Выбор средств измерений и контроля кратко

Обновлено: 05.07.2024

Принципы выбора измерительных приборов для проведения измерения электрических величин

Измерительные приборы в зависимости от их назначения, области применения и условий работы должны выбираться по следующим основным принципам:

1) должна существовать возможность измерения исследуемой физической величины;

2) пределы измерения прибора должны охватывать все возможные значения измеряемой величины. При большом диапазоне изменений последней целесообразно использовать многопредельные приборы;

3) измерительный прибор должен обеспечивать требуемую точность измерений.

Поэтому следует обратить внимание не только на класс выбираемого измерительного прибора, но и на факторы, влияющие на дополнительную погрешность измерений: несинусоидальность токов и напряжений, отклонение положения прибора при установке его в положение, отличное от нормального, влияние внешних магнитных и электрических полей и т. п.;

4) при проведении некоторых измерений важную роль играют экономичность (потребление) измерительного прибора, его масса, габариты, расположение органов управления, равномерность шкалы, возможность считывания показаний непосредственно по шкале, быстродействие и пр.;

Принципы выбора измерительных приборов для проведения измерения электрических величин

5) подключение прибора не должно существенно влиять на работу исследуемого устройства, поэтому при выборе приборов следует учитывать их внутреннее сопротивление . При включении измерительного прибора в согласованные цепи входные или выходные сопротивления должны быть требуемого номинального значения;

6) прибор должен удовлетворять общим техническим требованиям техники безопасности при производстве измерений, устанавливаемым ГОСГ 22261-76, а также техническим условиям или частным стандартам;

7) не допускается использовать приборы: с явными дефектами измерительной системы, корпуса и т. д; с истекшим сроком поверки; нестандартные или не аттестованные ведомственной метрологической службой, не соответствующие по классу изоляции напряжениям, на которые подключается прибор.

Принципы выбора измерительных приборов для проведения измерения электрических величин

Точность измерений зависит от метода измерений и класса точности выбранных приборов. Класс точности прибора определяется его погрешностью. Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Принципы выбора измерительных приборов для проведения измерения электрических величин

По принципу действия приборы подразделяются на электромагнитные (обозначение на шкале - Э), поляризованные, магнитоэлектрические (М), электродинамические (Д), ферродинамические, индукционные, магнитоиндукционные, электростатические, вибрационные, тепловые, биметаллические, выпрямительные, термоэлектрические (Т), электронные (Ф). На шкале прибора изображаются условные обозначения, классифицирующие погрешность и условия измерений

ГОСТ предусматривает следующие классы точности электроизмерительных приборов - 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; для шунтов и добавочных резисторов к приборам - 0,02; 0,05; 0,1; 0,2; 0,5; 1,0. Практически при оценке состояния оборудования используются приборы класса точности 0,5-2,5, для проверки приборов - 0,02-0,2.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

1. Выбор средств измерений и их применение

Выбор средств измерений при проверке точности деталей — один из важнейших этапов разработки технологических процессов технического контроля.

Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.

Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).

Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.

При выборе измерительных средств и методов контроля изделий учитывают

  • допустимую погрешность измерительного прибора–инструмента;
  • цену деления шкалы;
  • порог чувствительности;
  • пределы измерения, массу, габаритные размеры, рабочую нагрузку и др.

Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.

Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.

Рекомендуется, чтобы величины допустимых погрешностей измерения для квалитетов 2–9 составляли до 30%, для квалитета 10 и грубее — до 20% допуска на изготовление изделия.

2. Контрольно-измерительные инструменты

К инструментам с линейным нониусом относятся штангенциркуль, штангенрейсмас и штанген-глубиномер. Основой штангенинструмента является линейка — штанга с нанесенными на ней делениями; это – основная шкала. По штанге движется рамка с вырезом, на наклонной грани которого нанесена нониусная (вспомогательная) шкала.

Штангенциркуль (рис. 2) предназначен для измерения линейных размеров (диаметров, глубины, ширины, толщины и т.п.). На длине 9 мм рамки (нониуса), соответствующей 9 делениям штанги, нанесено 10 равных делений. Таким образом, каждое деление нониуса равно 0,9 мм.

Методы измерения размеров штангенциркулем

Рис. 2. Методы измерения размеров штангенциркулем

Если поставить рамку так, чтобы шестой штрих нониуса стал против шестого штриха штанги, то зазор между губками будет равен 0,6 мм (рис. 3, А).

Установка нониуса

Рис. 3. Установка нониуса: А — на размер 0,6 мм; Б — на размер 7 мм; В — на размер 7,4 мм

Если нулевой штрих нониуса совпал с каким-либо штрихом на штанге, например с седьмым, то это деление и указывает действительный размер в миллиметрах, т.е. 7 мм (рис. 3, Б).

Если нулевой штрих нониуса не совпал ни с одним штрихом на штанге, то ближайший штрих на штанге слева от нулевого штриха нониуса показывает целое число миллиметров. Десятые доли миллиметра равны порядковой цифре штриха нониуса вправо, не считая нулевого, который точно совпал со штрихом штанги — основной шкалы (например 7,4 мм на рис. 3, В).

Кроме нониусов с величиной отсчета 0,1 мм применяются нониусы с величиной отсчета 0,05 и 0,02 мм.

Штангенрейсмасы предназначаются для точной разметки и измерения высот от плоских поверхностей.

Штангенрейсмас (рис. 4, а) состоит из основания 8, в котором жестко закреплена штанга 1 со шкалой; рамки 2 с нониусом 6 и стопорным винтом 3; устройства для микрометрической подачи 4, включающего в себя движок, винт, гайку и стопорный винт; сменных ножек для разметки 7 с острием и для измерения высот 9 с двумя измерительными поверхностями, нижней плоской и верхней в виде острого ребра шириной не более 0,2 мм (рис. 4, б); зажима 5 для закрепления ножек 7 и 9 и державки 10 на выступе рамки (рис. 4, в) для игл различной длины.

Штангенрейсмас

Рис 4. Штангенрейсмас

Шкала и нониус такие же, как и у других штангенинструментов.

Измерение или разметка штангенрейсмасом производится на разметочной плите. Перед измерением проверяется нулевая установка инструмента. Для этого рамку с ножкой опускают до соприкосновения с плитой или специальной базовой поверхностью (в зависимости от вида ножки). При таком положении нулевое деление нониуса должно совпасть с нулевым делением шкалы штанги.

После выверки штангенрейсмаса можно приступать к измерениям. При измерении высоты детали опускают вручную рамку с ножкой, немного не доводя ее до детали. Дальнейшее перемещение ножки до соприкосновения с деталью осуществляется с помощью гайки микрометрической подачи. Степень прижима ножки к детали определяется на ощупь. В установленном положении рамку закрепляют.

При разметке размер устанавливается по шкалам нониуса и штанги заранее. Риска на детали прочерчивается острым концом ножки при перемещении штангенрейсмаса по плите. При измерении с помощью игл (рис. 4, в) необходимо от показания штангенрейсмаса М вычесть величину m, которая соответствует такому положению рамки 2, когда острие иглы находится в одной плоскости с плоскостью основания .

Индикаторы часового типа. Вследствие небольшого предела измерений инструменты этой группы предназначаются главным образом для относительных (сравнительных) измерений путем определения отклонений от заданного размера. В сочетании со специальными приспособлениями эти приборы могут применяться и для непосредственных измерений. Они используются также и для контроля правильности геометрических форм деталей машин и их взаимного расположения. Наибольшее распространение из приборов этой группы получили индикаторы часового типа (рис. 5, а) с ценой деления 0,01 мм; применяются также индикаторы с ценой деления 0,002 мм.

При перемещении измерительного стержня на 1 мм стрелка индикатора делает полный оборот. Индикаторы, пределы измерения которых более 3 мм, имеют счетчик оборотов стрелки.

Практика измерений. Индикаторы часового типа применяют при измерениях радиального и осевого биения, отклонений от прямолинейности, отклонений положения одной детали относительно другой, при проверке взаимного расположения поверхностей и пр.

Индикатор часового типа и установка индикатора для измерения

Рис. 5. Индикатор часового типа (а) и установка индикатора для измерения: б — на универсальном штативе; в — различные способы крепления индикаторной головки на штативе

При измерениях применяют универсальный штатив и другие приспособления.

Индикатор, установленный в универсальном штативе (рис. 5, б), может занимать самые различные положения по отношению к проверяемому изделию. Конструктивное оформление универсальных штативов может быть различным, но принципиальная схема их остается одной и той же. Варианты приведены на рис. 5, в.

При любом измерении индикатором (абсолютном или относительном) его нужно установить в некоторое начальное положение. Для этого измерительный наконечник приводят в соприкосновение с поверхностью установочной меры (или столика). Индикатор подводят так, чтобы стрелка его сделала 1–2 оборота. Таким образом стержню индикатора дается натяг, чтобы в процессе измерения индикатор мог показать как отрицательные, так и положительные отклонения от начального положения или установочной меры. Стрелка индикатора при этом устанавливается против какого-либо деления шкалы. Дальнейшие отсчеты следует вести от этого показания стрелки, как от начального. Чтобы облегчить отсчеты, начальное показание обычно приводят к нулю. Установка индикатора на нуль осуществляется поворотом циферблата за рифленый ободок.

При измерениях индикаторным нутромером его предварительно настраивают на измеряемый размер по микрометру, блоку плоскопараллельных концевых мер или калиброванному кольцу и после этого устанавливают на нуль.

Настроенный нутромер осторожно вводят в измеряемое отверстие и небольшими покачиваниями (рис. 6, а) определяют отклонение стрелки от нулевого положения. Это и будет отклонение измеряемого размера от того, на который был настроен. В тех случаях, когда измерительный стержень индикаторной головки не может коснуться измеряемой поверхности, прибегают к специальным рычажным приспособлениям, соединенным с корпусом индикатора. Устройство этих приспособлений ясно из рисунка (рис. 6, б).

Индикаторный нутромер и рычажные приспособления к индикатору, применяемые для измерений в труднодоступных местах

Рис. 6. Индикаторный нутромер (а) и рычажные приспособления к индикатору (б), применяемые для измерений в труднодоступных местах

Микрометры для наружных измерений (рис. 7), микрометрические нутромеры и микрометрические глубиномеры относятся к микрометрическим инструментам.

Микрометр для наружных измерений

Рис. 7. Микрометр для наружных измерений: 1 — пятка; 2 — микрометрический винт; 3 — стопорная гайка; 4 — втулка; 5 — барабан; 6 — трещотка; 7 — скоба

Отсчетное устройство микрометрических инструментов состоит из втулки 1 (рис. 8, а) и барабанчика 2. На втулке по обе стороны продольной линии нанесены две шкалы с делениями через 1 мм так, что верхняя шкала сдвинута по отношению к нижней на 0,5 мм.

На скошенном конце барабанчика имеется круговая шкала с 50 делениями. При вращении барабанчик перемещается вдоль втулки и за один оборот проходит путь, равный 0,5 мм. Следовательно, цена деления шкалы барабанчика равна 0,5:50=0,01 мм.

При измерениях целое число миллиметров отсчитывают по нижней шкале, половины миллиметров — по верхней шкале втулки, а сотые доли миллиметра — по шкале барабанчика. Число сотых долей миллиметра отсчитывают по делению шкалы барабанчика, совпадающему с продольной риской на втулке.

Примеры отсчета по шкалам микрометра приведены на рис. 8.

Методика отсчета размеров по шкале микрометрического инструмента

Рис. 8. Методика отсчета размеров по шкале микрометрического инструмента: а — 11,0 мм; б — 9,36 мм; в — 10,5 мм; г — 9,86 мм

Чтобы при измерении микрометром ограничить силу натяжения на измеряемую деталь и обеспечить постоянство этой силы, микрометр снабжается трещоткой.

Перед тем как прочесть показания микрометра, барабанчик закрепляют с помощью специального стопора.

Кроме обычных штангенциркулей и других инструментов с нониусной шкалой и шкалой часового типа применяют также и модели инструментов с электронными цифровыми индикаторами, которые выводят на экран в цифровом виде показания значений произведенного измерения.

При эксплуатации измерительных приборов следует помнить, что измерительные поверхности у наконечников должны быть чистыми, а измеряемые поверхности деталей должны быть чистыми и их температура не должна отличаться от температуры измерительных приборов. Недопустимо измерять горячие детали точными измерительными приборами. В руках измерительные приборы долго держать нельзя, так как это влияет на точность измерений. Не допускается измерять подвижные детали, потому что это опасно, приводит к быстрому износу измерительных поверхностей инструмента и к потере точности результатов измерения.

При кратковременном и длительном хранении измерительный инструмент протирают мягкой ветошью с авиабензином и смазывают тонким слоем технического вазелина. Измеряющие поверхности наконечников отделяют друг от друга, а стопоры ослабляют. При длительном хранении инструменты обертывают промасленной бумагой.

Перед тем как приступить к измерениям рекомендуют проверить нуль показаний средств измерения. Для этого предварительно настраивают показания шкалы инструмента на измеряемый размер по мерным плиткам (плоскопараллельным концевым мерам) или по калиброванному кольцу или валику и таким образом определяют положение нуля при измерениях.

Щупы служат для определения величины зазоров с точностью 0,01 мм (рис. 9).

Набор щупов

Рис. 9. Набор щупов

Щупы изготовляются 1-го и 2-го классов точности с толщиной пластин от 0,03 до 1 мм и с интервалом 0,01 мм или больше, в зависимости от номера набора.

Поверочные плиты (рис. 10) являются основными средствами проверки плоскостности поверхности детали методом на краску. Плиты изготовляют из чугуна размерами от 100х200 до 1000х1500 мм.

На поверхности плит не должно быть коррозийных пятен или раковин.

Поверочные плиты служат не только для контроля плоскостности. Их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерений (рейсмусов, индикаторных стоек и др.)

Поверочные плиты

Рис. 10. Поверочные плиты

Поверочные линейки

Рис. 11. Поверочные линейки

Линейки выпускаются различных размеров (LxHxB мм): а – до 320х40х8; б – до 320х30; в – до 320х25; г – до 1000х60х12; д – до 4000х160х30.

При проверке на просвет (рис. 12, а) лекальную линейку укладывают острым скосом на проверяемую поверхность, а источник света помещают сзади линейки и детали. Минимальная ширина щели, улавливаемая глазом, составляет 3…5 мкм. Для контроля щели просвета обычно используют щупы.

Схема контроля отклонения от плоскостности лекальной линейкой на просвет

При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.

В случае, если допустимая погрешность не предусмотрена в соответствующих нормативных документах, предельно допустимая погрешность измерения должна быть регламентирована в технической документации на изделие.

При выборе средств измерения должны также учитываться:

1) допустимые отклонения;

2) методы проведения измерений и способы контроля.

Главным критерием выбора средств измерений является соответствие средств измерения требованиям достоверности измерений, получения настоящих (действительных) значений измеряемых величин с заданной точностью при минимальных временных и материальных затратах.

Для оптимального выбора средств измерений необходимо обладать следующими исходными данными:

1) номинальным значением измеряемой величины;

2) величиной разности между максимальным и минимальным значением измеряемой величины, регламентируемой в нормативной документации;

3) сведениями об условиях проведения измерений. Если необходимо выбрать измерительную систему,

руководствуясь критерием точности, то ее погрешность должна вычисляться как сумма погрешностей всех элементов системы (мер, измерительных прибо18б ров, измерительных преобразователей), в соответствии с установленным для каждой системы законом.

Предварительный выбор средств измерений производится в соответствии с критерием точности, а при окончательном выборе средств измерений должны учитываться следующие требования:

1) к рабочей области значений величин, оказывающих влияние на процесс измерения;

2) к габаритам средства измерений;

3) к массе средства измерений;

4) к конструкции средства измерений.

При выборе средств измерений необходимо учитывать предпочтительность стандартизированных средств измерений.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Выбор вида электропроводки. Выбор кабелей и проводов и способа их прокладки

Выбор вида электропроводки. Выбор кабелей и проводов и способа их прокладки Вопрос. Как осуществляется выбор электропроводки?Ответ. Осуществляется в соответствии с табл. 2.1.3 и 2.1.4 настоящей главы Правил (2.1.54).Вопрос. Как производится выбор и расчет нулевых рабочих

3. Классификация измерений

3. Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой

5. Основные характеристики измерений

5. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений –

11. Метрологические характеристики средств измерений и их нормирование

11. Метрологические характеристики средств измерений и их нормирование Метрологические свойства средств измерения – это свойства, оказывающие непосредственное влияние на результаты проводимых этими средствами измерений и на погрешность этих

13. Погрешность измерений

13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения

16. Погрешности средств измерений

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную

18. Выбор средств измерений

18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в

21. Поверка и калибровка средств измерений

21. Поверка и калибровка средств измерений Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся

2 Классификация измерений

2 Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой

11.Метрологические характеристики средств измерений и их нормирование

11.Метрологические характеристики средств измерений и их нормирование Метрологические свойства средств измерения – это свойства, оказывающие непосредственное влияние на результаты проводимых этими средствами измерений и на погрешность этих

13. Погрешность измерений

13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения

16. Погрешности средств измерений

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения.По способу выражения выделяют абсолютную и относительную погрешности.

21. Поверка и калибровка средств измерений

21. Поверка и калибровка средств измерений Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся

Выбор вида электропроводки. выбор кабелей и проводов и способа их прокладки

Выбор вида электропроводки. выбор кабелей и проводов и способа их прокладки Вопрос 27. По каким критериям осуществляется выбор электропроводки и способ прокладки кабелей и проводов?Ответ. Осуществляется в соответствии с табл. 2.1.3 (п. 2.1.54).Таблица 2.1.3Выбор электропроводки.

5.6 Прослеживаемость измерений

5.6 Прослеживаемость измерений 5.6.1 Общие положения Все оборудование, используемое для проведения испытаний и/или калибровок, включая оборудование для дополнительных измерений (например окружающих условий), имеющее существенное влияние на точность и достоверность

Обработка результатов измерений

На сегодняшний день имеется большое количество средств, с помощью которых можно совершать измерения разных видов: линейные, весовые, температурные, силовые и т. д. Приборы различаются по точности, принципу работы, назначению, а также цене.

Для того чтобы правильно выполнить необходимую работу, следует внимательно подойти к выбору средств измерений. Они, в свою очередь, также подразделяются на несколько видов в зависимости от рассматриваемых критериев.

Классификация инструментов

Вам будет интересно: Колледж на Авиаконструкторов, 28: специальности, преподаватели, отзывы. Политехнический колледж городского хозяйства в Санкт-Петербурге

Средства измерений – это инструменты и приборы, которые применяют для выполнения измерений физических величин. Для каждого из них определены погрешности, указанные в нормативных документах и техническом регламенте.

условия выбора средств измерения

Вам будет интересно: Центростремительное ускорение при движении по окружности: понятие и формулы. Центробежная и центростремительная силы

Средства измерений разделяют на различные типы согласно следующим критериям:

  • вид инструмента для работы;
  • принцип работы;
  • сравнение с принятым эталоном;
  • метрологическое применение.

Виды инструментов

К наиболее распространенным видам средств измерений относятся перечисленные ниже.

Мера – средство измерений, используемое для воспроизведения нужного размера рассматриваемой физической величины. Например, для воспроизведения необходимой массы применяют гирю. Бывают однозначные и многозначные меры, а в некоторых случаях и целые магазины мер. Однозначная мера необходима для воспроизведения величины только одного размера. Многозначные меры применяют для определения нескольких размеров физических значений (например, осуществляют выбор средств измерений линейных размеров, с помощью которых можно узнать как сантиметры, так и миллиметры).

Вам будет интересно: Прилагательные к слову "работа": список примеров

Эталон – меры с очень высоким уровнем точности. Их применяют для контроля правильности средств измерений.

выбор средств измерения и контроля

Измерительный преобразователь – средство измерений, которое трансформирует сигнал информации об измерениях в другую форму. Так удобнее передавать сигнал для последующей обработки и хранения. Но преобразованный сигнал не может быть воспринят наблюдателем без использования специального инструмента. Для визуализации сигнал необходимо передать в показывающее устройство. Поэтому преобразователь обычно входит в полную конструкцию измерительного инструмента или применяется вместе с ним.

Измерительный прибор – средство для выполнения измерений, которое используется для выработки сигнала в такой форме, которая доступна для последующей визуализации наблюдателем. Имеются различные классификации данных приборов в зависимости от группы факторов. По назначению они делятся на универсальные, специальные, и контрольные. По конструктивному устройству могут быть механические, оптические, электрические и пневматические. По степени автоматизации подразделяются на механизированные, приборы ручного действия, автоматические и полуавтоматические.

Измерительная установка – это совокупность инструментов и вспомогательных элементов, объединенных для выполнения конкретной функции. Назначение частей такой установки – выработка информационных сигналов в форме, которая будет удобна для восприятия наблюдателем. При этом вся измерительная установка обычно является стационарной.

Измерительная система – совокупность инструментов, элементы которой соединены каналами связи, расположенными в пределах всего контролируемого пространства. Ее назначение – измерение одной или нескольких физических величин, которые имеются в изучаемом пространстве.

Критерии выбора

При выборе средств измерений необходимо в первую очередь учитывать точность, которой нужно будет достигнуть при выполнении работы. Она указывается в нормативных документах или в технической документации на деталь.

Кроме того, при выборе инструмента для измерения следует учитывать предельные отклонения, а также методы осуществления работ и способы их контроля.

Главным принципом выбора средств измерения является соответствие их поставленным требованиям по получению достоверных результатов с соблюдением заданной регламентом точностью. Кроме того, немаловажно учитывать материальные и временные затраты: они по возможности должны быть минимальными.

Исходные данные

Вам будет интересно: Адаптивные структуры управления: виды и основы функционирования

Для правильного выбора приборов измерений необходимо иметь исходные данные по следующим пунктам:

  • номинальный вес величины измерения;
  • величина разницы между наибольшим и наименьшим значениями;
  • информация об имеющихся условиях работы по проведению измерений.

При необходимости выбора системы измерения с учетом фактора точности необходимо вычислить погрешность. Она рассчитывается как сумма погрешностей всех возможных источников (приборов для проведения измерений, преобразователей значений, эталонов) с соблюдением установленных для каждого из источников законов.

методика выбора средств измерения

На первом этапе производят выбор средств измерений по точности в соответствии с требованиями работы. При подборе окончательного варианта учитывают также следующие требования:

  • Рабочая область величин, которые необходимы в процессе проведения работ.
  • Габаритные размеры инструментов.
  • Вес инструментов.
  • Конструктивные особенности средства измерений.

В метрологии к выбору средств измерений по критерию точности предъявляют требование наличия следующих исходных данных:

  • состав изменяемых параметров инструментов;
  • величина допуска погрешности рабочих инструментов, а также допустимые значения общей погрешности при измерении параметров;
  • допустимые значения вероятности возникновения отказов для измеряемых параметров;
  • правила распределения отклонений параметров от их истинных значений.

Стандартизированные измерения

При выборе инструментов обычно учитывают приоритетность стандартизированных средств для выполнения измерений. Стандартизированное средство измерений – это такое средство, которое было изготовлено в соответствии с регламентом международного или специального стандарта по выполнению рассматриваемого вида работ.

В соответствии с этим условия выбора средств измерений зависят от специализации производства, на котором ведутся работы.

выбор средств измерений линейных размеров

В производстве массовых изделий обычно применяют автоматизированные современные средства измерения и контроля, рассчитанные на высокую производительность. В серийном производстве применяют различные шаблоны и контрольные приспособления, по которым производят сравнения. В индивидуальном производстве осуществляют выбор универсальных средств измерений, с помощью которых можно выполнить различные виды работ.

Условия эксплуатации

Выбор средств измерений и контроля производят исходя из технического регламента на выбранные инструменты в условиях нормальной их эксплуатации и использования.

Нормальные условия – это такие условия, при которых значения величин влияющих на результат факторов могут быть опущены ввиду их малости. Описанные условия обычно указываются в инструкциях к средствам измерений или вычисляются в ходе проведения их калибровки.

выбор средств измерений по точности

Следует проводить различия между рабочими и предельными условиями проводимых измерений.

Рабочими условиями обычно считают условия выполнения измерений, при которых значения величин влияющих факторов входят в допуск рабочих областей. При этом рабочей областью называют область значений величины влияющего фактора, внутри которой приводят к нормальной имеющуюся погрешность или производят изменение значений рабочих инструментов.

Предельными условиями обычно называют максимальные и минимальные значения фактической и влияющих величин, выдерживаемые средством измерений без крупных разрушений и ухудшения его рабочих свойств и характеристик.

При выборе средств измерений и контроля для использования их в рабочих условиях следует учитывать взаимосвязь показаний инструментов и влияющих величин. На основе этого необходимо вводить поправки в конечные показания средств измерений или использовать корректирующие устройства и приборы.

Согласно нормативным документам поправки определяют по нормированным для условий на рабочем месте метрологическим характеристикам.

Назначение приборов

Выбор средств измерений основан на изучении различий двух случаев их использования:

  • произведение измерений параметров устройств;
  • осуществление контроля над измерением параметров устройств.

В первом случае в ходе работ необходимо достигнуть значения меньше, чем предел погрешности измерения. Во втором случае приборы выбираются согласно условию, что вероятность возможных погрешностей параметра не должна быть выше, чем допустимые значения.

Погрешности

Одним из основных критериев выбора средств измерений в метрологии является соотношение значений предела допустимой абсолютной ошибки или погрешности (Δ) и поля допуска величины, которую необходимо измерить (Д).

Вам будет интересно: Понятие о полном ускорении. Компоненты ускорения. Ускоренное перемещение по прямой и равномерное движение по окружности

Соотношение при этом должно соответствовать следующему выражению:

Предел допустимой ошибки может быть представлен в относительных значениях (относительная ошибка измерения). В таком случае она должна быть меньше или равна 33,3 % от общего значения поля допуска, если не имеется других особенных ограничений.

параметры выбора средств измерений

Погрешности проведения измерений, указанные в регламентах, являются максимальными допустимыми ошибками. Они включают в себя все элементы работы, которые могут зависеть от выбранных измерительных инструментов, установочных эталонов, температурных изменений и т. д.

Методика выбора

Методика средств измерений подразделяется на три вида.

Приближенная методика широко используется при ориентировочном выборе приборов для измерения, а также при проведении контроля и экспертизы на соответствие нормативному, конструкторскому и технологическому регламенту. Для этого выполняют следующие действия:

Расчетная методика применяется при выборе приборов для одиночного и мелкосерийного производства, измерения параметров выборки при статистическом способе контроля, проведения экспериментов, а также перепроверки бракованных деталей. Она включает следующие этапы действий:

Табличная методика применяется при выборе инструментов измерения для крупносерийного и массового производства. Данный способ может быть осуществлен, если работа по изготовлению деталей включает измерения, а не контроль с использованием калибров.

Таким образом, можно отметить, что методы выбора средств измерений зависят от типа производства, на котором будут производиться работы.

Осуществление выбора

Выбор и назначение приборов для измерений осуществляют отделы, которые занимаются разработкой:

  • Нормативной документации на параметры выбора средств измерений при проведении лабораторных исследований, контроле качества производимой продукции, эксплуатации уже изготовленной продукции, ее составных элементов и материалов.
  • Технологических процессов стандартизации продукции, измерения ее составных элементов и материалов.
  • Проектов по обслуживанию приборов и оборудования по выполнению измерений.

Выбор средств и способов измерений по имеющимся исходным данным производят квалифицированные сотрудники. Они должны быть хорошо знакомы с основами физических измерений, со способами оформления и использования результатов и ошибок измерений, а также с принципами нормирования метрологических параметров и вычисления по ним погрешностей инструментов.

Для осуществления измерений в процессе изготовления продукции назначаются специальные рабочие, отвечающие за средства измерений.

выбор универсальных средств измерений

В заключение можно сказать, что правильный выбор инструмента для измерений из имеющегося на сегодняшний день ассортимента – залог эффективного производства и уменьшения количества бракованных изделий.

Выбор средств измерений должен производиться с учётом погрешностей, допускаемых при измерении и заданных в соответствующих нормативных документах.

При выборе средств измерений объёмного или массового расхода, частоты вращения и в связи с тем, что отсутствует нормативная документация регламентирующая определение погрешности измерения этих величин в зависимости от допуска на контролируемый параметр, необходимо задавать предельно допустимую погрешность измерений данных параметров в конструкторской документации на изделие.

Выбор средств измерений по точности должен осуществляться с учётом:

– допустимых отклонений на параметры (если не оговорено иначе);

– выбранной методики выполнения измерений и достоверности контроля;

– требуемой группы исполнения, определяемой условиями их использования в процессе производства, производственного контроля и эксплуатации изделия.

Выбор и назначение средств измерений должен удовлетворять требованиям получения действительных значений измеряемых величин с оптимальной точностью при наименьших затратах времени и материальных средств.

Основными исходными данными для выбора средств измерений являются:

– номинальное значение и разность между наибольшим и наименьшим предельными значениями (поле допуска) измеряемой величины, указанные в нормативной, конструкторской или технологической документации;

– условия выполнения измерений.

При наличии в конструкторской документации только максимального или минимального значения измеряемой величины должно быть указано значение погрешности, допускаемой при выборе средств измерений.

В случаях, когда обоснованное назначение средств измерений по точности невозможно из-за отсутствия соответствующей нормативной документации, при выборе средств измерений следует руководствоваться следующим правилом: погрешность измерения (с учётом влияющих факторов) не должна превышать 35 процентов от допуска на контролируемый параметр. Погрешность измерения Δизм. должна быть незначительной по сравнению с допуском Т контролируемого размера, т.е. Δизм.= Кизм.·Т, где Кизм. – коэффициент, равный 0,2–0,35. Значение Кизм. выбирают в зависимости от квалитета: для 2–5 квалитетов Кизм. ≤ 0,35; для квалитетов 6, 7 Кизм. ≤ 0,3; для квалитетов 8, 9 Кизм. ≤ 0,25; для квалитетов 10–16 Кизм. ≤ 0,2. Средство измерения выбирается с ценой деления (разность значений измеряемой величины между двумя соседними отметками шкалы) по следующим рекомендациям: объём измеряемых изделий (n) 50 шт. – цена делений Цд ≤ Т/13; n = 100 шт. – Цд ≤ Т/15; n = 150 шт. – Цд ≤ Т/17.

При выборе по точности измерительных систем погрешность их следует определять путем суммирования погрешностей всех входящих в систему мер, измерительных приборов, измерительных преобразователей по определенному для каждой системы закону.

Выбор средств измерений производится по стандартам и техническим условиям на конкретные средства измерений для нормальных условий их применения отражённых в ГОСТ 8.050, ГОСТ 8.395, ГОСТ 15150 и технических условиях на средства измерений.

Нормальными условиями измерений принято считать условия измерений, характеризуемые совокупностью значений или областей значений влияющих величин, при которых изменением результата измерений пренебрегают вследствие малости.

Нормальные условия измерений устанавливаются в нормативных документах на средства измерений конкретного типа или по их поверке (калибровке).

Следует различать рабочие условия измерений и предельные условия измерений.

Рабочими условиями измерений принято считать условия измерений, при которых значения влияющих величин находятся в пределах рабочих областей.

Рабочей областью является область значений влияющей величины, в пределах которой нормируют дополнительную погрешность или изменение показаний средств измерений.

Предельными условиями измерений принято считать экстремальные значения измеряемой и влияющих величин, которые средство измерений может выдержать без разрушений и ухудшения его метрологических характеристик.

При выборе средств измерений с целью применения их в рабочих условиях, когда значения влияющих величин отличаются от нормальных, установленных в стандартах, технических условиях на средства измерений конкретного вида, необходимо учитывать зависимость показаний средств измерений от влияющих величин, и, на основе этого, следует вносить поправки в показания средств измерений или применять корректирующие устройства.

Поправки должны определяться по нормированным для рабочих условий метрологическим характеристикам, указанным в паспортах (формулярах) на средства измерений общепромышленного применения или в свидетельстве о метрологической аттестации на средство измерений единичного производства.

После того, как осуществлен предварительный выбор по точности средств измерений, производят окончательный выбор средств измерений (тип средств измерений) с учётом требований к рабочей области значений влияющих величин, габаритам, массе, особенностям конструкции, соединительным элементам и другое. При выборе средств измерений с целью применения их при проведении испытаний, когда условия окружающей среды определены программой испытаний, необходимо:

а) обеспечить согласованность рабочих условий эксплуатации средств измерений (измерительной системы):

1) датчиков (первичных приборов) с условиями помещения для проведения испытаний (рабочей зоны);

2) вторичных преобразователей (регистрирующих приборов) с условиями того помещения, где они установлены, то есть в месте нахождения оператора;

б) обеспечить предельно допустимую погрешность измерения выбранным средством измерений (измерительной системой) в установленных нормативной документацией границах с заданной вероятностью.

Выбор и назначение средств измерений осуществляют подразделения, разрабатывающие:

а) технологические процессы измерений продукции, её составных частей и материалов;

б) нормативную документацию на МВИ (методика выполнения измерений):

1) при лабораторных исследованиях,

2) в производстве при контроле качества,

3) при испытаниях и эксплуатации продукции, её составных частей и материалов,

4) с целью обслуживания оборудования и средств измерений.

Для выполнения измерений в процессе производства продукции назначаются рабочие средства измерений.

При выборе средства измерений предпочтение следует отдавать стандартизованным средствам измерений.

В машиностроении в массовом производстве основными средствами измерения яв­ляются высокопроизводительные механизированные и автомати­зированные средства измерения и контроля.

В серийном производстве основными средствами измерения и контроля служат предельные калибры, шаблоны, специальные контрольные приспособления и при необходимости универсаль­ные средства измерения.

В мелкосерийном и индивидуальном производстве основными являются универсальные средства измерения.

По метрологическим характеристикам выбираемыми парамет­рами средств измерений являются предельная погрешность измерения (её часто называют пределом допускаемой погрешнос­ти) ±Δlim, а также цена деления шкалы измерительного сред­ства. В соответствии с требованиями ГОСТ 8.051 установле­ны соотношения между заданными допусками (Т)на измеряе­мые (контролируемые) размеры, определенного номинального размера и квалитета, и допускаемыми погрешностями измере­ния (δ), определяющими действительный размер измеряемой величины (табл. 2.7).

Допускаемая погрешность измерения (δ) включает в себя слу­чайные и неучтенные систематические погрешности измерения. Случайная погрешность измерения, принимаемая с доверитель­ной вероятностью 0,954 и составляющая ±2S, где S – среднее квадратическое отклонение погрешности измерения, не должна пре­вышать 0,6 от допускаемой погрешности измерения.

Цена деления шкалы выбирается с учетом заданной точности измерения. Например, если размер задан с точностью до 0,01 мм, то прибор выбирается с ценой деления шкалы 0,01 мм. Приня­тие более грубой шкалы вносит дополнительные субъективные погрешности, а более точной – удорожает средство измере­ния. При контроле технологических процессов используют сред­ства измерения с ценой деления не более 1/6 допуска на изго­товление.

Главным фактором при выборе средства измерения является допускаемая погрешность измерения δ.

Допускаемая погрешность измерения должна быть небольшой по сравнению с допуском контролируемого параметра изделия Ти не превышать значений, указанных в табл. 2.7.

При выборе измерительного средства необходимо, чтобы пре­дельная погрешность измерения (±Δlim), являющаяся нормирован­ным метрологическим показателем данного измерительного сред­ства, не превышала допускаемой погрешности измерения δ, т.е.

Чем ближе значение предельной погрешности измерительного средства к значению допускаемой погрешности измерения, тем менее трудоемким и более дешевым будет измерение.

Предельные погрешности наиболее распространенных универ­сальных средств измерения приведены в табл. 2.8.

Сравнение предельной погрешности средств измерения (±Δlim) с допускаемой погрешностью средств измерения (δ) проводится без учета знака Δlim.

Значения размеров, полученных при измерении с погрешно­стью, не превышающей допускаемую погрешность измерения, при­нимаются за действительные.

Абсолютной погрешностью средства измерения называется раз­ность показаний измерительного средства Х иистинного (действи­тельного) Хд значения измеряемой величины:

Значение Хд определяют образцовым измерительным средством или воспроизводят мерой.

Относительной погрешностью средства измерения называется от­ношение абсолютной погрешности к действительному значению измеряемой величины, %:

Приведенной погрешностью называется отношение абсолютной погрешности к параметру нормирования ХN (диапазон измерений, верхний предел измерений и т.д.).

Типовыми видами погрешностей, входящих в основные погреш­ности средств измерений, являются аддитивные, мультипликатив­ные, погрешности линейности и гистерезиса.

Аддитивными погрешностями (получаемыми путем сложения различного вида погрешностей), или погрешностями нуля, называ­ют постоянные погрешности при всех значениях измеряемой ве­личины.


Предельные погрешности наиболее распространённых универсальных

Измерительные средства Предельные погрешности измерения Δlim, мкм
для интервалов размеров, мм
Свыше 10 Свыше 10 до 50 Свыше 50 до 80 Свыше 80 до 120 Свыше 120 до 180 Свыше 180 до 260 Свыше 260 до 360 Свыше 360 до 500
Оптиметры, измерительные машины (при измерении наружных размеров) 0,7 1,0 1,3 1,6 1,8 2,5 3,5 4,5
То же (при измерении внутренних размеров) 0,9 1,1 1,3 1,4 1,6
Микроскоп универсальный 1,5 2,0 2,5 2,5 3,0 3,5
Миниметр с ценой деления: 1 мкм 2 мкм 5 мкм 1,0 1,4 2,2 1,5 1,8 2,5 2,0 2,5 3,0 2,5 3,0 3,5 3,0 3,5 4,0 4,5 5,0 5,0 6,0 6,5 6,0 8,0 8,5 8,5
Рабочая скоба с ценой деления: 2 мкм 10 мкм 3,0 7,0 3,5 7,0 4,0 7,0 4,5 7,5 – 8,0 – – – – – –
Микрометр рычажный 3,0 4,0
Микрометр 7,0 8,0 9,0 10,0 12,0 15,0 20,0 25,0
Индикатор 15,0 15,0 15,0 15,0 15,0 16,0 16,0 16,0
Штангенциркуль с ценой деления: 0,02 мм 0,05 мм 0,10 мм 40,0 80,0 150,0 40,0 80,0 150,0 45,0 90,0 160,0 45,0 100,0 170,0 45,0 100,0 190,0 50,0 100,0 200,0 60,0 100,0 210,0 70,0 100,0 230,0

Если аддитивная погрешность является систематической, то она устраняется корректированием нулевого значения выход­ного сигнала. Аддитивная погрешность вызывается трением в опо­рах, контактными сопротивлениями, дрейфом нуля, случайными и периодическими колебаниями в выходном сигнале.

Мультипликативной погрешностью (получаемой путем умноже­ния различного вида погрешностей), или погрешностью чувстви­тельности средства измерения, называют погрешность, которая линейно изменяется с изменением измеряемой величины.

Наиболее существенной и трудноустранимой погрешностью яв­ляется погрешность гистерезиса, или погрешность обратного хода. Причиной этой погрешности является люфт и сухое трение в эле­ментах, трение в пружинах, упругие эффекты в чувствительных элементах.

Погрешность гистерезиса принято оценивать вариацией пока­заний измерительного прибора

где Хпр и Хоб – показания прибора при прямом и обратном ходе.

Классы точности – это обобщенная характеристика средств измерений.

сторически сложилось так, что на классы точности разделены все средства измерения, кроме угломерных приборов и приборов для измерения длин.

Обозначение классов точности всех видов измерительных средств, кроме названных, производятся в паспортных данных в зависимости от способов задания пределов допускаемой основной погрешности.

Наиболее широко используют три типовые варианта обозначе­ний классов точности:

– – класс точности указан в кружке в виде относительной погрешности δ – 1,5 %;

– 1,5 – класс точности указан без кружка в виде приведенной
погрешности λ = 1,5 %;

– класс точности прибора указан двумя числами, например 0,02/0,01, в виде двух приведенных погрешностей – конечного и начального деления шкалы.

Пример 7. Для контроля вала Ø45h7(–0.025) выбрать средство из­мерения.

По табл. 2.7 для диапазона номинальных размеров свыше 30 до 50 мм, квалитета 7 и Td = 0,025 мм устанавливаем δ = 7,0 мкм.

По табл. 2.8 выбираем для интервала размеров свыше 10 до 50 мм микрометр рычажный с параметром Δlim = 4 мкм, посколь­ку необходимое условие Δlim

Прокрутить вверх


Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все.


Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.


Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем.


Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.).

Читайте также: