Вселенная и темная материя кратко

Обновлено: 01.06.2024

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Что будет с нашим миром?

Расчетное значение критической средней плотности Вселенной примерно 10 –29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 10 30 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Рассчитанная и измеренная скорость вращения звезд в зависимости от расстояния до центра галактики (изображение с сайта www.astronomy.ohio-state.edu)

Фотофакт

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 –29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92–95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4–5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20–30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс 2 , энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Темная материя и энергия

Все, что мы видим вокруг себя (звезды и галактики) это не более 4-5% от всей массы во Вселенной!

Состав Вселенной

Согласно космологическим теориям современности, наша Вселенная состоит всего из 5% обычной, так называемой барионной материи, которая образует все наблюдаемые объекты; 25% темной материи, регистрируемой благодаря гравитации; и темной энергии, составляющей целых 70% от общего объема.

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского.

Материалы по теме


В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Многие современные ученные убеждены, что исследования направленные на изучение темной энергии и материи, вероятно, помогут получить ответ на глобальный вопрос: что же ожидает нашу Вселенную в будущем?

Сгустки размером с галактику

Темная материя представляет собой субстанцию, состоящую, скорее всего, из новых, еще неизвестных в земных условиях частиц и обладающую свойствами присущими самому обыкновенному веществу. Например, она способна также как обычные вещества собираться в сгустки и участвовать в гравитационных взаимодействиях. Вот только размеры этих так называемых сгустков могут превышать целую галактику или даже скопление галактик.

Подходы и методы исследования частиц темной материи

Из чего состоит Вселенная

Из чего состоит Вселенная

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Материалы по теме


Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Распределение энергии во Вселенной

Распределение энергии во Вселенной

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Скопление галактик Абель 2744

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

При всем нашем понимании законов физики и успехах Стандартной модели и общей теории относительности, во Вселенной есть ряд наблюдаемых явлений, которые не получается объяснить. Вселенная полна загадок, начиная от звездообразования и заканчивая высокоэнергетическими космическими лучами. Хотя мы постепенно открываем для себя космос, мы до сих пор не знаем всего. Например, мы знаем, что темная материя существует, но не знаем, каковы ее свойства. Значит ли это, что мы должны приписывать проявлениям темной материи все неизвестные эффекты?


Вселенная полна загадок, начиная от звездообразования и заканчивая высокоэнергетическими космическими лучами

Загадок на тему темной материи столько же, сколько и доказательств ее существования. Но винить темную материю во всех загадочных проявлениях космоса не только близоруко, но и неправильно. Так бывает, когда у ученых иссякают хорошие идеи.


Две яркие большие галактики в центре скопления Кома, каждая больше миллиона световых лет в размерах. Галактики на окраинах указывают на существование большого ореола темной материи по всему скоплению

Что такое темная материя

Темная материя имеется во Вселенной повсюду. Впервые к ней обратились в 1930-х годах, чтобы объяснить быстрое движение отдельных галактик в галактических скоплениях. Произошло это потому, что всей обычной материи — вещества, состоящего из протонов, нейтронов и электронов, — недостаточно, чтобы объяснить общее количество гравитации. Сюда входят звезды, планеты, газ, пыль, межзвездная и межгалактическая плазма, черные дыры и все остальное, что мы можем измерить. Линии доказательств, поддерживающих темную материю, многочисленны и убедительны, как отмечает физик Итан Зигель.


Темная материя необходима для объяснения:

  • вращательных свойств отдельных галактик,
  • формирования галактик разных размеров, от гигантских эллиптических до галактик размером с Млечный Путь и крошечных карликовых галактик рядом с нами,
  • взаимодействия между парами галактик,
  • свойств скоплений галактик и галактических скоплений на больших масштабах,
  • космической сети, включая ее нитевидную структуру,
  • спектр флуктуаций космического микроволнового фона,
  • наблюдаемые эффекты гравитационного линзирования далеких масс,
  • наблюдаемое разделение между эффектами гравитации и присутствием обычной материи в столкновениях галактических скоплений.

И в небольших масштабах отдельных галактик, и в масштабах всей Вселенной темная материя необходима.

Где находится темная материя


Чтобы воспроизвести полный набор наблюдений, перечисленных выше, а также другие, темная материя не должна обладать никаким свойствами, кроме следующих: она должна иметь массу; она должна взаимодействовать гравитационно; она должна медленно двигаться относительности скорости света; она не должна сильно взаимодействовать посредством других сил. Всё. Любые другие взаимодействия сильно ограничиваются, но не исключаются.

Почему же всякий раз, когда производится астрофизическое наблюдение с избытком обычной частицы определенного типа — фотонов, позитронов, антипротонов — люди первым делом говорят о темной материи?

Как узнать темную материю

В начале этой недели команда ученых, изучающая источники гамма-излучения вокруг пульсаров, опубликовала свои результаты в Science. В своей работе они попытались лучше понять, откуда взялся наблюдаемый нами избыток позитронов. Позитроны, антиподы электронов, обычно рождаются несколькими способами: при разгоне обычных частиц до достаточно высоких энергий, при столкновении с другими частицами вещества и с производством электрон-позитронных пар по формуле Эйнштейна E = mc 2 . Мы создаем такие пары в ходе физических экспериментов и можем наблюдать создание позитрона астрофизически, как напрямую, при поисках космических лучей, так и косвенно, при поиске энергетической сигнатуры электрон-позитронной аннигиляции.


  • вторичное производство позитронов и гамма-лучей другими частицами,
  • микроквазары или что-то еще, кормящее черные дыры,
  • очень юные или очень старые пульсары, магнетары,
  • останки сверхновых.

Этот список не окончательный, но представляющий несколько примеров того, что могло бы создавать этот излишек.


Чем опасна темная материя

Многие работающие в этой области делают выбор в пользу темной материи, потому что будет прорывом, если темная материя уничтожает и производит гамма-лучи и частицы обычной материи. Это был бы сценарий мечты для астрофизиков-охотников за темной материей. Но принятие желаемого за действительное никогда не приводило к крупным открытиям. И хотя темная материя чаще всего представляется объяснением излишка позитронов, это не более вероятно, чем инопланетяне, объясняющие звезду Табби.

Обратившись за объяснениями к Бренде Дингус, главному исследователю HAWC, Итан Зигель получил следующий комментарий:


Весьма замечательно, что позитроны в данных HAWC объясняют только 1% позитронов, наблюдаемых в других экспериментах, указывая на что-то еще в качестве виновника торжества. Когда производится наблюдение, расходящееся с нашими традиционными идеями, как с излишком астрофизических позитронов, не стоит исключать, что в деле может быть замешана темная материя. Но намного более вероятно, что другие астрофизические процессы объясняют эти эффекты. Когда в науке появляется загадка, все хотят революции, но чаще всего получают нечто заурядное.


Это звучит как научная фантастика, чтобы сказать, что есть невидимые, необнаружимые вещи вокруг нас, и что у него есть жуткое название темной материи. Но есть много доказательств того, что этот материал очень реален. Так что же такое темная материя? Откуда мы знаем, что оно там? И как ученые его ищут?

Все, что мы видим вокруг – от растений до планет, от камней до звезд, от людей до скопления галактик Персея – состоит из материи. Но все это составляет лишь около 15 процентов от общего количества материи во Вселенной. Подавляющее большинство, то есть оставшиеся 85 процентов, не учитываются – и мы называем это темной материей.

Это название не описывает, как выглядит эта странная вещь - оно получает такое название, потому что не поглощает, не отражает и не преломляет свет, делая его фактически невидимым. И нет ничего, что могло бы объяснить это в Стандартной модели физики элементарных частиц, которая остается нашей лучшей теорией о Вселенной.

Во всем мире предпринимаются огромные усилия, чтобы попытаться раскрыть, что же на самом деле представляет собой темная материя, но возникает естественный вопрос: если мы не можем ее увидеть, почувствовать, услышать, понюхать или попробовать на вкус, как мы узнаем, что она вообще существует?

Откуда мы знаем, что темная материя существует?


Считается, что темная материя пронизывает вселенную - так почему же мы ее еще не нашли? И откуда мы вообще знаем, что она там?

Все, что имеет массу, имеет гравитационное притяжение, и чем больше массы что-то имеет, тем сильнее становится эта сила. Но астрономы постоянно видят, что крупномасштабные объекты, такие как галактики и скопления, ведут себя так, как будто они имеют гораздо большую массу, чем то, что видно.

Швейцарский астрофизик Фриц Цвикки был первым, кто предложил идею темной материи в 1933 году. Он изучал скопление галактик и обнаружил несоответствие: похоже, что их массы не хватает, чтобы объяснить, как быстро движутся эти галактики.

Открытие Цвики было только первым примером явно пропавшей массы. В конце 1970-х астрономы Вера Рубин и Кент Форд наблюдали за нашей соседней галактикой, Андромедой. Дуэт ожидал увидеть объекты на окраинах галактики, вращающиеся медленнее, чем те, что ближе к центру, но это было не так: вместо этого относительные скорости имели тенденцию выравниваться, а объекты на окраинах вращались гораздо быстрее, чем должна была позволить видимая масса.

Поэтому мы знаем, что темная материя есть. Но становится все более странно - Вселенная, как мы знаем, не могла бы существовать без темной материи.

Темная история вселенной


Считается, что темная материя ответственна за крупномасштабную структуру вселенной, которую мы видим сегодня.

Точно так же, как и обычные вещи, темная материя, как полагают, была создана во время Большого взрыва - или, как предполагает одна из теорий, еще до него, в период космологической инфляции. В любом случае структура, которую мы видим сегодня в космосе, без темной материи была бы совсем другой.

В первые дни существования Вселенной все было относительно гладко. Мы можем видеть это сегодня на фоне космического микроволнового излучения, которое является излучением, которое было создано приблизительно через 400 000 лет после Большого взрыва. Независимо от того, в каком направлении мы смотрим, это излучение выглядит одинаково.

Но в наше время вселенная далеко не гладкая - она ​​довольно комковатая. Эти комки - то, что мы видим как галактики, скопления, суперкластеры и другие гигантские структуры, и между ними всегда есть относительно пустое пространство. Например, прямо по соседству с Млечным Путем находится "локальная пустота", область непостижимого ничто, простирающаяся на сотни миллионов световых лет.

Так как же эволюционировала Вселенная от супергладких до комковатых скоплений? Это влияние темной материи.

Даже в спокойные ранние дни существования Вселенной в некоторых областях было чуть больше темной материи, чем в других. Эта дополнительная масса означала большую гравитацию, поэтому эти более плотные области притягивали регулярную материю, которая, в свою очередь, притягивала все больше и больше. В конечном счете жара и давление заставили эти очаги материи воспламениться как звезды, что дало толчок образованию планетных систем, галактик и кластеров, которые мы видим сегодня.

Тот факт, что вселенная структурирована так, как она есть, является еще одним свидетельством темной материи. Так что мы знаем, что она там. Но что именно это такое? И как ученые ее ищут?

Охота за темной материей


Эксперимент ABRACADABRA не обнаружил сигналов аксионов с массами от 0,31 до 8,3 наноэлектронвольт

Нелегко искать что-то невидимое и редко взаимодействующее с обычной материей. Итак, ученые начинают с теоретизирования того, что может быть темной материей, а затем разрабатывают и проводят эксперименты для проверки каждой гипотезы. Проблема в том, что темная материя может быть чем угодно.

Частицы темной материи могут быть одними из самых легких во Вселенной, или же они могут иметь массу карликовой планеты, или где угодно между ними. Темная материя может быть "горячей" или "холодной", что не имеет ничего общего с температурой, но описывает, как быстро она движется. Она может существовать в возбужденных состояниях, или иметь более низкую энергию.

"Теоретики очень искусны в том, чтобы придумывать предположения о том, чем может быть темная материя, и большинство из них - очень разумные предположения. Таким образом, они все могут быть правдой в принципе - но не все они будут правдой сразу. И поэтому нам нужно провести эксперименты и астрономические наблюдения, чтобы попытаться сузить возможности и прийти к истине", - говорит нам Раймонд Волкас, профессор теоретической физики частиц в Мельбурнском университете.

Может ли ЦЕРН создать темную материю?


3D-рендеринг Большого адронного коллайдера

Различные типы экспериментов охотятся за различными теоретическими частицами темной материи. Пожалуй, самые известные эксперименты проводятся церном на Большом адронном коллайдере (LHC). Там ученые ищут темную материю, пытаясь создать ее.

В LHC протоны сталкиваются с чрезвычайно высокими энергиями, создавая поток других частиц. Иногда это экзотические частицы, к которым ученые обычно не имеют доступа, и есть надежда, что темная материя может быть среди них.

Опять же, если бы темная материя была произведена в одном из этих столкновений, было бы невозможно непосредственно обнаружить – вместо этого она просто выплыла бы из туннеля, не взаимодействуя с детектором. Но именно это необнаружение и ищут ученые.

В физике законы сохранения энергии и импульса гласят, что в изолированной системе ни энергия, ни импульс не могут быть созданы или разрушены. Они могут менять форму, но сумма останется неизменной. Таким образом, ученые могут вычислить, сколько энергии и импульса поступило до столкновения протона, и измерить, сколько есть после этого. Если чего-то не хватает, это говорит о том, что нечто - как темная материя - ускользнуло и унесло эту энергию или импульс.

Хотя LHC совершил квадриллионы этих столкновений за эти годы, до сих пор не было обнаружено никаких подозрительных сигналов темной материи. Но это помогает сузить широкий спектр возможностей, поэтому будущие поиски могут быть более целенаправленными.

Возможно, ответ, наконец, придет после того, как в 2026 году модернизация LHC будет завершена.

Прямое обнаружение темной материи


Объект XENON1T, слева - резервуар для воды, в котором находится сам инструмент, с плакатом, показывающим, что находится внутри, справа - трехэтажное служебное здание.

В то время как LHC ищет в одной части спектра возможностей, другие эксперименты пытаются обнаружить его по-разному. Эти исследования основываются на возможности того, что темная материя иногда может взаимодействовать с обычной материей другими способами, кроме гравитации.

"LHC чувствителен только к некоторым видам темной материи", - говорит Волкас. "Есть другие разумные кандидаты темной материи, для которых LHC - неправильный эксперимент. Другой способ поиска темной материи - эксперименты по прямому обнаружению. Таким образом, идея заключается в том, что вы берете достаточно большой детектор, вы помещаете его в очень тихую обстановку, свободную от фоновых воздействий, которые могут имитировать ваш сигнал темной материи, а затем вы просто наблюдаете за детектором и ждете, пока ядро ​​атома вздрогнет без видимой причины. Идея состоит в том, что частица темной материи пришла, ударила ядро ​​и заставила его отскочить".

Эта базовая концепция была реализована в различных экспериментах по всему миру. Детекторы обычно размещаются в глубоких подземных камерах, вдали от помех, таких как космические лучи или электромагнитные сигналы. И все они ищут различные гипотетические частицы темной материи, используя в качестве детектора различные вещества.

В экспериментах типа LUX и XENON1T использовались огромные емкости с ксеноном, чтобы попытаться обнаружить кандидата темной материи, известного как слабо взаимодействующая массивная частица (WIMP). Идея заключается в том, что когда эти теоретические WIMP сталкиваются с атомом ксенона в резервуаре, они испускают вспышку света, которую могут обнаружить инструменты.

Другое предложение будет использовать вместо этого сверхтекучий гелий. Логика заключается в том, что гелий имеет гораздо более легкое атомное ядро, чем ксенон, поэтому он должен быть более чувствительным к удару темной материи. Это означает, что он может собирать частицы темной материи, которые в 10 000 раз легче, чем другие эксперименты.

Вариация идеи - это то, что называют "камерой снежного кома". В этом предложении используется резервуар с чистой водой, которая переохлаждается до -20 °С. При таких отрицательных температурах малейшее нарушение молекул воды может привести к вспышке замерзания. Так что если она внезапно замерзнет без видимой причины, это может быть сигналом темной материи. Преимущество заключается в том, что вода намного дешевле и проще, чем ксенон или сверхтекучий гелий.

В других экспериментах все происходит совершенно по-другому.

Аксион - гипотетическая частица


Представление камеры радиообнаружения аксионов.

Одним из ведущих кандидатов на роль темной материи является гипотетическая частица, называемая аксионом. Если бы они существовали, то были бы электрически нейтральными, очень легкими и дрейфовали бы повсюду волнами. Но самое главное, они должны иметь крошечные, но обнаруживаемые взаимодействия с электричеством и магнетизмом – и именно так они могут проявляться.

Эксперимент ABRACADABRA предназначен для поиска магнитного отпечатка аксионами. Идея состоит в том, что из-за того, как работают электромагнитные поля, в самом центре кольцевого магнита не должно быть магнитного поля. Так что, если вы установите его и посмотрите на середину, аксион может заявить о себе, если там возникнет самопроизвольное магнитное поле.

В похожей идее ученые из Стокгольмского университета предложили устройство, которое они называют "Аксион-радио". Детектор также использует мощный магнит, но в центре находится камера, заполненная холодной плазмой, которая содержит лес ультратонких проводов. На этот раз любые аксионы, проходящие через него, создадут небольшое электрическое поле, которое приведет к колебаниям в плазме.

Эксперимент nEDM ищет аксионы по-другому. Здесь нейтроны захватываются и электризуются, затем их спин контролируется. Высокое напряжение должно влиять на их скорость спина на определенной частоте – и если эта частота будет видна, что изменяется с течением времени, это может быть признаком аксионной интерференции.

Нулевые результаты не являются недействительными


Охота на темную материю продолжается

К сожалению, все описанные выше эксперименты либо дали нулевые результаты по темной материи, либо пока являются чисто теоретическими. Но отсутствие сигнала не делает эксперимент полным размытием - нулевые результаты важны, чтобы помочь свести на нет в этом гигантском пространстве возможностей.

Каждый тест ищет кандидатов на темную материю в определенном диапазоне масс и с определенными свойствами, и по мере того, как мы вычеркиваем их из списка, мы все больше приближаемся к истине. И это помогает тому, что многие эксперименты получают обновления в будущем, которые сделают их еще более чувствительными.

Тем временем, часто предлагаются совершенно новые идеи. В последние годы ученые предположили, что темная материя может принимать форму сверхтяжелых гравитино, гексакварков d-star или даже "темной жидкости" с отрицательной массой, пронизывающей Вселенную.

Или, конечно, возможно, это просто математическое недоразумение, и какая-то невидимая и неизвестная сила создает эти странные гравитационные эффекты. Что бы это ни было, охота на темную материю далека от завершения.

Читайте также: