Влияние температуры на микроорганизмы кратко

Обновлено: 04.07.2024

Простейшие

Жизнедеятельность микроорганизмов зависит от условий существования. Благоприятными условиями их существования является влажность, тепло, наличие питательных веществ. Тормозят развитие микроорганизмов высушивание, кислая среда, низкие температуры, отсутствие питательных веществ и др. Искусственно регулируя условия существования микробов, можно прекратить их размножение или уничтожить их.

Большинство пищевых продуктов по химическому составу является благоприятной средой для существования микробов. Поэтому хранить пищевые продукты можно только при неблагоприятных условиях для микроорганизмов. Говоря о влиянии физических факторов окружающей среды на микроорганизмы, подразумевают условия внешней среды, влияющие на их развитие и делят таковые на три основные группы: физические, химические и биологические. К физическим условиям (факторам) относятся: температура, влажность среды, концентрация веществ, растворенных в среде; излучение.

Влияние температуры на микроорганизмы.

Развитие всех микроорганизмов возможно при определенной температуре. Известны микроорганизмы, способные существовать при низких (-8°С и ниже) и при повышенных температурных условиях, например, обитатели горячих источников поддерживают жизнедеятельность при температуре 80-95°С. Большинство микробов предпочитает температурные пределы 15-35°С. Различают:

  • оптимальную, наиболее благоприятную для развития температуру;
  • максимальную, при которой прекращается развитие микробов данного вида;
  • минимальную, ниже которой микробы прекращают развитие.

По отношению к уровню температуры микроорганизмы разделяют на три группы:

  • психрофиты – хорошо растут при пониженных температурах,
  • мезофиллы – нормально существуют при средних температурах,
  • термофилы – существуют при постоянно высоких температурах.

Температура развития микроорганизмов, ° С

Микробы сравнительно быстро приспосабливаются к значительным изменениям температуры. Поэтому незначительное снижение или повышение уровня температуры не гарантирует прекращения развития микроорганизмов.

Влияние высоких температур.

Температуры, значительно превышающие максимальные, вызывают гибель микроорганизмов. В воде большинство вегетативных форм бактерий при нагревании до 60°С погибают за час; до 70°С — за 10-15 минут, до 100°С — за несколько секунд. В воздухе гибель микроорганизмов наступает при значительно более высокой температуре — до 170°С и выше в течение 1-2 часов. Споровые формы бактерий значительно устойчивее к нагреванию, они могут выдерживать кипячение в течение 4-5 часов.

Методы пастеризации и стерилизации основаны на свойстве микробов погибать под действием высоких температур. Пастеризация — осуществляется при температуре 60-90°С, при этом погибают вегетативные формы клеток, а споровые остаются жизнеспособными. Поэтому пастеризованные продукты следует быстро охлаждать и хранить в условиях охлаждения. Стерилизация — это полное уничтожение всех форм микроорганизмов, включая споровые. Стерилизацию осуществляют при температуре 110-120°С и повышенном давлении.

Однако споры не погибают мгновенно. Даже при 120°С гибель их наступает через 20-30 минут. Стерилизуют пищевые консервы, некоторые медицинские материалы, субстраты, на которых выращивают микроорганизмы в лабораториях. Эффект стерилизации зависит от количественного и качественного состава микрофлоры объекта стерилизации, его химического состава, консистенции, объема, массы и др.

Влияние низких температур.

Чаще всего действие низких температур связано не с гибелью микроорганизмов, а с торможением и прекращением их развития. Низкую температуру микроорганизмы переносят значительно лучше. Многие болезнетворные микробы, попадающие в окружающую среду, способны переносить суровые зимы, не теряя болезнетворности. Наиболее негативно на развитие микроорганизмов влияет температура, при которой замерзает содержимое клетки.

Тормозящее действие низких температур на микробы используют для хранения различных продуктов в охлажденном виде при температуре 0-4°С, и замороженном – при температуре — 6-20°С и ниже. Действие низких температур в замороженных продуктах усиливает влияние повышенного осмотического давления. Поскольку большая часть воды перешла в лед, в оставшейся жидкой части воды оказались все растворенные вещества, содержавшиеся в массе продукта. Это вызывает повышенное осмотическое давление, которое, в свою очередь, тормозит развитие микробов.

Замораживание используют для хранения мяса, рыбы, плодов, овощей полуфабрикатов, кулинарных изделий, готовых блюд и др. Прекращение развития микробов действует только до тех пор, пока продолжается действие низкой температуры. При повышении температуры начинается бурное развитие и размножение микробов, что вызывает порчу пищевых продуктов.

Следовательно, низкая температура только замедляет биохимические процессы, не имея стерилизующего эффекта. Многократное замораживание одних и тех же продуктов способствует быстрому приспособлению микробов к низким температурам и усиливает их жизнеспособность. Поэтому надо предотвращать колебания температуры во время хранения продуктов.

Каждый микроорганизм может развиваться лишь в определенных пределах температуры. При изу­чении влияния температуры на рост прокариот выделяют темпера­турный диапазон, ограниченный минимальной и максимальной тем­пературами, при которых рост прекращается, а также область оптимальных температур с максимальной скоростью роста.

Положение на температурной шкале основных точек (минималь­ная, максимальная, оптимальная температуры), а также величина температурного диапазона роста прокариот сильно различаются.Поэтому по отношению к температуре микроорг-змы подразд-ют на 3 группы: мезофилы, психрофилы и термофилы.

(У мезофилов оптимальные температуры роста лежат между 30 и 40 °С, а темпера­турный диапазон, в котором возможен рост, находится между 10 и 45-50 °С (например Escherichia coli: нижняя граница роста — +10 0 С, верхняя — +49 °С, оптимальная темпера­тура — +37 °С при росте на богатой среде.)

У психрофилов (холодолюбивые микроорга­низмы) область температур роста лежит в пределах от —10 до +20 °С и выше.Они делятся на облигатных (обязательных) и факультатив­ных (необязательных), (основное различие между ними в том, что облигатные психрофилы не способны к росту при температуре выше 20 °С, а верхняя температурная граница роста факультативных форм намного выше. Таким образом, факультатив­ные психрофилы характеризуются более широким температурным диапазоном, при котором возможен их рост.)

Термофилов (теплолюбивые микроорганизмы) делят на 4 подгруппы.

1. Термотолерантные виды растут в пределах от 10 до 55—60 °С, оптимальная область лежит в пределах 35—40 °С. (Они способны расти при повышенных темпера­турах.)

2. Факультативные термофилы имеют максимальную температу­ру роста между 50 и 165 0 С, но способны к размножению при температуре 20 °С; оптимум приходится на область температур, близких к верхней границе роста. (Особенность этой группы прока­риот — способность к росту в области от 20 до 40 °С.)

3. К облигатным термофилам относят виды, обнаруживающие способность расти при температурах около 70 °С и не растущие ниже 40 0 С. (Оптимальная температурная область облигатных термофилов примыкает к их верхней температурной границе роста. Представи­тели: эубактерии Bacillusacidocaldarius, Synechococcus lividus, архебактерии Methanobacterium thermoautotrophicum, Thermo- plasma acidophilum и др.)

4. Экстремальные термофилы для них ха­рактерны: оптимальная гра­ница роста — в области 80— 105 0 С, минимальная — при 60 °С и выше, максимальная — до 110 0 С. (Thermoproteus, Pyrococcus, Pyrodictium и др.))

Наиболее термоустойчивыми являются бактериальные споры. У многих бактерий они способны выдерживать температуру кипе­ния воды в течение нескольких часов. Во влажной среде споры бак­терий гибнут при 120—130 °С через 20—30 мин, в сухом состоянии — при 160—170 °С через 1—2 ч. Термоустойчивость спор различных бактерий неодинакова; особенно устойчивы споры термофильных бактерий.

Механизм действия температуры на микроорганизмы. Отрицатель­ное влияние на жизнедеятельность микроорганизмов оказывает и низкая и высокая температура. Из-за низкой температуры за­медляются биохимические процессы и в случае образования кристаллов льда внутри клетки происходит повреждение и разрыв клеточных структур. Низкая температура вызывает бактериостатинеский эффект, который проявляется в прекращении роста и размножения бактерий.

Один из лучших ме­тодов длительного хранения скоропортящихся продуктов с мини­мальными изменениями их химического состава - консервирование низкими температурами. Низкие темпера­туры замедляют химические и биохимические процессы обмена веществ в тканях, снижают ферментативную активность, приоста­навливают развитие микроорганизмов. Консервирование низкими температурами проводят путем ох­лаждения или замораживания.

Охлаждением называется обработка и хранение пищевых про­дуктов при температуре, близкой к криоскопической, т. е. к тем­пературе замерзания клеточного сока, которая зависит от состава и концентрации сухих веществ. (Для яблок она колеблется от —1,4 до —2,8 °С, для винограда равна —3,8 °С, для лука —1,6, для рыбы —2, для мяса — 1,2 °С и ниже.) (При хранении охлажденных продуктов лучше, чем при замора­живании, сохраняются их натуральные свойства, но рост на них многих микроорганизмов не исключается, а лишь замедляется, по­этому сроки хранения охлажденных продуктов непродолжительны и зависят от температуры хранения и исходной степени обсемене­ния продукта психрофильными микроорганизмами.)

При замораживании происходит полная кристаллизация жидкой фазы продукта. Этот способ применяется для более длительного со­хранения мясных и рыбных продуктов, овощей, фруктов и др. (При длительном хранении замороженных продуктов изменяется их химический состав, гидролизуются и окисляются жиры, изменя­ется цвет, частично разрушаются витамины в результате их окисле­ния кислородом воздуха, ухудшается вкус и запах. При замораживании микрофлора полностью не уничтожается; особенно холодоустойчивы споровые формы микроорганизмов. Во время размораживания продуктов, особенно при вытекании из них сока, микроорганизмы вновь размножаются и вызывают порчу. С учетом этого оттаивать замороженные пищевые продукты следу­ет непосредственно перед употреблением. Кроме того, после размо­раживания продукта микроорганизмы возобновляют свою жизне­деятельность и могут привести к его быстрой порче, поэтому размо­роженные продукты необходимо сразу же перерабатывать. Качество продуктов в значительной степени зависит от способа его размора­живания. При быстром размораживании при повышенных темпе­ратурах происходят большие потери питательных веществ и более интенсивно развиваются микроорганизмы. Во время медленного размораживания при температурах от 0 до 4 °С кристаллы льда от­таивают постепенно, а коллоиды клеток более полно связывают образующуюся влагу. )

Наиболее губительна для микроорганизмов высокая температура, при которой происходит свертывание белка, вследствии чего происх-т нарушение актив­ности ферментов, проницаемости клеточной стенки и в рез-те чего нарушается равновесие всех биохимических процессов. Сущ-ют след. приемы уничтоже­ния микробов в пищевых продуктах при высоких температурах: варка, кипячение, обжарка, бланширование продуктов питания, пропаривание производственного оборудования. В пищевой промышл-сти применяют 2 способа воздействия высоких темпе­ратур на микроорганизмы: пастеризацию и стерилизацию.

Пастеризация — это нагревание продукта чаще при температуре 63—80 °С в течение 20-40 мин. Иногда пастеризацию производят кратковременным (в течение нескольких секунд) нагреванием до 90—100 0 С. При пастеризации погибают не все микроорганизмы. Поэтому пастеризованные продукты необходимо немедленно охлаждать до температуры не выше +10 "С и хранить на холоде, чтобы задержать прорастание спор и развитие сохранившихся клеток. Пастеризуют молоко, вино, соки, икру, , варенье, плодово-ягодные компоты и другие продукты. Иногда для удлинения сроков хранения продуктов проводят многократную пастеризацию — тиндализацию.

Стерилизация — это нагревание при температурах, которые вызывают гибель всех живых микроорганизмов. В микробиологической прак­тике стерилизуют среды, посуду, инструмент и другие необходимые предметы. Существуют различные способы стерилизации при помощи вы­сокой температуры.

Асептическое консервирование со­стоит в том, что жидкие и пюреобразные пищевые продукты под­вергают стерилизации путем кратковременного высокотемператур­ного нагрева, охлаждают, а затем расфасовывают в стерильную тару и укупоривают в асептических условиях ( применяют для консервирования томата-пасты, плодово-ягодных соков, молока и других продуктов. Преимущество такого способа состоит в том, что сокращается время тепловой обработки продукта, в результате чего повышается пищевая ценность консервов, для упа­ковки могут быть использованы полимерные материалы.)

Микроорганизмы — это наименьшие формы жизни, которые можно наблюдать только с помощью микроскопа. Они повсеместны (они обитают в почве, водах, живых макроорганизмах), и на их жизненные процессы влияет ряд факторов в окружающей среде. Физические факторы, которые наиболее сильно влияют на температуру, энергию, окружающий рН, осмотическое и атмосферное давление, звуковые волны и т. д.

Влияние физических факторов на микроорганизмы

Температура

Одним из основных факторов, влияющих на жизнеспособность бактерий, является температура окружающей среды. Их существование происходит в определенном температурном диапазоне: минимальном, оптимальном и максимальном.

В зависимости от этого различные типы бактерий подразделяются на следующие три основные группы:

  1. Психофилы (от психроса — холодные) — холодолюбивые бактерии. Их оптимальная температура роста составляет от 10°С до 15°С, но может быть умножена на 0-30°С. Они обычно обитают в водах и почвах в Арктике и Антарктике и в потоках таяющих ледников. В морях Арктики обнаружены бактериальные виды, которые размножаются при -5°С. Некоторые патогенные бактерии, такие как Listeria monocytogenes и Y. enterocolitica, являются жизнеспособными при 4°С, как это обычно бывает, в домашних холодильниках.
  2. Мезофилы — это бактерии, которые растут при умеренных температурах от 20 до 40°С. Их максимальный температурный диапазон составляет 10-45°С. Большинство типов бактерий являются мезофильными и включают в себя некоторых почвенных и водных обитателей, нормальной микрофлоры и всех видов животных и бактерий, вызывающих заболевания.
  3. Термофилы определяются как теплокровные бактерии. Их оптимальная температура роста составляет от 45°С до 70°С, а их максимальный диапазон, при котором они остаются жизнеспособными, составляет 25-90°С. Термофилы обычно встречаются в термальных источниках и компосте. Молочнокислые бактерии также относятся к термофилам.

Существуют также гипертермофильные бактерии, которые развиваются при очень высоких температурах. Их оптимальная температура роста составляет от 70 до 110°С. Они включают представителей Археи, которые находятся вблизи гидротермальных отверстий на больших глубинах в океанах.

Оптимальная температура развития для данного типа бактерий соответствует условиям, в которых клеточный метаболизм наиболее эффективен. Высокие температуры, которые превышают максимум для данного типа бактерий, повреждают метаболизм клеток, и они умирают. Большая часть патогенных бактерий, грибов и всех вирусов погибает при 50-60°С в течение от нескольких минут до 1 часа. Споры бацилл являются наиболее устойчивыми формами жизни и умирают со скоростью. более 100°С в течение 2 часов и более (C. butulinum — более 5 часов). Высокая температура воды или водяного пара повреждает микроорганизмы путем коагуляции и денатурации белков (особенно чувствительных ферментов), денатурации ДНК и нарушения целостности клеток. В сухой стерилизации, где высокая температура влияет на микроорганизмы в воздухе, микробы умирают из-за окисления органического вещества в ячейке и из-за повышенного уровня электролита.

Низкие температуры также влияют на жизнедеятельность бактерий, замедляя или останавливая клеточный метаболизм, увеличивая вязкость (плотность) цитоплазмы и ограничивая проницаемость плазматической мембраны. В большинстве бактерий ниже 0°С метаболическая активность клеток прекращается и переходит в состояние анаболизма. Замораживание большинства микроорганизмов в подходящей среде и при температурах от -20 до -70°С, а также в жидком азоте (-196°С) сохраняется в течение длительного периода времени. Это делается в специализированных лабораториях с целью сохранения ценных видов бактерий.

Влияние температуры окружающей среды на микроорганизмы обычно используется в медицинской практике. Биологические материалы, которые принимаются для микробиологического тестирования, хранятся и транспортируются при оптимальной температуре для подозреваемого патогена, бактериальная культура также требует поддержания подходящей температуры. Влажное тепло широко используется для стерилизации медицинских инструментов и термостойких расходных материалов.

Излучние

Излучение, которое повреждает микроорганизмы, представляет собой коротковолновый электромагнитный спектр — ионизирующее излучение и ультрафиолетовые лучи. Их эффект объясняется появлением фотохимических реакций в клетках и молекулярной ионизацией из-за накопления частиц высокой энергии.

Ионизирующее излучение с разрушающим воздействием на микробные агенты включает гамма-лучи, исходящие из Со-60 и Се-137, рентгеновское излучение и корпускулярное излучение (бета-частицы и электроны высокой энергии). Они обладают высокой проникающей способностью, значительной энергией и оказывают прямое и косвенное воздействие. Эффект прямого повреждения достигается при высоких дозах излучения, непосредственно влияющих на бактериальную хромосому, клеточные ферменты, ряд макромолекул с необратимыми изменениями. Косвенный эффект имеет первостепенное значение, так как вода преобладает в клетках. Рентгеновские лучи и гамма-лучи представляют собой высокоэнергетическое излучение, которое может вызывать электрон от атомов, что приводит к ионизации молекул. В результате образуются реакционноспособные свободные радикалы — водород (* H), гидроксил (* OH) и т. д., из которых в клетках образуются окислители, такие как пероксид водорода и пероксид водорода. В свою очередь, они непосредственно повреждают ряд важных макромолекул, наиболее чувствительной ДНК. Декомпозиция макромолекулы ДНК является наиболее распространенной причиной гибели клеток, поскольку она часто содержит только одну копию данного гена. Растительные бактериальные формы, их споры и грибы обычно умирают в дозе около 1,2 Мрад. Несколько вирусов нуждаются в дозе 2,5 Мрад.

Ультрафиолетовое излучение используется как гермицид (микробицид) как в промышленности, так и в медицине более ста лет. Наиболее сильным воздействием на микроорганизмы являются ультрафиолетовые лучи с длиной волны 250-260 нм, что соответствует их максимальному поглощению от оснований молекулы ДНК. Квантовая энергия, переносимая ультрафиолетовыми лучами (UVL), не приводит к ионизации, но инициирует фотохимические реакции. Последний индуцирует ковалентное присоединение соседних оснований тимина в молекуле ДНК, и когда они являются частью двух комплементарных цепей, связывание прекращает репликацию хромосомы, и микробы разрушаются. При более низких дозах ультрафиолетового излучения этот процесс вызывает мутации. Исследование случаев низкодозного облучения (УФЛ) Escherichia coli выявило наличие все большего числа устойчивых к бактериофагу мутантов.

рН среды и осмотическое давление

Микроорганизмы могут быть отнесены к одной из следующих групп на основе значений рН, необходимых для их оптимального развития:

  1. Нейтрофилы — лучше развиваются при рН от 5 до 8.
  2. Ацидофильный — рН 5,5 подходит.
  3. Алкалифилы — оптимальный рН выше 8,5.

Осмос представляет собой диффузию молекул воды через мембрану из зоны более высокой концентрации воды (меньшая концентрация растворенного вещества) в область с более низкой водной концентрацией или более высокой концентрацией растворенного вещества. Осмотическое давление определяется в основном концентрацией растворенного вещества в данной среде.

Изотоническая среда с определенной концентрацией солей необходима для нормального хода жизни в бактериальных клетках. 0,5% растворы NaCl используются в питательных средах для достижения изотактичности. В океанах и морях микроорганизмы выдерживают значительно более высокие осмотические давления — до 29% NaCl.

Для сохранения пищевых продуктов для предотвращения роста микроорганизмов используются растворы с высоким осмотическим давлением (более 50% сахара или 20% NaCl). Болезни стафилококков (S. aureus) могут выжить в 15% -ной среде NaCl.

Сушка и звуковые волны

Сушка воздействует на различные микроорганизмы в разной степени. Патогенными микроорганизмами, которые особенно чувствительны к потере внутриклеточной воды, являются гемофильные бактерии, члены рода Nayera (менингококки, гонококки), T. pallidum и другие. Вирусы, подверженные сушке, включают вирусы гриппа и парагриппа, ВИЧ, риновирусы и другие. Устойчив к обезвоживанию — вирионы холеры (до 2 дней), шигеле (до 7 дней) и туберкулезные бактерии (от 3 месяцев до 1 года). Высокая устойчивость к потере внутриклеточной жидкости — это споры бактерий (бациллы сибирской язвы — до 50 лет) и грибы.

Лиофилизация — это процесс, в котором микроорганизмы высушиваются при низких температурах и в вакууме. Процесс включает размещение микробных агентов в защитной жидкости, а затем замораживание со скоростью. От -20 до -70°С и помещают в вакуумную среду в специальном лиофилизированном аппарате. Вакуум вызывает сублимацию воды в микроорганизмах, и они высыхают как антибиотик, но остаются жизнеспособными в течение нескольких лет. Лиофилизация служит для сохранения важных бактериальных и вирусных штаммов, а также для производства живых вакцин.

Только ультразвуковые волны могут влиять на рост и развитие микроорганизмов. Ультразвуковые волны, рассеянные в жидкой среде, вызывают усадку и расширение окружающей среды, что приводит к образованию пузырьков в цитоплазме (кавитация). Эти пузырьки оказывают высокое давление на оболочку клетки, что приводит к разрушению клеток. С другой стороны, ультразвуковая энергия может вызвать ионизацию и диссоциацию молекул воды с образованием реактивных радикалов. Ультразвук используется для механической очистки медицинских и стоматологических инструментов, но не для стерилизации, так как некоторые из микроорганизмов выживают с помощью этого метода.

Кислород

Бактерии характеризуются широким спектром требований к содержанию кислорода в их среде разработки. Они могут быть сгруппированы следующим образом:

Читайте также: