Влагоемкость почвы это кратко

Обновлено: 07.07.2024

Эта статья проливает свет на влажность почвы как для садоводов и огородников, так и для тех, кто пытается облегчить себе жизнь занимаясь автоматизацией полива цветов и грядок. Дело в том, что одним из моих занятий является разработка различной автоматики, в том числе, сельскохозяйственной (большей частью садово-огородно-тепличной). И с путаницей на тему влажности приходится встречаться довольно часто. Это изложение не с точки зрения почвоведения или агрономии, а с точки зрения понимания и практического применения.

Но сначала нужно разобраться, что же такое почва и что такое ее влажность. На первый взгляд, все просто. Почва это "та самая земля" по которой мы ходим и в которую сажаем растения на грядках или в горшках на подоконнике. А влажность это "вода в почве". И мы на глаз почти всегда можем определить, полита ли грядка.

Но на самом деле все гораздо сложнее. А труднее всего дать точные определения для самых привычных вещей, задать точные критерии оценки самых обычных параметров. Вот и с почвой и ее влажностью все не так просто.

Небольшое введение в терминологию

Нам не нужны строгие научные определения, которые чаще отпугивают обычных людей, для понимания сути. Почва это смесь минеральных и органических веществ (на рисунке ниже показаны черным и серым цветом).

Минеральная составляющая это песок, глина, камушки, воздух, вода с растворенными в ней солями. Да, воздух (белый и светлосерый цвет) и вода (синий цвет) это тоже составляющие почвы. Органические составляющие это корни растений, насекомые и черви, перегнившие остатки растений, отходы жизнедеятельности животных и птиц (да, тот самый навоз). Это определение, скажем так, сильно не классическое, но точно отражающее то, из чего состоят наши грядки. Почвы бывают очень разные, даже в пределах одного населенного пункта (на разных огородах и даже в пределах одного огорода). Это будет важно в дальнейшем, когда я буду описывать способы измерения влажности. Нет, я не говорю про разные типы почв (черноземы, подзолистые, бурые, и так далее), я говорю про состав почвы на конкретной грядке. Сам слой грунта, в глубину, тоже не однороден. Плодородный слой (почва) находится сверху, им мы пользуемся для выращивания растений. Глубже могут находится слои песка, глины, щебня, водоносные горизонты, скальные породы. Корни растений могут проникать в эти слои, но непосредственно мы их не используем. Однако эти слои влияют на влажность почвы, как станет видно дальше.

Влажность почвы это содержание в ней влаги . Банальное определение. На первый взгляд. И вот тут начинается путаница. Во первых, влажность измеряют в процентах, хотя речь не всегда идет об относительной влажности. Во вторых, влажность можно определить как отношение массы воды к массе сухой почвы, а можно как отношение объема воды к объему сухой почвы. То есть, влажность бывает весовая (массовая) и объемная. Справедливости ради надо сказать, что объемная влажность в быту не применяется.

Продолжаю вас запутывать. Наверное все видели, что когда цветы на подоконнике поливают слишком обильно, то часть воды вытекает снизу. То есть, снизу влажность почвы ограничена 0% (абсолютно сухая почва), но есть и какое то ограничение сверху. Это ограничение называется влагоемкостью . Полная влагоемкость это процент воды при полностью заполненных порах. Именно такое состояние я показал на рисунке выше. Полная влагоемкость достижима при определенных условиях, но на грядках можно достичь лишь на короткое время. Если в почве воды больше, чем ее полная влагоемкость, то получаем "болото". Условием достижения полной влагоемкости является наличие под слоем слоя воды или не пропускающей воду глины/пленки. Если таких слоев нет, то часть воды стекает вниз, в блюдце под цветочным горшком, или нижние слои грунта. Оставшееся количество воды определяет Общая влагоемкость . То есть, общая влагоемкость это способность почвы удерживать воду при ее свободном оттоке под действием гравитации. Чаще можно встретить другой термин, Наименьшая влагоемкость , который эквивалентен общей влагоемкости, но менее удачен с точки зрения внесения путаницы.

Но это еще не все. Я упомянул выше "не пропускающие воду слои". Способность пропускать через себя воду называется водопроницаемостью . Чем она выше, тем меньше общая влагоемкость, так воде легче стекать вниз. Но это не означает, что низкая водопроницаемость означает высокую влагоемкость. Так как влага просто не способна проникнуть в такую почву.

Далее, существует еще водоподъемная способность почвы. Наверное всем знаком способ полива цветочных горшков подливанием воды в блюдце под горшком. Это как раз демонстрация водоподъемных свойств. По сути своей, это проявление капилярного эффекта. Для нас это свойство имеет значение, так как грядки в крытой теплице дождь не поливает непосредственно, но стекающая по нижележащим слоям (глинистая почва, например) вода благодаря водоподъемным свойствам почвы увлажняет грядки в теплице. Еще существует влагопоглощающая способность - способность поглощать влагу из воздуха.

Как видно, на верхнюю границу влажности почвы влияет много факторов. Что бы упростить ситуацию вводится термин Предельная полевая влагоемкость почвы . Это способность почвы удерживать воду с учетом и полной влагоемкости, и водопроницаемости, и водоподъемности, и расположения гидроизолирующих слоев, и наличия близлежащих водоносных слоев (например, близко река, ручей или родник). Предельная полевая влагоемкость определяется экспериментально может быть разной даже для почвы идентичного состава, но находящейся на разных участках поля. Не говоря уже о разных грядках, одна из которых может располагаться на солнечном пригорке, а другая в тенистой низине с ручьем неподалеку. Обратите внимание, слово полевая тут не случайно, так как речь идет о привязке к конкретному реальному земляному участку.

Определение общей (минимальной) влагоемкости почвы и предельной полевой влагоемкости

Стоит сказать, что в большинстве бытовых случаев предельная полевая влагоемкость будет примерно равна общей (наименьшей) влагоемкости. Исключением будут болотистые почвы, насыпные грунты (если почва насыпается на глинистый участок или на полимерную пленку) и расположение участка в низине у ручья или реки.

Я приведу лишь упрощенную методику, которой вполне достаточно для бытового применения. Возьмите сосуд с отверстием в дне, которое прикрыто от высыпания через него почвы. Диаметр отверстия должен исключать влияние эффектов поверхностного натяжения. Достаточно будет отверстия диаметром 5 мм. Насыпьте в сосуд почву и слегка утрамбуйте ее, что бы избежать излишней пористости. Обильно полейте, так что бы вода начала капать из расположенного в дне отверстия. Поставьте сосуд так, что бы вода могла спокойно вытекать из отверстия не перекрывая его. То есть, вытекающая вода должна сливаться не доходя до уровня дна сосуда. Когда вода полностью прекратит капать, воспользуйтесь методикой определения влажности выпариванием, которая изложена ниже.

Для чего это нужно? В большинстве случаев это не требуется. Но полезно для калибровки датчиков влажности или для расчета требуемого для полива количества воды.

Собственно влажность почвы

Итак, мы разобрались с тем, что такое почва и что влияет на ее способность удерживать влагу. Теперь переходим к собственно определениям понятия влажности.

Абсолютная влажность - содержание влаги в почве по отношению к ее массе.

Влагоёмкость (водоёмкость, водоудерживающая сила, капиллярность почвы) — свойство почвы принимать и задерживать в своих волосных скважинах известное количество капельножидкой воды, не позволяя последней стекать.

Процентное отношение её веса к весу почвы или, соответственно, её объёма к объёму почвы, выраженное в процентах, называется показателем влагоёмкости почвы.

Влагоёмкость почвы - величина, количественно характеризующая водоудерживающую способность почвы; способность почвы поглощать и удерживать в себе от стекания определённое количество влаги действием капиллярных и сорбционных сил. В зависимости от условий, удерживающих влагу в почве, различают несколько видов влагоёмкости почвы: максимальную адсорбционную, капиллярную, наименьшую и полную. Максимальная адсорбционная влагоёмкость почвы, связанная влага, сорбированная влага, ориентировочная влага — наибольшее количество прочно связанной воды, удерживаемое сорбционными силами. Чем тяжелее гранулометрический состав почвы и выше содержание в ней гумуса, тем больше доля связанной, почти недоступной влаги почве. Капиллярная влагоёмкость почвы — максимальное количество влаги, удерживаемое в почвогрунте над уровнем грунтовых вод капиллярными (менисковыми) силами. Зависит от мощности слоя, в котором она определяется, и его удалённости от зеркала грунтовых вод. Чем больше мощность слоя и меньше его удаление от зеркала грунтовых вод, тем выше капиллярная влагоёмкость почвы. При равном удалении от зеркала её величина обусловлена общей и капиллярной пористостью, а также плотностью почвы. С капиллярной влагоёмкостью почвы связана капиллярная кайма (слой подпёртой влаги между уровнем грунтовых вод и верхней границей фронта смачивания почвы). Капиллярная влагоёмкость почвы характеризует культурное состояние почвы. Чем почва менее оструктурена, тем больше в ней происходит капиллярный подъём влаги, её физическое испарение и, зачастую, накопление в верхней части легкорастворимых, в т.ч. и вредных для растений солей. Наименьшая - полевая влагоёмкость почвы — кол-во воды, фактически удерживаемое почвой в природных условиях в состоянии равновесия, когда устранено испарение и дополнительный приток воды. Эта величина зависит от гранулометрического, минералогического и химического состава почвы, ее плотности и пористости. Применяется при расчёте поливных норм. Полная влагоёмкость почвы, водовместимость почвы — содержание влаги в почве при условии полного заполнения всех пор водой. При полной влагоёмкость почвы влага, находившаяся в крупных промежутках между частицами почвы, непосредственно удерживается зеркалом воды или водоупорным слоем. Водовместимость почвы рассчитывается по её общей пористости. Значение величины полной влагоёмкости почвы необходимо при подсчете способности водовпитывания без образования поверхностного стока, для определения способности водоотдачи почвы, высоты подъёма грунтовых вод при обильных дождях или орошении.

    статью.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Влагоёмкость почвы" в других словарях:

влагоёмкость почвы — влагоёмкость почвы, способность почвы поглощать и удерживать влагу. Выражается количеством влаги в процентах от массы или объёма сухой почвы или в мм водного слоя. Зависит от гранулометрического состава и структуры почвы, содержания в ней гумуса … Сельское хозяйство. Большой энциклопедический словарь

ВЛАГОЁМКОСТЬ ПОЧВЫ — способность почвы поглощать и удерживать влагу. Выражается кол вом влаги в процентах от массы или объёма сухой почвы или в мм водного слоя. Зависит от гранулометрич. состава и структуры почвы, содержания в ней гумуса. Наиб. влагоёмки мощные… … Сельско-хозяйственный энциклопедический словарь

Влагоёмкость почвы — способность почвы поглощать и удерживать определённое количество влаги. В. п. выражается в процентах к массе сухой почвы или к её объёму, а также в миллиметрах водного слоя. См. Водный режим почвы … Большая советская энциклопедия

ВЛАГОЁМКОСТЬ ПОЧВЫ — величина, количественно характеризующая водоудерживающую способность почвы … Словарь ботанических терминов

Влагоёмкость — Влагоемкость (водоемкость, водоудерживающая сила или капиллярность почвы) свойство почвы принимать и задерживать в своих волосных скважинах известное количество капельножидкой воды, не позволяя последней стекать. Это волосная, или капиллярная ,… … Википедия

воздухоёмкость почвы — Объём почвенных пор, содержащих воздух, при влажности почвы, соответствующей её влагоёмкости. [Словарь геологических терминов и понятий. Томский Государственный Университет] Тематики геология, геофизика Обобщающие термины почвоведениеэкзогенные… … Справочник технического переводчика

Почвы — Профиль пахотной каштановой почвы, Волгоградская область, Россия Почва поверхностный слой литосферы Земли, обладающий плодородием и представляющий собой полифункциональную, гетерогенную, открытую, четырёхфазную (твёрдая, жидкая, газообразная… … Википедия

Влагоемкость почвы — ВЛАГОЁМКОСТЬ ПОЧВЫ способность почвы поглощать и удерживать влагу. Выражается в количественных показателях (в % влаги к весу почвы или её объему). Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь

Водный режим почвы — совокупность всех явлений, определяющих поступление, передвижение, расход и использование растениями почвенной влаги. В. р. п. важнейший фактор почвообразования и почвенного плодородия. Главный источник почвенной влаги атмосферные осадки; … Большая советская энциклопедия

Торфяные почвы — болотные торфяные, или торфяно болотные, почвы, группа почвенных типов, формирующихся в условиях избыточного увлажнения атмосферными, застойными пресными или слабопроточными в той или иной степени минерализованными грунтовыми водами. Т. п … Большая советская энциклопедия

Глава 7. ВОДНЫЕ СВОЙСТВА И ВОДНЫЙ РЕЖИМ ПОЧВ

§1. Значение воды в почве

Почва как многофазная система способна поглощать и удерживать воду. В ней всегда находится определенное количество влаги. Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении.

Почвенная вода является жизненной основой растений, почвенной фауны и микрофлоры, получающих воду главным образом из почвы. От содержания воды в почве зависят интенсивность протекающих в ней биологических, химических и физико-химических процессов, передвижение веществ и формирование почвенного профиля, водно-воздушный, питательный и тепловой режимы, ее физико-механические свойства, то есть, важнейшие показатели почвенного плодородия. Следовательно, почвенная вода оказывает прямое и косвенное влияние на развитие и урожайность растений.

Растения расходуют воду в огромном количестве. Для создания 1 г сухого органического вещества потребляется от 200 до 1000 г воды. Количество воды, затрачиваемое на создание единицы сухого вещества за вегетационный период, называется транcnupaцuoнным коэффициентом. Однако растениями усваивается только часть почвенной влаги, которая удерживается силами, меньшими, чем сосущая сила корней, – продуктивная влага. В процессе фотосинтеза вода вместе с углекислым газом – первичный источник образования органического вещества растений. В воде растворяются питательные вещества, которые с почвенным раствором поступают в растения. Растения нормально развиваются только при постоянном и достаточном количестве влаги в почве. Недостаток, как и избыток, влаги в почве ограничивает продуктивность растений. В этом случае неэффективными становятся различные приемы, направленные на повышение урожаев сельскохозяйственных культур (внесение удобрений, известкование и др.).

Водообеспеченность растений определяется не только количеством поступающей воды в почву, но и ее водными свойствами, способностью почвы впитывать, фильтровать, удерживать, сохранять воду и отдавать ее растению по мере потребления. В одинаковых климатических условиях при равной влажности почвы могут содержать разное количество доступной воды, что зависит от механического состава почв, структурного состояния, содержания гумуса и других показателей, предопределяющих их водные свойства. Поэтому создание благоприятного водного режима в почве – одно из важнейших условий получения высоких и устойчивых урожаев сельскохозяйственных культур в условиях интенсивного земледелия.

§2. Формы воды в почве

Для определения обеспеченности растений доступной водой необходимо знать формы и взаимосвязи воды в почве.

Вода в почве может находиться во всех трех состояниях: в парообразном, твердом и жидком. Парообразная вода содержится в почвенном воздухе и поступает из атмосферы, а также образуется в почве при испарении жидкой воды и льда, свободно передвигается в почве из более влажных мест в менее увлажненные (при условии одной и той же температуры во всех горизонтах почвы), а из горизонтов с большей температурой - в участки с меньшей температурой. Практическое значение парообразной почвенной влаги в земледелии ничтожно, однако в почвах засушливых районов за счет водяного пара в зимнее время в метровом слое аккумулируется до 10 –14 мм влаги. Твердая вода непосредственно не используются растениями, хотя и может служить резервом доступной влаги (жидкой и газообразной).

Жидкая и парообразная вода в почве подвергается воздействию различных природных сил: гравитационных, молекулярного притяжения твердой фазы почвы и силы притяжения между молекулами воды. В зависимости от преобладания одной из этих сил почвенная вода имеет различную подвижность и доступность для растений.

Выделяют следующие основные формы почвенной воды, различающиеся между собой прочностью связи с твердой фазой почвы и степенью подвижности: кристаллизационную, гигроскопическую, пленочную, капиллярную, гравитационную.

Кристаллизационная вода – это химически связанная вода, входящая в состав минералов либо в виде гидроксильных групп (Fе(ОН)з, А1(ОН)з, Са(ОН)2), либо в виде целых молекул (например, гипса (CaS04 * 2 Н20), мирабилита (Na24 * 10 Н2О) и др.); выделяется при нагревании почвы до температуры 400 – 600 °С. Химически связанная влага не принимает непосредственного участия в физических процессах, протекающих в почве, и растениям недоступна.

Гигроскопическая влага. Часть воды, находящейся в воздухе в виде пара, поглощается поверхностью почвенных частиц, образуя гигроскопическую влагу – одну из форм так называемой сорбционной воды, т.е. удерживаемой силами сорбции. Содержание этой влаги зависит от: относительной влажности и температуры воздуха (чем влажнее воздух и ниже температура, тем ее больше в почве), содержания органического вещества (чем богаче почва гумусовыми веществами, тем ее больше) и механического состава (при прочих равных условиях почва суглинистая или глинистая всегда будет содержать больше гигроскопической влаги, чем почва песчаная или супесчаная). Наибольшее количество гигроскопической воды, поглощенное почвой и выраженное в процентах от массы сухой почвы, называется максимальной гигроскопичностью (МГ). Такое количество влаги почва может поглотить из воздуха, имеющего относительную влажность, близкую к 100 %. Максимальная гигроскопическая влажность – величина, постоянная для каждой почвы, так как она определяется при постоянных температуре и относительной влажности воздуха. Может колебаться для песчаных почв от 0,1 до 1,5 в глинистых, гумусированных – до 10 – 15, в органогенных – до 20 – 40 % от веса сухой почвы. Молекулы гигроскопической воды удерживаются на поверхности почвенных частиц с большой силой, поэтому удалить их можно лишь продолжительным нагреванием почвы при 105 °С. Следовательно, для растений гигроскопическая влага недоступна.

МГ используют для выяснения мертвого запаса влаги (МЗВ) в почве – количество влаги в почве, при котором растения начинают устойчиво завядать, так как эта вода не может быть использована растениями. Он равен 1,5 • МГ, т.е. в состав мертвого запаса влаги входит еще пленочная вода.

Пленочная вода покрывает почвенные частицы следующим за гигроскопической влагой слоем, также удерживается силами межмолекулярного притяжения, но слабее, поэтому является частично доступной (для взрослых растений). Кристаллизационная, гигроскопическая и пленочная формы воды относятся к прочносвязанной воде и составляют МЗВ.

Влага, которая содержится в почве сверх мертвого запаса, называется продуктивной. Благодаря этой влаге формируется урожай сельскохозяйственных растений.

Свободная вода не связана силами притяжения с почвенными частицами, доступна растениям, передвигается в почве под действием капиллярных и гравитационных сил. В связи с этим выделяют капиллярную и гравитационную воду.

Капиллярная вода заполняет тонкие (капиллярные) поры почвы и передвигается в них под влиянием капиллярных (менисковых) сил. Высота подъема воды тем выше, чем тоньше капилляр. В зависимости от характера увлажнения различают капиллярно- подвешенную и капиллярно-подпертую воду. При увлажнении почвы сверху (атмосферные осадки, оросительные воды) формируется капиллярно-подвешенная вода, не связанная с грунтовыми водами и находящаяся в верхней части профиля почв. Капиллярно-подпертая формируется при увлажнении снизу и поднимается от зеркала грунтовых вод. Почвенный слой, в котором она распространяется, называется капиллярной каймой, и мощность его зависит от водоподъемной способности почвы. Капиллярная вода легкодоступна для растений и является основным источником их водного питания. Разновидностью капиллярной воды является стыковая влага, находящаяся в почвах с атмосферным увлажнением, которая представляет собой влагу, удерживаемую между частицами почвы и не проходящую вниз.

Если почву, в которой все капиллярные поры уже заполнены водой, продолжать увлажнять, то влагой будут заполняться некапиллярные промежутки. Эта влага, свободно передвигающаяся в почве и подчиненная в своем движении силе тяжести, называется гравитационной. Гравитационная влага может передвигаться в почве только из верхних слоев вниз. Просачиваясь вниз, она либо является источником питания грунтовых вод, либо распределяется по толще почвы и переходит в другие формы воды. Гравитационная влага легкодоступна растениям, но избыточна (т.к. мало воздуха и нарушается газообмен) и поэтому непродуктивна. Полное насыщение почвы водой возможно после таяния снега или длительных дождей, однако это явление кратковременное.

Грунтовые воды играют важную роль в водном питании растений. Подходя близко к поверхности почвы, в северных районах они вызывают заболачивание, а в южных – засоление почвы. Критическая глубина залегания грунтовых вод, при которой происходит засоление почв на юге, колеблется в пределах 1,5 – 2,5 м.

§3. Водные свойства почвы и основные почвенно-гидрологические константы

Водный режим почвы зависит не только от количества атмосферных осадков, но и в значительной мере от водных свойств самой почвы. К главнейшим водным свойствам относятся водопроницаемость, водоподъемная способность (или капиллярность), влагоемкость.

Водопроницаемость – это способность почвы впитывать и пропускать через себя воду. Водопроницаемость измеряется объемом воды, протекающей через единицу площади поверхности почвы в единицу времени, выражается в мм водного столба в единицу времени.Процесс водопроницаемости включает впитывание влаги и ее фильтрацию. Впитывание происходит при поступлении воды в почву, не насыщенную водой, а фильтрация начинается тогда, когда большая часть пор почвы заполняется водой. Впитывание воды обусловлено сорбционными и капиллярными силами, фильтрация – силой тяжести.

Водопроницаемость зависит от механического состава, структуры (у структурных почв выше, чем у бесструктурных), содержания гумусовых веществ (в целом от общего объема пор в почве и их размера), а также от состава поглощенных катионов: натрий уменьшает водопроницаемость, а кальций – увеличивает. В легких по механическому составу почвах поры крупные и водопроницаемость всегда высокая. В почвах тяжелого механического состава с глыбисто-пылеватой структурой и плотных бесструктурных почвах водопроницаемость низкая. После оструктуривания такие почвы в несколько раз улучшают фильтрационную способность (суглинистые и глинистые почвы, обладающие водопрочной комковато-зернистой структурой, также отличаются высокой водопроницаемостью).

Хорошо водопроницаемыми считаются почвы, в которых вода в течение первого часа проникает на глубину до 15 см. В средневодопроницаемых почвах вода за первый час проходит от 5 до 15 см, а в слабоводопроницаемых – до 5 см. От этого свойства зависит степень использования водных ресурсов. При слабой водопроницаемости часть атмосферных осадков или оросительной воды стекаетпо поверхности, что приводит к непродуктивному расходованию влаги, могут происходить вымокание культур, застаивание воды на поверхности и развиваться эрозия почвы. При очень высокой водопроницаемости не создается хороший запас воды в корнеобитаемом слое почвы, а в орошаемом земледелии наблюдается большая потеря на полив.

Водоподъемная способность – свойство почвы поднимать содержащуюся в ней влагу за счет капиллярных сил (вода в почвенных капиллярах образует вогнутый мениск, на поверхности которого создается поверхностное натяжение). Высота капиллярного поднятия воды зависит от диаметра капилляров: чем они тоньше, тем выше поднятие, и наоборот. Поэтому водоподъемная способность растет от песчаных почв к суглинистым и глинистым. Максимальная высота подъема воды над уровнем грунтовых вод для песчаных почв 0,5 – 0,8 м, для суглинистых – 2,5 – 3,5 м, в глинистых почвах – 3,0 – 6,0 м.Скорость подъема зависит от размера пори вязкости воды, обусловливаемой ее температурой. По крупным порам вода поднимается быстрее, чем в почвах с тонкими капиллярами.С повышением температуры уменьшается вязкость воды, поэтому скорость ее капиллярного поднятия повышается. Растворенные в воде соли также оказывают значительное влияние на скорость капиллярного подъема. Минерализованные грунтовые воды в отличие от пресных поднимаются к поверхности по капиллярам с большей скоростью.

Благодаря капиллярным явлениям и водоподъемной способности почв грунтовые воды участвуют в дополнительном снабжении растений водой, особенно в засушливые годы, развитии восстановительных процессов и засолении почвенного профиля.

Влагоемкость – способность почвы впитывать и удерживать определенное количество воды. Выражается в % к весу сухой почвы. Эта способность зависит от гранулометрического состава, содержания гумуса, состава поглощенных катионов. Высокая влагоемкость характерна для глинистых почв, богатых коллоидами, с высоким содержанием гумуса. Высокой влагоемкостью обладают почвы, содержащие известь, хлориды, слабовлагоемкие песчаные почвы.

Различают следующие виды влагоемкости: максимальную гигроскопическую, капиллярную, полевую и полную.

Максимальная гигроскопическая влагоемкость (МГВ) – это наибольшее недоступное растениям количество влаги (мертвый запас влаги), которое прочно удерживается молекулярными силами почвы (адсорбцией). Величина этой влагоемкости зависит от суммарной поверхности частиц, а также содержания гумуса: чем больше в почве илистых частиц и гумуса, тем она выше.

Капиллярная влагоемкость – максимальное количество воды (капиллярно-подпертой влаги), которое удерживается в почве над уровнем грунтовых вод при заполнении капиллярных пор. Кроме свойств почвы, величина капиллярной влагоемкости зависит от высоты над зеркалом грунтовых вод. Вблизи грунтовых вод она наибольшая, а с поднятием к поверхности уменьшается и на границе капиллярной каймы равна наименьшей влагоемкости.

Наименьшая влагоемкость (НВ), или предельная полевая влагоемкость (ППВ) – это наибольшее количество воды, которое остается в почве после ее полного увлажнения и свободного стекания избыточной воды. Величина наименьшей влагоемкости зависит от гранулометрического и минералогического состава, плотности и пористости почвы. Она соответствует величине капиллярно-подвешенной воды. Наименьшая влагоемкость – важнейшая характеристика водных свойств почвы, дающая представление о наибольшем количестве воды, которое почва способна накопить и длительное время удерживать. Она составляет (в % от веса абсолютно сухой почвы): для песчаных – 4 – 9, супесчаных – 10 – 17, легко- и среднесуглинистых – 18 – 30, тяжелосуглинистых и глинистых – 23 – 40. Наибольшие значения ППВ характерны для гумусированных почв тяжелого механического состава, обладающих хорошо выраженной макро- и микроструктурой.

Полной влагоемкостью (ПВ) называется наибольшее количество воды, которое может вместить почва при полном заполнении всех ее пор водой при отсутствии оттока (численно равна пористости почвы).

Оптимальной влажностью для большинства культурных растений условно принято считать влажность, приблизительно равную 50 % полной влагоемкости данной почвы. Для большинства зерновых культур оптимальная влажность составляет 30 – 50 %, для зернобобовых – 50 – 60 %, технических растений и корнеплодов – 60 – 70 %, сеяных луговых трав (злаков и бобовых) – 80 – 90 % ПВ почвы. Поэтому оптимальная влажность почвы для разных растений и почв должна несколько отклоняться от условно принятой.

Полевая влажность (WП) характеризует содержание влаги в почве на данный момент, выражается в % к массе сухой почвы.

Из общего количества влаги, содержащейся в почве при ее полном насыщении, выделяют такие пограничные значения влажности, при которых меняются поведение воды и ее доступность растениям. Границы значений влажности, характеризующие пределы появления различных категорий почвенной влаги, называются почвенно-гидрологическими константами. Наиболее широко используются следующие: максимальная гигроскопическая влагоемкость, влажность разрыва капилляров (ВРК), влажность завядания (ВЗ), наименьшая влагоемкость (НВ) и полная влагоемкость (ПВ).

При влажности НВ вся система капиллярных пор заполнена водой, поэтому создаются оптимальные условия влагообеспеченности растений. По мере испарения и потребления воды растениями теряется сплошность заполнения водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, при которой происходит разрыв сплошного заполнения капилляров водой, называется влажностью разрыва капилляров (ВРК). Это важная гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65 – 70 % НВ.

Влажность завядания растений – это почвенная влажность, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, т.е. это нижний предел доступной растениям влаги (численно равна 1,5 * МГ). Влажность завядания зависит от вида растений и свойств почвы. Чем тяжелее механический состав почвы, чем больше в ней органического вещества, тем выше ВЗ. В среднем она составляет: в песках – 1 – 3 %, в супесях – 3 – 6 %, в суглинках – 6 – 15 %, в торфяных почвах – 50 – 60 %.

Для растений доступна только та часть почвенной влаги, которая может быть усвоена в процессе жизнедеятельности. Она называется продуктивной влагой, так как используется для образования урожая и вычисляется как разница между ППВ и ВЗ. Зная количество продуктивной влаги, можно рассчитать урожай растений (1 % продуктивной влаги дает 1 ц зерна) и дефицит влаги.

Продуктивный запас влаги (ПЗВ) в определенном слое (или почвенном профиле) вычисляют, зная общий запас воды (ОЗВ) в этом слое и запас труднодоступной воды (ЗТВ). Запас воды определяют для каждого почвенного горизонта по формуле:


где В – запас воды, м 3 /га для слоя Н, WП – полевая влажность, dV – объемная плотность почвы, г/см 3 , Н – мощность горизонта, см. Запас труднодоступной воды рассчитывают по той же формуле, но вместо WП берут ВЗ. Для пересчетов запасов воды, выраженных в м 3 /га, в мм их умножают на 0,1 (запас воды в 1 мм водного столба на площади 1 га равен 10 т воды). Разность между этими показателями дает продуктивный запас влаги: ПЗВ = ОЗВ – ЗТВ. Оценка запасов продуктивной влаги представлена в таблице 11.



Влажность почвы - это процентное соотношение всей почвенной влаги к сухому грунту. То есть, влажность почвы 20% означает, что на 100 г полностью сухой почвы приходится 20 г влаги (или в 120 г почвы на вашем поле 20 г влаги). Очень важно запомнить, что для вычислений берется именно сухая почва, а не влажная. Например, молоко, жирностью 4% означает, что 4 г жира находится на 100 г цельного молока, а не обезжиренного (которого, соответственно, 96 г). Тогда как влажность почвы 4% - это 4 г влаги и 100 г сухой почвы (или 104 г почвы с влажностью 4%).

Влагоемкость почвы - это максимальное количество влаги, которое почва может в себе удержать.

Различают несколько влагоемкостей:

ПВ (полная влагоемкость) - максимальное количество воды, которое может вместиться во всех порах почвы. По сути, это полностью залитое поле. В этом случае количество воздуха в пустотах равняется нулю, такая ситуация на поле крайне нежелательна.

Поэтому оптимальную влажность почвы и удобнее выражать в процентах НВ. Этот показатель показывает не только содержание влаги на вашем участке, но и ее форму. Свободная гравитационная влага недоступна растениям, а только вредит им. Слишком высокая НВ (85% и больше) пригодна для развития растений, но повышает риск развития корневых заболеваний.

Как правило, 100% НВ достигается при влажности почвы от 20% (легкие почвы) до 40% (суглинистые почвы). Другими словами, если у вас супесчаная почва, то оптимальные для большинства культур 75% НВ достигается при влажности почвы 15%, если же тяжелая - вплоть до 30%.

Влагоемкость - достаточно стабильный показатель. Если в почве не происходит кардинальных перемен (как, например, с тепличным субстратом, где создается интенсивный агрофон, вносятся удобрения, торф, мелиоранты), то этот параметр достаточно измерять раз в несколько лет. Он нужен для того, чтобы правильно использовать результаты измерения влажности почвы.

Например, если НВ 30%, а влажность почвы 21 %, то эту влажность почвы можно выразить как 70% нормальной влагоемкости.

Это можно выразить как: чтобы заполнить ящик плодами на 60%, сначала нам нужно узнать емкость этого ящика (узнать НВ грунта). Следующий шаг - нам нужно взвесить плоды, которые уже находятся в ящике (влажность почвы). При этом в одном и том же виде ящиков количество плодов может быть разное (достаточно один раз узнать НВ своей почвы, влажность меняется постоянно). И вот, если мы знаем, что в ящике емкостью 10 кг находится 3,5 кг плодов, то он заполнен на 35%, значит, нам нужно доложить 2,5 кг плодов. Подобьем первые итоги. Чтобы научиться поливать растения правильно, необходимо:

  • Определить способ, которым будет измеряться влажность почвы (однократно);
  • Измерить плотность, затем НВ своей почвы (однократно);
  • Измерять влажность своей почвы (регулярно);
  • Перевести влажность почвы в % от НВ.
  • Следить, чтобы влажность почвы не выходила за определенные рамки. Например, не была ниже 60% НВ и выше 80% НВ. То есть, начинать полив нужно при 60% НВ.
Как измерять влагоемкость грунта?

Наименьшая влагоемкость почвы наблюдается, когда после обильного увлажнения (или затопления) вся лишняя влага уходит в глубокие горизонты. Поэтому в полевых условиях этот параметр можно измерять при залегании грунтовых вод глубже 3 м, иначе они будут постоянно насыщать грунт новыми порциями влаги.

Ранней весной, когда почва наполнена талыми водами, выбирают типичный участок поля (1,5x1,5 м), который накрывают пленкой и соломой, чтобы предотвратить испарение влаги. На орошаемых землях анализ можно проводить после обильного полива. Существует и третий вариант - создание небольшого участка затопления. Для этого выбранный участок окружается земляными валами (земля берется вдалеке от площадки, чтобы не нарушать рельеф поля), деревянными или железными рамами. Для промачивания почвы нужно использовать 200 л воды на квадратный метр, если почвы легкие, до 300 - на суглинистых. В том месте, куда будет наливаться вода, нужно положить фанерку, чтобы не размывать грунт струей. Воду нужно вливать порционно, чтобы ее слой был высотой не более 5 см. Следующую порцию подают после того, как предыдущая впитается.

Во всех трех случаях землю накрывают клеенкой и соломой. Через сутки, трое суток, а на суглинистых почвах и через 10 суток отбирают образцы почвы через каждые 10 см (0-10, 10-20, 20-30. ) и измеряют влажность образцов. Полученные данные называют НВ1, НВЗ и НВ10 соответственно. На супесчаных грунтах самый оптимальный параметр - НВЗ, на тяжелых - НВ10. НВ1 актуален там, где избытки влаги стекут уже в течение суток (содержание песка близкое к 100%, большое количество крупнозернистой фракции).

Показателем наименьшей влагоемкости будет влажность образца. То есть, если на 100 г высушенного в термостате грунта в образце придется 27 г воды, значит, 100% НВ соответствует 27% влажности почвы.

Измерение влажности почвы

Самым точным методом, который используют и лаборатории, считается термостатно-весовой. Он очень прост и использует всего три вида оборудования: весы, термостат и бур, который может заменяться лопаткой. Термостатом может послужить практически любая печь, духовка или котел, и градусник. Минус этого метода очевиден - узнать влажность почвы можно только через 2-3 дня с момента отбора пробы, поэтому определить таким образом необходимость полива будет крайне сложно. Но другие методы измеряют не влажность почвы, а другие ее свойства, которые зависят от влажности. Так, например, электропроводимость почвы зависит от концентрации почвенного раствора (например, анализ с помощью прибора TDS-метра). С одной стороны, она выше, если меньше влажность, с другой же - любое внесение удобрений сильно повлияет на результат исследования.

Определившись, каким образом вы планируете регулярно измерять влажность почвы, для определения НВ советуется использовать как термостатно-весовой метод, так и выбранный вами прибор. Таким образом, вы проведете своего рода калибровку.

Рассмотрим пример. Если плотность Вашей почвы будет составлять 1,1 г на кубический сантиметр, согласно термостатно-весовому методу НВ почвы будет 30% ее влажности, а согласно оперативному методу - 25%, то ошибка измерения составит 165 т воды на га. Поэтому, определяя влажность почвы выбранным прибором, за 100% НВ нужно будет принимать влажность почвы в 25%.

Измерение влажности с помощью электрических приборов чаще всего исследует другие свойства почвы: сопротивления, электропроводимости, индуктивности и т.п.

Тензиометры

Метод измерения влажности тензиометром основан на изменении давления внутри трубки прибора. Прибор состоит из вакуумной керамической трубки и вакуумного манометра (прибор для измерения давления).

Перед использованием тензиометр заряжается - погружается в воду до полного насыщения керамической трубки. После он размещается в поле (заглубляется в грунт). Советуется использовать два тензиометра, для разной глубины (например, для 20 и 40 см). Чем более сухой становится почва, тем сильнее она "вытягивает" воду с вакуумной трубки прибора, в результате чего давление в ней падает. Второй элемент тензиометра - вакуумный манометр измеряет это падение. Эти данные уже с помощью специальных таблиц переводят в фактическую влажность почвы.

Так как прибор фиксирует падение давления, то стрелка отклоняется в минусовую сторону (ниже нуля). Чем дальше она отходит от нулевой отметки, тем ниже влажность почвы. Без таблиц использовать данные прибора нельзя, так как при полной влагоемкости стрелка может показывать от - 10 сантибар (примечание: сантибар - 0,01 бар) на тяжелых почвах до - 40 сантибар на легких. Нужно учитывать и влияние других факторов, в том числе, температуры почвы.

Так сколько же поливать?

Последнее, что нам нужно сделать - рассчитать норму полива. Для этого можно использовать приборы, которые есть в наличии (поливать до тех пор, пока прибор не зафиксирует нужную нам влажность почвы) или рассчитывать норму математическим методом.

Тут все немного сложнее. Первое, что нам нужно узнать - удельный вес сухой почвы (масса 1 см3 почвы в граммах или 1 м3 в тоннах), его также называют плотностью. Но для этого не подойдут наши образцы - их объем будет нарушен при сушке. Проще всего узнать удельный вес из таблиц, так как этот параметр не слишком переменчив и больше всего зависит от гранулометрического состава почвы. Конечно, рыхление снижает ее удельный вес, но на норму полива это не повлияет.

Если мы знаем, что в наш ящик нужно доложить плодов на 25% его вместимости, то мы умножаем эту вместимость на 0,25 (10 кг % 0,25 = 2,5 кг). Аналогично и с почвой. Если Вам нужно увеличить влажность почвы на 10%, то Вам нужно умножить ее массу на 0,1.

Чтобы узнать массу почвы на Вашем участке, нужно ее площадь в квадратных метрах умножить на 0,3 (корневая зона - это 30 см или 0,3 м) и умножить на удельный вес.

Для гектара это будет 10 000 м2 х 0,3 м = 3000м3.

Если 1 м3 грунта весит 1,1 т, то нам нужно увлажнить: 3 000 м3 х 1,1 т/м3 = 3,3 тыс. т почвы. Тогда норма полива (10% от этой цифры) составит 330 м3.

Ну и самый простой способ определения влажности почвы - ее нужно сжать в руке. Если сквозь пальцы не начала проникать вода, но, разжав ладонь, почва остается в комке - это удовлетворительная влажность. Скоро придется поливать. Сколько нужно полить? Этот метод не ответит на такие вопросы.

Чтобы измерять влажность почвы термостатно-весовым методом, нужно проделать следующие операции:

Читайте также: