Вычислительная техника это кратко

Обновлено: 02.07.2024

Основные функциональные элементы современных вычислительных машин, или компьютеров (от английского слова compute вычислять, подсчитывать), выполнены на электронных приборах, поэтому их называют электронными вычислительными машинами, или сокращенно ЭВМ.

По способу представления информации вычислительные машины делят на три группы:

- аналоговые вычислительные машины (АВМ), в которых информация представляется в виде непрерывно изменяющихся переменных, выраженных какими-либо физическими величинами;

- цифровые вычислительные машины (ЦВМ), в которых информация представляется в виде дискретных значений переменных (чисел), выраженных комбинацией дискретных значений какой-либо физической величины (цифр);

- гибридные вычислительные машины, в которых используются оба способа представления информации.

Каждый из этих способов представления информации имеет свои преимущества и недостатки. ЦВМ распространены более всего потому, что точность их результатов в принципе не зависит от точности, с которой они изготовлены. Этим объясняется и тот факт, что первое аналоговое вычислительное устройство – логарифмическая линейка – появилась только в XVII в., а самыми древними цифровыми средствами для облегчения вычислений были человеческая рука и камешки. Благодаря счету на пальцах возникли пятеричная и десятичная системы счисления.


НОРБЕРТ ВИНЕР
(1894-1964)

В школу будущий ученый поступил в 9 лет, но уровень его знаний уже тогда соответствовал знаниям выпускных классов. Его отец, профессор славянских языков Гарвардского университета в США, составил для сына специальную, очень сложную программу обучения. Н. Винер окончил колледж в 14 лет, в 18 лет он получил степень доктора философии за диссертацию по математической логике.

Винер продолжает образование в Европе, в Кембридже, а затем в Геттингене, где знакомится с Д. Гильбертом.

Первые годы после возвращения на родину были для Н. Винера годами поиска собственного пути в математике. За время с 1915 по 1919 г. он сменил множество мест работы, пока не устроился преподавать в Массачусетском технологическом институте, в котором проработал всю свою жизнь.

Во время второй мировой войны Винер занимается задачей об управлении огнем зенитной артиллерии. В предыдущей войне он составлял таблицы для стрельбы по неподвижным целям, а как управлять огнем по маневрирующей мишени? Винер строит теорию прогнозирования, на основе которой создаются реальные приборы.

Работая над прикладными задачами, Винер постепенно придаст все большее значение роли обратной связи в самых разнообразных системах. Ученый начинает искать явления обратной связи в физиологии. Винер приходит к мысли, что имеются универсальные законы управления, развития, преобразования информации и в технических и в живых системах. Он начинает говорить о новой науке – кибернетике.

Следующим важным шагом в развитии вычислительной техники было создание суммирующих машин и арифмометров. Такие машины были сконструированы независимо друг от друга разными изобретателями.

В рукописях итальянского ученого Леонардо да Винчи (1452-1519) имеется эскиз 13-разрядного суммирующего устройства. Проект другой, 6-разрядной, машины был разработан немецким ученым В. Шиккардом (1592-1636), а сама машина была построена предположительно в 1623 г. Однако эти изобретения оставались неизвестными вплоть до середины XX в. и поэтому никакого влияния на развитие вычислительной техники не оказали.

В XVII 1-ХIX вв. продолжалось совершенствование механических арифмометров, а затем и арифмометров с электрическим приводом. Эти усовершенствования носили чисто механический характер и с переходом на электронику утратили свое значение.

Исключение составляют лишь машины английского ученого Ч. Беббиджа (1791-1871): разностная (1822) и аналитическая (1830, проект).

При работе над разностной машиной Беббидж пришел к идее создания цифровой вычислительной машины для выполнения разнообразных научных и технических расчетов, которая, работая автоматически, выполняла бы заданную программу. Проект этой машины, названной автором аналитической, поражает прежде всего тем, что в нем предугаданы все основные устройства современных ЭВМ, а также задачи, которые могут быть решены с ее помощью.

устройство, для которого Беббидж не придумал названия и которое управляло последовательностью действий машины (сейчас это – устройство управления);

устройство ввода и вывода информации.

В ожидании результатов вычислений.


В качестве носителей информации при вводе и выводе Беббидж предполагал использовать перфорированные карточки (перфокарты) типа тех, что применял французский ткач и механик Ж.М. Жаккар (1752-1834) для управления работой ткацкого станка. Беббидж предусмотрел ввод в машину таблиц значений функций с контролем при вводе значений аргумента.

Выходная информация могла печататься, а также пробиваться на перфокартах, что давало возможность при необходимости снова вводить ее в машину.

Беббидж предложил также идею управления вычислительным процессом программным путем и соответствующую команду – аналог современной команды условного перехода: вопрос о выборе одного из двух возможных продолжений программы решался машиной в зависимости от знака некоторой вычисляемой величины.

Беббидж предусмотрел также специальный счетчик количества операций, который имеется у всех современных ЭВМ.

Современные ЭВМ по своей структуре очень близки к аналитической машине Беббиджа, но, в отличие от нее (и всех механических арифмометров), используют совершенно другой принцип реализации вычислений, основанный на двоичной системе счисления.

Двоичный принцип реализуется при помощи электромагнитного реле – элемента, который может находиться в одном из двух возможных состояний и переходить из одного состояния в другое при воздействии внешнего электрического сигнала.

Если в электромеханических арифмометрах использовались только энергетические свойства электричества, то в машинах, построенных на реле, электричество становится важнейшим и непосредственным участником вычислительного процесса.

Первая счетная машина, использующая электрические реле, была сконструирована в 1888 г. американцем немецкого происхождения Г. Холлеритом (1860-1929) и уже в 1890 г. применялась при переписи населения США. Эта машина, названная табулятором, имела в своем составе реле, счетчики, сортировочный ящик. Данные наносились на перфокарты, почти не отличающиеся от современных, в виде пробивок. При прохождении перфокарты через машину в позициях, где имелись отверстия, происходило замыкание электрической цепи, на соответствующих счетчиках прибавлялось по единице, после чего перфокарта попадала в определенное отделение сортировочного ящика.

В наши дни ЭВМ все шире применяются для управления сложным производством.


Релейные машины довольно долго находились в эксплуатации, несмотря на появление электронных. В частности, машина РВМ-1 конструкции советского инженера Н. И. Бессонова работала вплоть до 1965 г., однако релейные машины не могли долго конкурировать с электронными вычислительными машинами, так как росли требования к надежности и быстродействию.

Первые проекты электронных вычислительных машин появились лишь незначительно позднее проектов релейных машин, потому что необходимые для их создания изобретения были сделаны к концу 20-х гг. нашего столетия: в 1904 г. появилась двухэлектродная электронная лампа-диод; в 1906 г. – трехэлектродная электронная лампа-триод; в 1918 г. – электронное реле (ламповый триггер).

Первой электронной вычислительной машиной принято считать машину ЭНИАК (электронный числовой интегратор и вычислитель), разработанную в Пенсильванском университете в США. ЭНИАК была построена в 1945 г., она имела автоматическое программное управление, но внутреннее запоминающее устройство для хранения команд у нее отсутствовало.

Этот принцип заключается в следующем:

команды и числа однотипны по форме представления в машине (записаны в двоичном коде);

числа размещаются в том же запоминающем устройстве, что и программа;

благодаря числовой форме записи команд программы машина может производить операции над командами.

Первой отечественной ЭВМ была малая электронная счетная машина (МЭСМ), разработанная в 1947-1951 гг. под руководством советского ученого, академика С. А. Лебедева (1902-1974), с именем которого связано дальнейшее развитие советской вычислительной техники.

МЭСМ выполняла всего 12 команд, номинальное быстродействие – 50 операций в секунду. Оперативная память МЭСМ, выполненная на триггерах, могла хранить 31 семнадцатиразрядное двоичное число и 64 двадцатиразрядные команды. Кроме этого, имелись внешние запоминающие устройства.

Интересно, что раздельное хранение в оперативной памяти МЭСМ чисел и команд противоречит неймановскому принципу хранимой программы, на котором в течение многих лет были основаны конструкции ЭВМ. У современных ЭВМ также наблюдается отход от этого принципа, в частности отпадает необходимость проведения операций над величинами, которыми закодированы команды программы.

В истории развития электронных вычислительных машин, начинающейся с ЭНИАК, ЭДСАК, МЭСМ и продолжающейся по настоящее время, обычно выделяют четыре периода, соответствующих четырем так называемым поколениям ЭВМ. Эти периоды могут быть выделены по разным признакам, из-за чего часто бывает трудно отнести конкретную машину к определенному поколению. Некоторые средние характеристики поколений приведены в таблице.

Пример отечественной машины БЭСМ-6 (главный конструктор – С. А. Лебедев) показывает, как иногда бывает трудно однозначно определить поколение машины. Разработка БЭСМ-6 была закончена в 1966 г.; элементная база – полупроводниковые транзисторы; производительность - операций в секунду, емкость оперативного запоминающего устройства (ОЗУ) – бит. По этим признакам она относится ко второму поколению, по остальным – к третьему. Иногда ЭВМ разделяют по классам: мини-ЭВМ, малые, средние, большие и супер-ЭВМ.

История развития вычислительной техники

Основные этапы

Процесс эволюции счетных устройств начался в древние времена и продолжается сегодня. За это время люди создали различные приспособления для счета. Краткая история их развития может быть описана с помощью основных этапов:

Механическая счетная машина

  1. Ручной. Это самый длительный этап. Он начался в глубокой древности, а завершился в середине XVII столетия. За это время были созданы различные ручные средства для подсчета, например, финикийские фигурки, логарифмическая линейка и т. д.
  2. Механический этап развития. Длился более двух столетий (вторая половина XVII — конец XIX века). Это время характеризуется быстрым развитием науки, что привело к появлению механических счетных машин. Они могли выполнять простые арифметические операции.
  3. Электромеханический. Среди всех этапов эволюции вычислительных устройств он оказался самым коротким. Его длительность составила лишь 60 лет. Начало электромеханическому этапу положило создание первого табулятора (1887), а завершился период в 1946 году. Созданные на этом временном отрезке устройства использовали электрический привод и реле. С их помощью скорость и точность вычислений существенно увеличились.
  4. Электронный этап начался в середине XX столетия и продолжается сегодня. Первые компьютеры имели большие размеры и существенно отличались от современных ПК.

Классификация истории развития вычислительной техники на хронологические этапы является условной. При использовании одного счетного устройства активно появлялись предпосылки для разработки следующего поколения девайсов.

Простейшие устройства

Сначала люди использовали для счета 10 пальцев на своих руках, а результаты вычислений фиксировались на камне, дереве и т. д. Когда появилась письменность, человек разработал различные способы записи цифр и системы счисления:

  • в Индии использовалась десятичная;
  • вавилоняне применяли шестидесятеричную систему.

На рубеже IV столетии до н. э. появился абак. Это приспособление представляло собой глиняную дощечку, на которую заостренным предметом наносились полоски. Вычисления осуществлялись посредством размещения на этих полосах различных предметов небольшого размера.

Логарифмическая линейка

В XVII веке математик Непер из Шотландии открыл логарифмы, основываясь на работе шотландского ученого, Гантер (Англия) смог создать логарифмическую линейку. Это устройство используется и сегодня, хотя его первоначальная конструкция претерпела серьезные изменения.

Изобретение Гантера позволяла выполнять следующие операции:

  • находить логарифмы;
  • операции деления и умножения;
  • находить тригонометрические функции;
  • возводить в степень.

Это устройство стало последним приспособлением домеханической эры развития вычислительной техники.

Механические машины

В 1673 году известный ученый Лейбниц изобрел устройство, которое, помимо простейших операций с числами, позволяло извлекать квадратный корень. Чтобы этот ступенчатый вычислитель мог функционировать, ученому пришлось разработать двоичную систему счисления.

Через 2 столетия французский математик Ксавье Тома де Кальмар, основываясь на работах Лейбница, изготовил арифмометр. Эта машина уже могла делить и перемножать числа. Английский ученый Бэббидж через 2 года начал создавать устройство, способное выполнять вычисления с точностью до 20 знаков после запятой. Однако этот проект так и не был завершен.

Впрочем, имя Бэббиджа навсегда вошло в историю развития счетных устройств. Именно этот человек разработал машину, управлять которой можно было программно. В качестве носителя информации использовались перфокарты. С этим же устройством связано и имя первого программиста на планете — Ада Лавлейс. Именно этой женщине удалось создать первые программы для машины Бэббиджа.

Компьютерная техника

Первый аналог компьютера был создан еще в 1887 году американцем Голлеритом. Он разработал табулятор, который представлял собой электромеханическую вычислительную машину. В конструкции устройства присутствовали реле, счетчики и специальный сортировочный ящик. Машина могла сортировать статистические данные, записанные на перфокартах. Компания, созданная Голлеритом, затем превратилась в известную корпорацию IBM.

Также стоит отметить основные изобретения и теории, давшие в будущем толчок к развитию компьютерной техники:

Дифференциальный анализатор (Ванновар Буш из США)

  • 1930 — дифференциальный анализатор (Ванновар Буш из США);
  • 1936 — создана концепция вычислительной машины (Алан Тьюринг из Англии);
  • 1937 — разработана электромеханическая машина для двоичного сложения (Джордж Стибиц из США);
  • 1938 год — сформулированы принципы работы логического устройства вычислительной машины (Клод Шеннон из США).

Начало эры

Во многом активное развитие ЭВМ связано со Второй мировой войной. Правительства некоторых стран-участниц этого конфликта стремились получить стратегическое преимущество перед противником и начали финансировать работы по разработке вычислительных машин. Пионером компьютеростроения стал инженер из Германии Цузе. Им была сконструирована машина Z3, которая могла оперировать числами с плавающей запятой, работая при этом в двоичной системе. В качестве носителя информации в ней использовалась перфолента.

Машина немецкого инженера — Z4

Однако первым функционирующим компьютером следует считать новую машину немецкого инженера — Z4. Он же разработал и первый язык программирования под названием Планкалкюль. В 1942 году 2 американских исследователя (Джон Атанасов и Клиффорд Берри) создали машину, работающую на вакуумных трубках. Она использовала двоичный код и выполняла ряд логических операций.

При поддержке правительства Англии в 1943 году была построена первая ЭВМ — Колосс. Работы над этим устройством велись в условиях максимальной секретности.

В состав машины входило около 2000 электронных ламп. Колосс использовался для взлома немецких кодов, создаваемых с помощью шифровального устройства Энигма. После завершения войны ЭВМ была уничтожена в соответствии с личным приказом Черчилля.

Работа над архитектурой

Прообраз архитектуры современного ПК был создан в 1945 году американским ученым фон Нейманом. Он первым предложил записывать программу в форме кода непосредственно в память вычислительного устройства. В те времена в США активно работали над созданием первого компьютера, способного решать различные задачи — ENIAC. Эта машина весила порядка 30 тонн, а для ее размещения требовалось около 170 м² площади.

Компьютер ENIAC

В состав конструкции машины входило 18000 ламп. В течение 1 секунды она выполняла 5000 операций сложения либо 300 умножения. На европейском континенте первый универсальный компьютер был создан в СССР. Команда под руководством Сергея Лебедева в 1950 году сконструировала МЭСМ (малая электронная счетная машина). Для ее работы требовалось порядка 6000 ламп, а быстродействие компьютера составляло 50 операций в секунду. Эта же группа ученых через 2 года создала большую электронную счетную машину. Ее быстродействие составляло 10000 операций в секунду.

Создание полупроводниковых приборов

Главным недостатком электронных ламп был невысокий срок службы. Так как эти устройства быстро выходили из строя, обслуживание вычислительной машины существенно усложнялось. Проблема была решена в 1947 году, когда был изобретен транзистор. Полупроводниковые устройства выполняли аналогичные функции, что и лампы, но при этом имели ряд преимуществ:

  • занимали мало места;
  • низкое энергопотребление;
  • более продолжительный срок службы.

Именно появление полупроводниковых приборов позволило компьютерам приобрести вид, напоминающий современные ПК. Благодаря работе американских инженеров Кибли и Нойса мир узнал о микросхемах. Основу этих устройств составлял германиевый либо кремниевый кристалл, на котором монтировались миниатюрные полупроводниковые приборы. Их количество достигало десятки и даже сотни тысяч.

Машина семейства SYSTEM 360

Появление микросхем дало новый толчок к развитию ЭВМ. В 1964 году корпорация IBM представила первую машину семейства SYSTEM 360. В СССР первый компьютер на микросхемах был разработан в 1972 году, а назывался он ЕС. В его основе лежали разработки американской компании IBM. Одновременно с развитием компьютеров начинает активно совершенствоваться и программное обеспечение (софт). В 1964 году был разработан язык Бейсик, предназначенный для начинающих программистов. В 1969 году появился Паскаль, с помощью которого можно было решать различные прикладные задачи.

Персональные компьютеры

В начале 70-х годов стартовал выпуск четвертого поколения компьютеров. Это время для индустрии характеризуется началом использования в производстве вычислительной техники БИС (большая интегральная схема). Благодаря этому производительность ЭВМ достигла отметки в тысячи миллионов операций в секунду. Кроме этого, существенно снизилась и себестоимость производства ПК, что сделало их более доступными для обычного потребителя.

Одним из первых массовых компьютеров стала машина, созданная компанией Apple. Произошло это в 1976 году. В разработке ПК принимали участие Стив Возняк и Стив Джобс. Его стоимость составляла лишь 500 долларов. В 1977 году вышла вторая модель этого компьютера — Apple II. Роль этих личностей в развитии компьютерной техники сложно переоценить.

Первый ПК от американского концерна

Быстрое распространение недорогих компьютеров привело к значительному падению прибыли компании IBM. Это факт вызвал беспокойство у ее руководства, и в 1979 году на рынке появился первый ПК от американского концерна. В нем был установлен процессор от Интел 8088, ОЗУ в объеме 64 Кбайт и дисковод для дискет. Специально для него компания Микрософт разработала новую операционную систему, в которой все было понятно даже новичку.

В дальнейшем наблюдалось стремительное развитие компьютерной техники. Новые процессоры начинают создаваться ежегодно и каждое новое поколение превосходит в производительности прошлое. Вся история развития ПК может быть представлена в таблице:

Поколение Элементная база Быстродействие, операций в секунду ПО Применение Примеры
I (1946−1959) Электронные лампы Не более 20000 Машинные языки Расчетные задачи ЭНИАК и МЭСМ
II (1960−1969) Полупроводниковые приборы От 100 до 500 тысяч Алгоритмические языки Экономические, инженерные и научные задачи БЭСМ-4, IBM 701
III (1970−1979) ИМС (интегральные микросхемы) Около 1 миллиона Операционные системы САПР, научные и технические задачи, АСУ ЕС 1060, IBM 360
IV (с 1980 и до настоящего времени) Микропроцессоры и БИС Минимум десятки миллионов Базы данных (БД) АРМ, работа с графикой и текстами Серверы и ПЭВМ
V (с 1990 до настоящего времени) СБИС Более миллиарда Мощные вычислительные системы, искусственный интеллект Все области Ноутбуки, рабочие станции

Сейчас компьютер можно найти практически в каждом доме, а жизнь современного человека сложно представить без ПК.


Электронно-вычислительные машины прочно вошли во все сферы жизнедеятельности современного общества. К своему высокотехнологичному состоянию средства вычислительной техники шли путем долгой эволюции. Кратко об истории развития вычислительной техники можно прочесть в данной статье.

История развития вычислительной техники

Информатика как наука, включает в себя много направлений, в том числе и раздел, связанный с изучением вычислительной техники. История развития вычислительной техники насчитывает тысячи лет, с момента возникновения первых счетных палочек до современных высокотехнологичных компьютерных средств.

Первые приспособления для счета

Первыми устройствами для выполнения простых арифметических операций, известными исторической науке, были счеты. Так, среди культурных артефактов древнего мира – Египта, Вавилона, Греции, Рима, Китая можно найти специальный предмет, предназначенный для счета – абак. Абак представляет собой доску, на которой в специальных углублениях расположены небольшие камни. Современные варианты счетов, в виде бусин, нанизанных на проволоку, используются, и посей день для выполнения операций сложения и вычитания.

Абак — приспособление для счета

Рис. 1. Абак — приспособление для счета.

Для более сложных операций, таких как умножение, деление, возведение в степень, вычисление корней и логарифмов, были придуманы различные приспособления. Это логарифмические линейки и таблицы. Логарифмическая линейка была изобретена в 1622 году англичанином Уильямом Отредом, а первая таблица появилась в 1614 году и содержала значения тригонометрических функций.

Механические устройства для вычислений

Арифмометр

Рис. 2. Арифмометр.

Итогом механического периода вычислительных приборов стала разработка английского ученого Чарльза Беббиджа, ставшая прообразом современного компьютера. Задумка аналитической машины, представляла собой проект вычислительного устройства общего назначения, в котором в качестве носителя информации использовались перфокарты. Эта машина, хоть и не была построена при жизни ученого, послужила примером для создания современных компьютеров.

Следующей вехой в развитии вычислительных комплексов явилось использование электромеханических устройств. Первым представителем семейства электромеханических машин стал табулятор Холлерита, разработанный в 1887 г, позволявший автоматизировать и ускорить обработку статистической информации.

Программируемые вычислители

Результатом эволюции вычислительных устройств явилось создание электронной вычислительной машины в том виде, в котором мы привыкли ее сейчас видеть. Однако и ЭВМ прошли несколько этапов развития, связанных в первую очередь, с развитием электронной элементной базы:

К первому поколению вычислительных устройств , базирующемуся на лампах можно отнести ENIAC ( США, 1946 г.), ЭВМ БСЭМ-2 (СССР, 1949 г.). Эти машины позволяли производить до 20 тысяч операций в секунду и в качестве устройства ввода использовали перфокарты. Огромные габариты и энергопотребление таких устройств обусловлено особенностями используемой элементной базы.


Самый первый компьютер под названием ENIAC, созданный в 1946 году имел массу более двадцати тонн и занимал огромное помещение площадью порядка 150 квадратных метров.


Рис. 2. ENIAC — первый компьютер на электронных лампах.

Следующий этап развития ЭВМ связан с изобретением полупроводникового транзистора — компактного и экономичного аналога электронной лампы. Быстродействие подобных устройств увеличилось уже до сотен тысяч операций в секунду, а их габариты и энергопотребление значительно снизилось. Что привело к более широкому распространению ЭВМ и упрощению взаимодействия с пользователем. Одним из представителей семейства полупроводниковых машин является ЭВМ БСЭМ-6 (СССР, 1959 г.)

Объединение транзисторных схем в отдельные интегральные микросхемы (ИМС) дало толчок третьему поколению компьютеров. Для этого этапа характерно дальнейшее увеличение производительности и снижение стоимости производства и эксплуатации. А также появление различных периферийных устройств, таких как накопители на магнитных дисках, дисплеи, графопостроители. Среди машин третьего поколения можно выделить IBM-360 (США) и ЕС ЭВМ (СССР).

В настоящее время все компьютеры относятся к четвертому поколению и основаны на использовании микропроцессоров — сверхбольших интегральных схем. Это первый тип компьютеров, который появился в розничной продаже.

Первые компьютеры — это профессия. До того как были созданы компьютерные устройства, компьютерами называли людей, занимавшихся выполнением сложных вычислений на арифмометрах. Как правило, этой профессией овладевали женщины, многие из которых затем с успехом работали программистами.

Что мы узнали?

История развития вычислительной техники берет свое начало в древности. Первыми приспособлениями для вычислений были счеты, логарифмические линейки, арифмометры. Прообразом современного компьютера была аналитическая машина Чарльза Бэббиджа. Развитие компьютерной техники проходило параллельно совершенствованию ее элементной базы: от вакуумных ламп до интегральных микросхем.

О том, как облегчить себе процессы деления, умножения, вычитания и сложения человечество задумалось довольно рано.

Калькулятор и компьютер — далеко не единственные устройства, с помощью которых можно проводить вычисления. О том, как облегчить себе процессы деления, умножения, вычитания и сложения человечество задумалось довольно рано. Одним из первых подобных устройств можно считать балансирные весы, которые появились еще в пятом тысячелетии до нашей эры. Впрочем, не будем погружаться так далеко в глубины истории.


Абак, известный у нас как счеты, появился на свет приблизительно в 500 году до нашей эры. За право считаться его родиной могут поспорить Древняя Греция, Индия, Китай и государство Инков. Археологи подозревают, что в античных городах существовали даже вычислительные механизмы, правда, существование таковых пока не доказано. Однако антикерский механизм, уже упомянутый нами в предыдущей статье, вполне может считаться вычислительным механизмом.

С наступлением Средних Веков навыки создания подобных устройств были утрачены. Те темные времена вообще были периодом резкого упадка науки. Но в XVII веке человечество вновь задумалось о вычислительных машинах. И те не замедлили появиться.

Первые вычислительные машины




Паскалю тогда было 20 лет, и прибор он сделал для своего отца — сборщика налогов, которому приходилось заниматься очень сложными вычислениями. Суммирующая машина приводилось в действие с помощью шестеренок. Чтобы ввести в нее нужное число, нужно было повернуть колесики некоторое количество раз.

Еще через тридцать лет, в 1673-м свой проект создал немецкий математик Готфрид Лейбниц. Его устройство, первым в истории стало называться калькулятором. Принцип работы был тот же, что и у машины Паскаля.


С калькулятором Лейбница связана одна очень любопытная история. В начале XVIII века машину увидел Петр I, посещавший Европы в составе Великого посольства. Будущий император очень заинтересовался устройством и даже купил его. Легенда гласит, что позже Петр отправил калькулятор китайскому Императору Канси в качестве подарка.

От калькулятора к компьютеру

Дело Паскаля и Лейбница получило развитие. В XVIII веке многие ученые делали попытки усовершенствовать вычислительные машины. Основная идея состояла в том, чтобы создать коммерчески успешное устройство. Успех, в конечном итоге, сопутствовал французу Шарлю Ксавье Тома де Кольмару.


В России серийный выпуск калькуляторов начался в 1890 году. Свой нынешний вид калькулятор приобрел уже в ХХ веке. В 1960—1970 годах эта отрасль переживала настоящий бум. Приборы совершенствовались с каждым годом. В 1965-м, например, появился калькулятор, который мог вычислять логорифмы, а в 1970-м был впервые выпущен калькулятор, помещавшийся у человека в руке. Но в это время уже начинался компьютерный век, хотя человечество еще не успело ощутить этого.

Человеком, который заложил основы развития компьютерных технологий, многие считают французского ткача Жозефа Мари Жаккара. Сложно сказать, шутка это или нет. Тем не менее, именно Жаккар придумал перфокарт. Тогда люди еще не знали, что такое карта памяти. Изобретение Жаккара вполне может претендовать на этот титул. Ткач придумал ее для управления ткацким станком. Идея состояла в том, что с помощью перфокарта задавался узор для ткани. То есть, с момента запуска перфокарта, узор наносился уже без участия человека — автоматически.


Перфокарт Жаккара, естественно, не был электронным устройством. До появления подобных предметов было еще очень далеко, ведь Жаккар жил на рубеже еков. Однако перфокарты позднее стали широко применяться и в других сферах, уйдя далеко за переделы знаменитого ткацкого станка.

В 1835 году Чарльз Бэббидж описал аналитическую машину, в основе которой могли бы лежать перфокарты. Ключевым принципом работы такого устройства было программирование. Таким образом, английский математик предсказал появление компьютера. Увы, но сам Бэббидж так и не смог построить придуманную им машину. Первый в мире аналоговый компьютер появился на свет в 1927 году. Создал его профессор Массачусетского университета Вэнивар Буш.

Машина могла решать дифференциальные уравнения. Следующий шаг сделал немецкий инженер Конрад Цузе, которому удалось смоделировать и построить первую программируемую вычислительную машину.


В историю она вошла как Z1, и именно ее многие называют первым компьютером. Впрочем, Z1 имела мало общего с современными компьютерами и, если уж на то пошло, то первым подобным устройством нужно считать Z3. Эта машина действительно обладала многими свойствами нынешних компьютеров. На основе своего первого изобретения Цузе стал конструировать новые модели. Что же касается самой Z1, то ее постигла печальная судьба.


Машина была уничтожена во время одной из бомбардировок Берлина в 1945 году. Вместе с ней сгорели и чертежи Цузе.

Читайте также: