Воздушный режим здания кратко

Обновлено: 04.07.2024

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздухово­дам, обтекания здания потоком воздуха и взаимодействия здания с ок­ружающей воздушной средой объединяются общим понятием воздуш­ный режим здания. В отоплении рассматривается тепловой режим зда­ния. Эти два режима, а также влажностный режим тесно связаны меж­ду собой. Аналогично тепловому режиму при рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор про­изводительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и рас­пределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости дви­жения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воз­духа и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха

.Краевая задача воздушного режима объединяет следующие вопросы:

а) определение количества воздуха, проходящего через наружные (инфильтрация и эксфильтрация) и внутренние (перетекание) ограж­дения. Инфильтрация приводит к увеличению теплопотерь помещений. Наибольшая инфильтрация наблюдается в нижних этажах многоэтаж­ных зданий и в высоких производственных помещениях. Неорганизо­ванное перетекание воздуха между помещениями приводит к загрязне­нию чистых помещений и распространению по зданию неприятных запахов;

б) расчет площадей отверстий для аэрации;

в) расчет размеров каналов, воздуховодов, шахт и других элемен­тов систем вентиляции;

д) разработка мероприятий по защите помещений от врывания холодного наружного воздуха через открытые проемы (наружные две­ри, ворота, технологические отверстия). Для защиты обычно применяют воздушные и воздушно-тепловые завесы.

Внешняя задача воздушного режима включает следующие вопросы:

а) определение давления, создаваемого ветром, на здание и от­дельные его элементы (например, дефлектор, фонарь, фасады и т. д.);

б) расчет максимально возможного количества выбросов, не при­водящего к загрязнению территории промышленных предприятий; определение проветриваемости пространства вблизи здания и между отдельными зданиями на промышленной площадке;

в) выбор мест расположения воздухозаборов и вытяжных шахт вентиляционных систем;

г) расчет и прогнозирование загрязнения атмосферы вредными вы­бросами; проверка достаточности степени очистки выбрасываемого за­грязненного воздуха.

Газовый режим здания рассматривает распределение вредных примесей от источников вредных выбросов, различным образом расположенных в приземном слое атмосферы, вокруг здания и в помещениях [1]. Для расчета газового режима здания необходимо рассматривать воздушный и тепловой режимы здания. Это объясняется необходимостью защиты человека от воздействия вредных веществ, поступающих в воздух.


Существуют основные параметры воздушной среды, определяющие возможность существования человека на открытой местности и в жилище. В частности, это концентрация различных примесей в воздухе помещения, зависящая от воздушного, теплового и газового режимов здания. Вредные примеси в приземном слое атмосферы могут быть в виде аэрозолей, пылевидных частиц, различных газообразных веществ на молекулярном уровне.

При распространении в воздухе под действием коагуляции или различных химических реакций вредные примеси могут изменяться количественно и по химическому составу. Газовый режим здания состоит из трех взаимосвязанных частей. Внешняя часть — процессы распределения вредных примесей в приземном слое атмосферы c потоками воздуха, омывающими здание и перемещающие вредные вещества.

Краевая часть — процесс проникновения вредных примесей в здание через щели в наружных ограждающих конструкциях, открытые окна, двери, другие проемы и через системы приточной механической вентиляции, а также перемещение примесей по зданию. Внутренняя часть — процесс распределения вредных примесей в помещениях здания (газовые режимы помещений).

Для этого применяется многозонная модель вентилируемого помещения, на основании которой помещение рассматривается как совокупность элементарных объемов, взаимосвязь и взаимодействие между которыми происходит через границы элементарных объемов [2]. В рамках газового режима здания изучается конвективный и диффузионный перенос вредных примесей. Количество аэроионов в воздухе характеризуется их концентрацией в кубометре воздуха, а аэроионный режим является частью газового режима здания.

Аэроионы — это мельчайшие комплексы атомов или молекул, несущие положительный или отрицательный заряд. В зависимости от размеров и подвижности, различают три группы аэроионов: легкие, средние и тяжелые. Причины ионизации воздуха различны: присутствие радиоактивных веществ в коре Земли, наличие радиоактивных элементов в строительных и облицовочных материалах, естественная радиоактивность как воздуха и почвы (радон и торон), так и горных пород (изотопы К40, U238, Th232).

Главный ионизатор воздуха — это космическое излучение, а также распыление воды, атмосферное электричество, трение частиц песка, снега и пр. Ионизация воздуха происходит следующим образом: под действием внешнего фактора молекуле или атому газа сообщается энергия, необходимая для удаления одного электрона из ядра. Нейтральный атом становится положительно заряженным, а образовавшийся свободный электрон присоединяется к одному из нейтральных атомов, передавая ему отрицательный заряд, образуя отрицательный аэроион.

К таким положительно и отрицательно заряженным аэроионам в доли секунды присоединяется определенное число молекул и газов, входящих в состав воздуха. В результате образуются комплексы молекул, называемые легкими аэроионами. Легкие аэроионы, сталкиваясь в атмосфере с другими аэроионами и ядрами конденсации, образуют аэроионы крупных размеров — средние аэроионы, тяжелые аэроионы, ультратяжелые аэроионы.

Подвижность аэроионов зависит от газового состава воздуха, температуры и атмосферного давления. Размеры и подвижность положительных и отрицательных аэроионов зависят от относительной влажности воздуха — при увеличении влажности подвижность аэроионов уменьшается. Заряд аэроиона является основной его характеристикой. Если легкий аэроион теряет свой заряд, то он исчезает, а при потере заряда тяжелым или средним аэроионом распада такого аэроиона не происходит, и в дальнейшем он может приобретать заряд любого знака.

Концентрация аэроионов измеряется в количестве элементарных зарядов в кубометре воздуха: е = +1,6 × 10–19 Кл/м3 (е/м3). Под воздействием ионизации в воздушной среде происходят физико-химические процессы возбуждения главных составляющих воздуха — кислорода и азота. Наиболее устойчивые отрицательные аэроионы могут образовывать следующие элементы химических веществ и их соединений: атомы углерода, молекулы кислорода, озона, углекислого газа, диоксида азота, диоксида серы, молекулы воды, хлора и другие.

Чем чище воздух, тем дольше время жизни легких аэроионов, и наоборот — при загрязненности воздуха время жизни легких аэроионов мало. Положительные аэроионы менее подвижны и дольше живут в сравнении с отрицательными аэроионами. Другим фактором, характеризующим аэроионный режим помещения здания, является коэффициент униполярности, показывающий количественное преобладание отрицательных аэроионов над положительными для какой-либо группы аэроионов.

Для приземного слоя атмосферы коэффициент униполярности равен 1,1–1,2, показывающий превышение количества отрицательных аэроионов над количеством положительных. Коэффициент униполярности зависит от следующих факторов: времени года, рельефа местности, географического положения и электродного эффекта от воздействия отрицательного заряда поверхности Земли, при котором положительное направление электрического поля вблизи поверхности Земли создает преимущественно положительные аэроионы.

В случае противоположного направления электрического поля преимущественно образуются отрицательные аэроионы. Для гигиенической оценки аэроионного режима помещения принят показатель загрязненности воздуха, который определяется отношением суммы тяжелых аэроионов положительной и отрицательной полярности к сумме положительных и отрицательных легких аэроионов. Чем меньше величина показателя загрязненности воздуха, тем более благоприятен аэроионный режим.

Концентрация легких аэроионов обеих полярностей значительно зависит от степени урбанизации местности и от экологического состояния окружающей человека среды обитания. Легкие аэроионы оказывают лечебное и профилактическое действие на организм человека в концентрации: 5 × 108–1,5 × 109 е/м3. В сельских районах концентрация легких аэроионов находится в пределах полезной для человека нормы.

На курортах и в горной местности концентрация легких аэроионов несколько выше нормы, но полезное действие остается, а в крупных городах на улицах с интенсивным движением транспорта концентрация легких аэроионов ниже нормы и может приближаться к нулю. Это однозначно свидетельствует о загрязненности атмосферного воздуха. Отрицательные аэроионы более чувствительны к примесям в сравнении с положительными аэроионами.

Большое влияние на аэроионный режим оказывает растительность. Летучие выделения растений, называемые фитонцидами, позволяют качественно и количественно улучшить аэроионный режим окружающей среды. В сосновом лесу растет концентрация легких аэроионов и уменьшается концентрация тяжелых аэроионов. Среди растений, способных благоприятно повлиять на аэроионный режим, можно выделить следующие: подснежник, сирень, белая акация, герань, олеандр, ель сибирская, пихта.

Фитонциды влияют на аэроионный режим процессами перезарядки аэроионов, за счет чего возможна трансформация средних и тяжелых аэроионов в легкие. Ионизованность воздуха имеет значение для здоровья и самочувствия человека. Пребывание людей в вентилируемом помещении с высокой влажностью и запыленностью воздуха при недостаточном воздухообмене значительно уменьшает число легких аэроионов. При этом растет концентрация тяжелых аэроионов, а заряженная ионами пыль задерживается в дыхательных путях человека на 40 % больше.

Люди часто жалуются на недостаток свежего воздуха, быстрое утомление, головные боли, пониженное внимание и раздражительность. Это связано с тем, что параметры теплового комфорта хорошо изучены, а параметры воздушного комфорта изучены недостаточно. Воздух, проходящий обработку в кондиционере, в приточной камере, в системе воздушного отопления, практически полностью теряет аэроионы, и аэроионный режим в помещении ухудшается в десятки раз.

Легкие аэроионы оказывают лечебное и профилактическое действие на организм человека в концентрации 5 × 108– 1,5 × 109 е/м3. При искусственной ионизации воздуха образующиеся легкие аэроионы обладают такими же полезными свойствами, что и аэроионы, образовавшиеся естественным образом [3]. В соответствии с нормами повышенная и пониженная концентрации легких аэроионов в воздухе отнесены к группе физически вредных факторов.

Существует несколько типов аппаратов для искусственной ионизации воздуха в помещениях, среди которых можно выделить ионизаторы следующего типа: коронарные, радиоизотопные, термоэлектронные, гидродинамические и фотоэлектрические. Ионизаторы могут быть местные и общие, стационарные и переносные, регулируемые и нерегулируемые, генерирующие униполярные и биполярные легкие аэроионы.

Выгодно совмещать аэроионизаторы с системами приточной вентиляции и кондиционирования воздуха, при этом необходимо, чтобы аэроионизаторы были расположены как можно ближе к обслуживаемой зоне помещения, чтобы снизить потери аэроионов при их транспортировке. Подогрев воздуха ведет к увеличению числа легких аэроионов, но взаимодействие аэроионов с металлическими частями калориферов и воздухоподогревателей уменьшает их концентрацию, охлаждение воздуха ведет к заметному уменьшению концентрации легких аэроионов, осушение и увлажнение приводит к уничтожению всех легких подвижных аэроионов и образованию тяжелых аэроионов за счет распыления воды.

Применение пластмассовых деталей систем вентиляции и кондиционирования воздуха позволяет снизить адсорбцию легких аэроионов и увеличить их концентрацию в помещении. Отопление благоприятно действует на увеличение концентрации легких аэроионов в сравнении с концентрацией легких аэроионов в наружном воздухе. Рост легких аэроионов при работе системы отопления зимой компенсируется убылью этих аэроионов в результате жизнедеятельности человека.

После камеры орошения снижение легких отрицательных аэроионов на основе молекулы озона, кислорода и оксида азота происходит в десятки раз, а вместо этих аэроионов появляются аэроионы паров воды. В подземных помещениях с ограниченной вентиляцией снижение количества легких отрицательных аэроионов на основе молекулы озона и кислорода происходит в сотни раз, а на основе молекулы оксида азота — до 20 раз.

От систем кондиционирования воздуха концентрация тяжелых аэроионов возрастает незначительно, а в присутствии людей концентрация тяжелых аэроионов возрастает в разы. Баланс образования и уничтожения легких аэроионов можно характеризовать следующими существенными обстоятельствами: поступление легких аэроионов с притоком наружного воздуха в обслуживаемые помещения (при наличии легких аэроионов снаружи), изменение концентрации легких аэроионов при прохождении воздуха в обслуживаемые помещения (механическая вентиляция и кондиционирование воздуха уменьшают концентрацию аэроионов), понижение концентрации легких аэроионов при большом количестве людей в помещении, высокой запыленности, сжигании газа и пр.

Рост концентрации легких аэроионов происходит при хорошей вентиляции, наличии фитонцидообразующих растений, искусственных ионизаторов воздуха, хорошей экологии жилища и успешных мерах по охране и улучшению состояния окружающей среды в населенных пунктах. Характер изменения концентрации легких положительных и отрицательных аэроионов в приземном слое атмосферы в годовом режиме совпадает с колебанием температуры наружного воздуха, видимости в атмосфере, продолжительности инсоляции территории в годовом режиме.

С ноября по март происходит рост концентрации тяжелых аэроионов и уменьшение концентрации легких аэроионов, весной и летом сокращается количество всех групп тяжелых аэроионов и растет количество легких аэроионов. В суточном режиме концентрация легких аэроионов максимальна в вечерние и ночные часы, когда воздух чист — с восьми вечера до четырех часов утра, концентрация легких аэроионов минимальна с шести утра до трех часов дня.

Перед грозой растет концентрация положительных аэроионов, во время грозы и после грозы происходит рост числа отрицательных аэроионов. Вблизи водопадов, у моря во время прибоя, у фонтанов и в других случаях распыления и разбрызгивания воды увеличивается число легких и тяжелых положительных и отрицательных аэроионов. Табачный дым ухудшает аэроионный режим помещения, сокращая количество легких аэроионов.

В помещении площадью около 40 м2 при слабой вентиляции в зависимости от количества выкуренных сигарет происходит уменьшение концентрации легких аэроионов. Дыхательные пути и кожа человека являются зонами, которые воспринимают аэроионы. Большая или меньшая часть легких и тяжелых аэроионов воздуха при прохождении по дыхательным путям отдают свои заряды стенкам воздухопропускающего тракта.

Повышенный уровень легких аэроионов приводит к сокращению заболеваемости и смертности, ионизированный воздух повышает сопротивляемость организма к заболеваниям. При наличии чистого ионизированного легкими аэроионами воздуха повышается работоспособность, ускоряется ход восстановления работоспособности после длительных нагрузок, повышается устойчивость организма к токсичным воздействиям окружающей среды.

На сегодняшний день известно, что ионизация воздуха до величины 2 × 109–3 × 109 е/м3 оказывает благоприятное, нормализующее влияние на организм человека. Более высокие концентрации — более 50 × 109 е/см3 ионизации — неблагоприятны, желательный уровень — 5 × 108–3 × 109 е/м3. Эффективность аэроионного режима напрямую связана с выполнением норм по воздухообмену. Ионизированный воздух должен быть обеспыленным и очищенным от химических загрязнений различного происхождения.

Строительная теплофизика – наука, изучающая проблемы теплового, воздушного и влажностного состояний внутренней среды и ограждающих конструкций зданий любого назначения и занимающаяся вопросами создания микроклимата в помещениях, применяя системы кондиционирования (отопления –охлаждения и вентиляции) с учетом влияния наружного климата через ограждения.

Для понимания формирования микроклимата и определения возможных способов воздействия на него необходимо знать законы лучистого, конвективного и струйного теплообмена в помещении, уравнения общего теплообмена поверхностей помещения и уравнение теплообмена воздуха. На основе закономерностей теплообмена человека с окружающей средой формируются условия теплового комфорта в помещении.

Основное сопротивление потере теплоты из помещения оказывают теплозащитные свойства материалов ограждения, поэтому закономерности процесса теплопередачи через ограждения являются важнейшими при расчете системы отопления помещений. Влажностный режим ограждения является одним из основных при расчете теплопередачи, поскольку переувлажнение приводит к заметному снижению теплозащитных свойств и долговечности конструкции.

С тепловым режимом здания тесно связан и воздушный режим ограждений, поскольку инфильтрация наружного воздуха требует затрат теплоты на его подогрев, а эксфильтрация влажного внутреннего воздуха увлажняет материал ограждений.

Изучение выше рассмотренных вопросов позволят решать задачи создания микроклимата в зданиях в условиях эффективного и экономного расходования топливно-энергетических ресурсов.

Тепловой режим здания

Тепловым режимом здания называется совокупность всех факторов и процессов, определяющих тепловую обстановку в его помещениях.

Совокупность всех инженерных средств и устройств, обеспечивающих заданные условия микроклимата в помещениях здания, называют системой кондиционирования микроклимата (СКМ).

Под действием разности наружной и внутренней температур, солнечной радиации и ветра помещение теряет теплоту через ограждения зимой и нагревается летом. Гравитационные силы, действие ветра и вентиляция создают перепады давлений, приводящие к перетеканию воздуха между сообщающимися помещениями и к его фильтрации через поры материала и неплотности ограждений.

Атмосферные осадки, влаговыделения в помещениях, разность влажности внутреннего и наружного воздуха приводят к влагообмену в помещении, через ограждения, под влиянием которого возможно увлажнение материалов и ухудшение защитных свойств и долговечности наружных стен и покрытий.

Процессы, формирующие тепловую обстановку помещения, необходимо рассматривать в неразрывной связи между собой, так как их взаимное влияние может оказаться весьма существенным.

Общая схема теплообмена в помещении

Тепловая обстановка в помещении определяется совместным действием ряда факторов: температуры, подвижности и влажности воздуха помещения, наличием струйных течений, распределением параметров воздуха в плане и по высоте помещения, а также радиационным излучением окружающих поверхностей, зависящим от их температуры, геометрии и радиационных свойств.

Для изучения формирования микроклимата, его динамики и способов воздействия на него нужно знать законы теплообмена в помещении.

Тепловой баланс любой поверхности i в помещении может быть представлен на основе закона сохранения энергии уравнением:


где Лучистая Лi, конвективная Кi, Тi кондуктивная, составляющие теплообмена на поверхности.

Влага воздуха помещения

При расчете влагопередачи через ограждения необходимо знать влажностное состояние воздуха в помещении, определяемое выделением влаги и воздухообменом. Источниками влаги в жилых помещениях являются бытовые процессы (приготовление пищи, мытье полов и пр.), в общественных зданиях - находящиеся в них люди, в промышленных зданиях - технологические процессы.

Количество влаги в воздухе определяется eгo влагосодержание d, г влаги на 1 кг сухой части влажного воздуха. Кроме тoгo, eгo влажностное состояние характеризуется упругостью или парциальным давлением водяных паров е, Па, или относительной влажностью водяных паров φ, %,

Е- максимальная упругость при данной температуре.

Воздух обладает определенной влагоудерживающей способностью.

Чем суше воздух, тем с большей силой удерживается в нём водяной пар. Упругость водяного пара е отражает свободную энергию влаги в воздухе и возрастает от 0 (сухой воздух) до максимальной упругости Е , соответствующей полному насыщению воздуха.

Диффузия влаги происходит в воздухе от мест с большей упругостью водяных паров к местам с меньшей упругостью.

Влагосодержание d возрастает с увеличением упругости водяного пара е и воздуха и изменение d от е определяет влагоёмкость воздуха. Влагоемкость воздуха ηвозд, г/(кг·Па), показывает, на сколько возрастает влагoсодержание воздуха ∆d, г/кг, при увеличении упругости ∆е на 1 Па.

Упругость полного насыщения воздуха Е, Па, зависит от температуры tнас и с ее возрастанием увеличивается. Величина Е определяется:


Если необходимо знать температуру tнас, которой соответствует то или иное значение Е, можно определить:


Воздушный режим здания

Воздушным режимом здания называют совокупность факторов и явлений, определяющих общий процесс обмена воздуха между всеми eгo помещениями и наружным воздухом, включающий перемещение воздуха внутри помещений, движение воздуха через ограждения, проемы, каналы и воздуховоды и обтекание здания потоком воздуха.

Воздухообмен в здании происходит под действием естественных сил и работы искусственных побудителей движения воздуха. Наружный воздух поступает в помещения через неплотности ограждений или по каналам приточных вентиляционных систем. Внутри здания воздух может перетекать между помещениями через двери и неплотности во внутренних конструкциях. Внутренний воздух удаляется из помещений за пределы здания через неплотности наружных ограждений и по вентиляционным каналам вытяжных систем.

Естественными силами, вызывающими движение воздуха в здании, являются гравитационное и ветровое давления.

Расчётная разность давлений:


1-ая часть-гравитационное давление, 2-ая-часть ветровое давление.

где Н-высота здания от поверхности земли до верха карниза.


-max из средних скоростей по румбам за январь.

Снп-аэродинамические коэффициенты с подветренной и наветренной поверхностей ограждения здания.

Кi-коэф. учёта изменения скоростного давления ветра.

Температура и плотность воздуха внутри и снаружи здания обычно неодинаковы, в результате чего гравитационное давление по сторонам ограждений оказывается разным. За счет действия ветра на наветренной стороне здания создается подпор, а на поверхностях ограждений возникает избыточное статическое давление. На заветренной стороне образуется разрежение и статическое давление оказывается пониженным. Таким образом, при ветре давление с внешней стороны здания отличается от давления внутри помещений. Воздушный режим связан с тепловым режимом здания. Инфильтрация наружного воздуха приводит к дополнительным затратам теплоты на его подогрев. Эксфильтрация влажного внутреннего воздуха увлажняет и снижает теплозащитные свойства ограждений. Положение и размеры зоны инфильтрации и эксфильтрации в здании зависят от геометрии, конструктивных особенностей, режима вентилирования здания, а также от района строительства, времени года и параметров климата.

Между фильтрующимся воздухом и ограждением происходит теплообмен, интенсивность которого зависит от места фильтрации в конструкции (массив, стык панелей, окна, воздушные прослойки). Так, возникает необходимость в расчетах воздушного режима здания: определении интенсивности инфильтрации и эксфильтрации воздуха и решении задачи теплопередачи отдельных частей ограждения при наличии воздухопроницания.

Инфильтрация-проникновение воздуха в помещение.

Эксфильтрация-уход воздуха из помещения.

Предмет строительной теплофизики

Строительная теплофизика – наука, изучающая проблемы теплового, воздушного и влажностного состояний внутренней среды и ограждающих конструкций зданий любого назначения и занимающаяся вопросами создания микроклимата в помещениях, применяя системы кондиционирования (отопления –охлаждения и вентиляции) с учетом влияния наружного климата через ограждения.

Для понимания формирования микроклимата и определения возможных способов воздействия на него необходимо знать законы лучистого, конвективного и струйного теплообмена в помещении, уравнения общего теплообмена поверхностей помещения и уравнение теплообмена воздуха. На основе закономерностей теплообмена человека с окружающей средой формируются условия теплового комфорта в помещении.

Основное сопротивление потере теплоты из помещения оказывают теплозащитные свойства материалов ограждения, поэтому закономерности процесса теплопередачи через ограждения являются важнейшими при расчете системы отопления помещений. Влажностный режим ограждения является одним из основных при расчете теплопередачи, поскольку переувлажнение приводит к заметному снижению теплозащитных свойств и долговечности конструкции.

С тепловым режимом здания тесно связан и воздушный режим ограждений, поскольку инфильтрация наружного воздуха требует затрат теплоты на его подогрев, а эксфильтрация влажного внутреннего воздуха увлажняет материал ограждений.

Изучение выше рассмотренных вопросов позволят решать задачи создания микроклимата в зданиях в условиях эффективного и экономного расходования топливно-энергетических ресурсов.

Тепловой режим здания

Тепловым режимом здания называется совокупность всех факторов и процессов, определяющих тепловую обстановку в его помещениях.

Совокупность всех инженерных средств и устройств, обеспечивающих заданные условия микроклимата в помещениях здания, называют системой кондиционирования микроклимата (СКМ).

Под действием разности наружной и внутренней температур, солнечной радиации и ветра помещение теряет теплоту через ограждения зимой и нагревается летом. Гравитационные силы, действие ветра и вентиляция создают перепады давлений, приводящие к перетеканию воздуха между сообщающимися помещениями и к его фильтрации через поры материала и неплотности ограждений.

Атмосферные осадки, влаговыделения в помещениях, разность влажности внутреннего и наружного воздуха приводят к влагообмену в помещении, через ограждения, под влиянием которого возможно увлажнение материалов и ухудшение защитных свойств и долговечности наружных стен и покрытий.

Процессы, формирующие тепловую обстановку помещения, необходимо рассматривать в неразрывной связи между собой, так как их взаимное влияние может оказаться весьма существенным.

Воздушный режим здания в большой мере зависит от воздухопроницаемости наружных [ Пи внутренних ограждений. В большинстве случаев по техническим причинам полная герметичность ограждений невозможна. [2]

Воздушный режим здания зависит от воздухопроницаемости наружных и внутренних ограждений. В большинстве случаев по техническим причинам полная герметичность ограждений невозможна. Интенсивность фильтрации воздуха зависит от разности давлений с двух сторон конструкции и ее свойств проницаемости для воздуха. В технических расчетах используют различные характеристики воздухопроницаемости, в частности понятие коэффициента воздухопроницания Ки, кг / м2 Па [ кг / ( м2 - мм рт. ст.) ], и обратную величину - сопротивление воздухопроницанию Ru. [4]

Воздушным режимом здания называют совокупность факторов и явлений, определяющих общий процесс обмена воздуха между всеми его. Традиционно при рассмотрении отдельных вопросов воздушного режима здания их объединяют в три задачи: внутреннюю, краевую и внешнюю. [5]

Воздушным режимом здания называют общий процесс обмена воздухом между помещениями и наружным воздухом, который происходит под действием естественных сил и работы искусственных побудителей движения воздуха. Наружный воздух поступает в помещения через проницаемые ограждения и по каналам приточных вентиляционных систем. Внутри здания воздух может обмениваться между помещениями через двери и неплотности во внутренних конструкциях. [6]

Из определения воздушного режима здания ясно, что помещения в здании нельзя рассматривать изолированно друг от друга. Многоэтажное здание представляет собой единую гидравлическую систему, по отдельным элементам которой происходит перетекание воздуха. Изменение метеорологических условий ( температуры, скорости ветра), режима работы вентиляционной системы и прочее приводит к перераспределению потоков воздуха в здании, меняет количественную и качественную картину воздухообмена. [7]

Для расчета воздушного режима зданий могут быть использованы аналоговые счетно-решающие устройства, основанные на методах электрической и гидравлической аналогии. [8]

Для расчета воздушного режима здания ( помещения) используют перепады давлений на определенном уровне. Поэтому можно несколько упростить конфигурацию эпюр давления, не изменяя разности давлений. Оставшиеся части ( заштрихованные) - снаружи треугольники с основанием ЯЛр. [9]

Аналитический расчет воздушного режима здания в полной постановке задачи в настоящее время невозможен. [10]

При расчете воздушного режима здания ( расчете теплопотерь от инфильтрации, расчете аэрации) определяют давление воздуха в помещении и снаружи. [11]

Для расчета воздушного режима здания давления снаружи на уровне середины окон, наружных дверей и на уровне верха вентиляционных шахт определяются по формулам гл. [13]

Для оценки влияния воздушного режима здания на тепловой можно воспользоваться упрощенными расчетными схемами. Рассмотрим три общих случая, для которых возможно приближенное решение. [14]

При проектировании отопления расчет воздушного режима здания упрощают и сводят к вычислению количества холодного воздуха, инфильтрующегося в помещения через наружные ограждения. [15]

Читайте также: