощались, поэтому он может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлучённый фотон (изначально возникший в ядре) достигает конвективной зоны, может измеряться миллионами лет. В среднем этот срок составляет для Солнца 170 тыс. лет

Конвективная зона

Следующую, внешнюю, область Солнца занимает конвективная зона. Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества.

Конвективная зона

С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причём оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца толщиной примерно 200 000 км, где она происходит, — конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа до менее 1/1000 плотности земного воздуха.

Солнце – ближайшая звезда к Земле. Это также и источник жизни на планете. На заре развития цивилизаций у многих народов именно бог Солнца был самым главным, а все другие божества только подчинялись ему. Характерно, что мифы разных народов по своему объясняли происхождение дневной звезды и ее роль. Сегодня же, в ХХI веке, астрономия может рассказать о Солнце куда больше, чем древние мифы. Поэтому в статье мы расскажем что же происходит внутри звезды и, самое главное: что же будет с ней спустя миллионы лет.

Звезда Солнце

Общая характеристика

Характеристики Солнца важны для понимания его места среди других подобных светил. Солнце являет собой огромный газовый шар, нагретый до невообразимо высоких температур. Диаметр Солнца – 1 млн. 392 тыс. 700 км. Эта величина в 109 раз больше земной. Масса Солнца внушительна и составляет около двух нонниллионов килограмм (1,98⋅1030 кг). Это в 332 946 раз больше земной массы. Интересно, что на массу всех планет, спутников, астероидов, комет, межпланетного газа и пыли, находящихся в Солнечной системе, приходится всего лишь 0,13%. Плотность Солнца несколько больше воды и равна 1,4 г/см3.

Мы наблюдаем Солнце как диск желтого цвета, но на самом деле оно так не выглядит. Звезда излучает белый цвет. Однако у поверхности Земли Солнце выглядит как диск желтого оттенка из-за рассеивания в атмосфере и поглощения части излучения.

В Млечном пути находятся сотни миллиардов таких же звезд, подобных Солнцу. Самая близкая к нашей планете звезда – Проксима Центавра находится на расстоянии свыше четырех световых лет (или около 40 трлн. км).

Если изобразить схему Солнечной системы и поместить внутри нее Бетельгейзе, то она будет простираться до орбиты Юпитера.

Размер Бетельгейзе

Расстояние до Солнца от Земли в среднем составляет 150 млн. км — оно равняется одной астрономической единице. Видимый угловой диаметр для наблюдателя с земной поверхности немногим превышает половину градуса. Звезда находится примерно в 26 тыс. световых лет от центра Млечного Пути. Скорость вращения Солнца вокруг центра галактики – 230 километров в секунду.

Источник тепла и света Солнца – термоядерные реакции. После слияния четырех протонов образуется один атом гелия и энергия. В недрах Солнца происходят и другие реакции, в результате которых, например, образуются атомы металлов.

Приблизительно до 150 астрономических единиц в космосе доминирует так называемый солнечный ветер.

Солнце обращается вокруг своей оси. Вращение это неодинаково. В районе экватора звезда делает один оборот за 25 суток, а в районе полюсов – за 34 суток.

Таблица основных физических характеристик Солнца

Значение Основные характеристики
Диаметр Солнца в километрах 1 миллион 392 тыс.
Протяженность экватора 4,37 млн. км
Масса приблизительно 2•1027 тонн
Площадь поверхности 6 трлн. кв. км
Объем Солнца 1,41•1018 км³
Температура поверхности 6000 °С
Температура в центре Солнца 15 700 000 °С
Экваториальный период вращения вокруг оси 25 суток
Период вращения вокруг оси на полюсах 34 суток
Наклон оси вращения к эклиптике 7,25°
Наименьшее удаление до Земли (перигелий) 147,098 млн. км
Наибольшее удаление до Земли (афелий) 152,098 млн. км
Вторая космическая скорость 617 км/с
Ускорение свободного падения 274 м/с2
Мощность излучения 3,828•1026 ватт

Состав Солнца

Строение Солнца

Ошибочно мнение, будто дневная звезда состоит только из одного разогретого вещества. Строение Солнца довольно сложное. В нем различают шесть слоев. Причем 3 из них внутренние, а 3 образуют так называемую атмосферу. Узнаем подробнее, из чего состоит Солнце.

Внутренние слои Солнца

Внутреннее строение Солнца долгое время было загадкой для астрономов. Только в ХХ веке ее удалось разгадать. Внутри Солнца находятся следующие слои.

Это центральная часть звезды. Здесь происходят реакции ядерного синтеза. Радиус ядра – примерно 150 тыс. км.

Температура внутри Солнца доходит до невообразимых 15 миллионов градусов Кельвина. Давление же здесь составляет около 300 миллиардов атмосфер (свыше 30 000 трлн. Па). Из-за этого плотность солнечного ядра достигает 150 кг/см3 (что в 6,67 раз больше наиболее тяжелого металла на Земле – осмия).

Указанные параметры идеально подходят для реакций ядерного синтеза. Именно здесь появляется энергия, необходимая для поддержания жизни всего живого на нашей планете. Все другие участки Солнца имеют высокую температуру из-за перехода энергии из ядра. Сами они эту энергию не продуцируют.

Зона лучистого переноса

Ее еще называют зоной радиации. Она находится непосредственно над ядром. Радиус внешней границы лучистого переноса составляет 490 тыс. км. Температура медленно снижается до 2 миллионов градусов. Из-за снижения температуры уменьшается давление, в результате чего плотность солнечного вещества достигает 0,2 г/ см3. Конвекционного перемещения в этой зоне нет.

Энергия в зоне лучистого переноса распространяется путем постоянных поглощений, излучений фотонов протонами. Частицы могут двигаться в любом направлении. Этот процесс довольно медленный: из ядра фотон выходит наружу приблизительно 170 тысяч лет. Иными словами, мы сейчас видим свет, образовавшийся на Солнце, когда на Земле была ледниковая эпоха.

Зона конвективного переноса

Толщина конвективной зоны составляет около 200 тыс. километров. Плотность вещества здесь уже невелика, и оно активно перемещается. То есть разогретое вещество интенсивно поднимается вверх, отдает тепло, охлаждается и идет вниз. Скорость конвекции доходит до 6 километров в час. Эти процессы способствуют образованию солнечного магнитного поля.

На поверхности температура Солнца достигает 6 тысяч градусов, а вот плотность примерно в 1000 раз ниже, чем у земной атмосферы.

Солнечная поверхность неоднородна и имеет области с меньшей яркостью. Они называются пятнами. Продолжительность существования пятен – несколько дней. Интересно, что на Солнце могут быть пятна, которые превышают диаметр Земли. На поверхности Солнца также существуют:

  • факулы – объекты с повышенной яркостью;
  • гранулы – области, покрывающие фотосферу и различимы с Земли;
  • супергранулы – объекты большого размера (порядка 35 тыс. км), обволакивающие поверхность Солнца.

Данные современных исследований показывают, что значение конвективных переносов чрезвычайно высоко. Именно в конвективной зоне происходят всевозможные движения солнечного вещества.

Строение Солнца

Атмосфера

Когда говорят об атмосфере Солнца, как правило, выделяют следующие 3 слоя: фотосферу, хромосферу и корону.

Фотосфера

Это самый нижний слой солнечной атмосферы. Это та область, которую мы видим с Земли, ведь Солнце излучает свет и тепло, распространяющиеся на все объекты в Солнечной системе. Толщина этого участка атмосферы – до 400 км.

Из фотосферы, или внешней излучающей поверхности Солнца на Землю попадает большинство излучения. Лучи из глубоко расположенных слоев к нам не поступают. Температура фотосферы снижается с 6000 градусов Кельвина до 4400. Эффективная температура рассчитывается по закону Стефана-Больцмана: мощность излучения абсолютно черного тела прямо пропорциональна температуре тела, возведенной в четвертую степень.

Фотосфера являет видимую поверхность нашей дневной звезды. По ней мы можем определить размеры Солнца и прочие параметры.

Хромосфера

Этот слой расположен над фотосферой. Толщина солнечной хромосферы составляет около 2 тыс. км. С Земли ее наблюдать довольно сложно из-за незначительной яркости. Хромосфера доступна земному наблюдателю во время солнечного затмения. В это время она светится красным светом.

В толщи этого слоя наблюдаются спикулы – плазменные столбы, которые выбрасываются из нижних слоев. Длина одного такого столба может достигать 20 тыс. км. По мере возрастания высоты температура хромосферы возрастает и достигает 20 тыс. градусов на верхней границе.

Корона

Это самый верхний слой солнечной атмосферы. Ее границы не определены. Солнечная корона характеризуется наличием крайне разреженного вещества. Температура этой области достигает нескольких миллионов градусов. В отдельных ее участках температура может достигать 20 миллионов градусов.

Солнечная корона видна только при полном затмении. Это объясняется тем, что плотность ее вещества крайне мала, а, следовательно, яркость слоя незначительна. Форма короны изменяется зависимо от фазы цикла. В максимум активности она приближается к кругу, а в минимум – вытягивается. Солнечная корона излучает ультрафиолетовые и рентгеновские лучи.

Проуберанец

Магнитное поле

Солнце имеет собственное магнитное поле. Различают глобальное и несколько локальных полей.

Кроме того, в различных участках Солнца наблюдаются локальные магнитные поля разной интенсивности. Их параметры могут быть разными. Редко когда время существования такого магнитного поля превышает 10 дней. Локальные поля чаще всего обнаруживаются возле солнечных пятен.

Магнитное поле Солнца

Жизненный цикл Солнца

Эволюция Солнца – вопрос, интересующий не одно поколение астрономов. Ученые оценивают возраст Солнца в 4,5 миллиарда лет. Оно возникло из газопылевого облака, сжимающегося под воздействием сил гравитации. Из такого же облака возникли и все остальные объекты Солнечной системы, в том числе и наша планета. Из-за сжатия начинает возрастать плотность и температура. Когда температура и давление возросли до необходимых значений, начались термоядерные реакции. Так, собственно, и начался жизненный цикл Солнца.

Масса нашей дневной звезды постепенно снижается из-за реакций ядерного синтеза. Ежесекундно 4 миллиарда тонн вещества Солнца превращается в энергию. Однако запасов водорода для поддержания протекания протон-протонной термоядерной реакции хватит на несколько миллиардов лет.

Температура светила увеличивается на 10 процентов каждые 1,1 млрд. лет. Это дает основания предположить, что раньше температура воздуха на планете была ниже, а на Венере, вероятно, могла бы существовать вода в жидкой фазе (сейчас температура Венеры такова, что на ней может плавиться свинец). Поскольку в будущем светимость Солнца будет возрастать, это приведет к увеличению температуры на Земле. Из-за высокой температуры испарятся океаны, молекулы воды, увлекаемые движением, улетучатся в космическое пространство и разложатся на атомы кислорода и водорода, а сама Земля превратится в безжизненное космическое тело.

Жизненный цикл Солнца

Однако рано или поздно выгорит гелий. Это произойдет примерно за 110 миллионов лет. В результате пульсаций внешние слои Солнца постепенно отделятся от ядра. Солнечное ядро превратится в белый карлик, и его диаметр будет примерно соответствовать нынешнему земному. Это при том, что масса ядра будет только вдвое меньше нынешнего Солнца.

Белый карлик будет медленно охлаждаться. В этом объекте не протекают ядерные реакции. Приблизительно через 10 миллиардов лет из Солнца останется черный карлик.

Орбита и место расположения Солнца в галактике Млечный Путь

Солнце, как и вся Солнечная система, обращается вокруг центра Млечного пути. В этом центре расположена большая черная дыра. Солнечная система совершает оборот вокруг этого центра приблизительно за 250 миллионов лет.

Расположение в Галактике

Солнце и Солнечная система, а также наша галактика находятся в рукаве Ориона. Скорость вращения галактики равна скорости вращения спиральных рукавов. Из-за этого Солнечная система не попадает под их влияние. Спиральные рукава излучают лучи, уничтожающие все живое на планете.

Солнечный ветер

Так называется поток ионизированных частиц, исходящих от Солнца. Его скорость может достигать 1200 километров в секунду. Потоки солнечного ветра пронизывают все пространство Солнца. Состав частиц в солнечном ветре – протоны, электроны и альфа-частицы.

Существует медленный и быстрый солнечный ветер. Медленный ветер движется со скоростью примерно 400 км/ч и нагрет примерно до полутора миллионов градусов. Его состав примерно отвечает солнечной короне. Быстрый ветер движется с большей скоростью, имеет более низкую температуру, его плотность вдвое выше.

Солнечный ветер

Ежесекундно Солнцем излучается примерно 1,3⋅1036 частиц, уносимых солнечным ветром. Следовательно, за год звезда теряет в массе примерно 2⋅10−14 массы. На Земле регулярно происходят природные явления, которые связаны с распространением солнечного ветра и его возмущениями (например, магнитные бури и северные сияния).

Солнечные циклы и активность

Солнечная активность – это совокупность явлений, связанных с образованием сильных магнитных полей. Их проявление видно в фотосфере как солнечные пятна. Магнитные поля провоцируют вспышки, потоки быстрых частиц, корональные выбросы, возмущения в солнечном ветре, изменения электромагнитного излучение, потоков космических лучей. На Земле эти поля провоцируют магнитные бури и другие явления.

Показателем уровня активности Солнца является число Вольфа. Оно показывает количество пятен на видимой с Земли части звезды. Оно меняется с периодом примерно 11 лет. За последние 300 лет длительность цикла находился в более широких пределах. Им приписывают последовательные номера. В декабре 2019 года начался 11-летний цикл, который продлится предположительно до 2030 года.

Ученые определяют также 22-летний цикл. Фактически, это изменение полярности магнитного поля. Вековой цикл длится примерно 70 – 100 лет. Наконец, радиоуглеродный анализ указывает на наличие 2300-летнего цикла.

Исследование Солнца

Человечество начало интересоваться Солнцем с незапамятных времен. Оно почиталось как божество. Однако уже в античные времена появились первые научные взгляды на звезду. Уже тогда высказывались мнения, что Солнце – центр, вокруг которого вращаются планеты. Такая теория была возрождена Коперником только в 16 веке.

Впервые солнечные пятна стали наблюдать в Китае во времена династии Хань. В 12 веке появились первые рисунки солнечных пятен.

Инструментальное исследование Солнца началось в 1610 г благодаря изобретению телескопа, гелиоскопа. Астроном Кассини вычислил приблизительное расстояние от Земли до Солнца.

В 19 веке был установлен состав Солнца благодаря спектроскопии. В ХХ веке было установлено, что источником энергии Солнца является термоядерная реакция. Впоследствии было установлено, что подобные реакции происходят во всех звездах. В 2020 году были сделаны самые точные снимки нашей дневной звезды.

Читайте также: