Виды химической связи в комплексных соединениях кратко

Обновлено: 07.07.2024

Комплексный ион состоит из комплексообразователя и лигандов и образует внутреннюю сферу (внутреннюю сферу заключают в квадратные скобки).

Комплексообразователь – это d-элемент, имеющий на внешнем уровне достаточное количество свободных орбиталей (Cu +2 , Ag + , Pt +4 , Fe +2 , Fe +3 , Co +2 , Co +3 , Co +2 )

Лиганды – это ионы и молекулы, имеющие свободные электронные пары (OH - , CN - , Cl - , NH 3 , H 2 O)

Координационное число (КЧ) - это число лигандов в комплексном ионе

Координационное число зависит:

от природы центрального атома;

условий образования комплексов.

Виды комплексов

Соединения с комплексными анионами

K 2 [PtCl 4 ] - тетрахлороплатинат (II) калия

Na 2 [Zn(OH) 4 ] - тетрагидроксоцинкат натрия

Na[Cr(H 2 O) 2 F 4 ] - тетрафтородиаквахромат (III) натрия

Соединения с комплексными катионами

[Ag(NH 3 ) 2 ]Cl – хлорид диамминсеребра

[Al(H 2 O) 5 OH]SO 4 – сульфат гидроксопентаакваалюминия

[Pt(H 2 O)(NH 3 ) 2 OH] NO 3 – нитрат гидроксодиамминакваплатины (II)

Соединения без внешней сферы

[Al (H 2 O) 3 (OH) 3 ] - тригидроксотриакваалюминий

[Pt(NH 3 ) 2 Cl 2 ] – дихлородиамминплатина (II)

[Co(NH 3 ) 3 Cl 3 ] – трихлоротриамминкобальт (III)

Номенклатура

в названиях комплексных ионов сначала указываются лиганды;

название комплексного иона завершается названием металла с указанием его степени окисления (римским цифрами в скобках);

в названиях комплексных катионов используются русские названия металлов;

в названиях комплексных анионов используются латинские названия металлов: Al –алюминат, Cr – хромат, Fe – феррат;

В настоящее время образование и свойства комплексных соединений объясняют с точки зрения теории метода валентных связей (ВС), теории кристаллического поля (ТКП) и теории молекулярных орбиталей (МО).

Далее кратко на примерах рассмотрим каждую из теорий.

Строение комплексных соединений с точки зрения теории метода валентных связей

Теория метода валентных связей (ВС) рассматривает образование комплексных ионов как донорно-акцепторное взаимодействие неподеленных электронных пар лиганда и свободных орбиталей комплексообразователя.

Рассмотрим комплексный ион [Co(NH3)6] 3+

Ион-комплексообразователь Co 3+ имеет следующую электронную конфигурацию:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 0 3d 6 4p 0 4d 0

В соответствии с правилом Хунда электроны на внешнем энергетическом уровне располагаются следующим образом:

конфигурация иона кобальта

Комплексообразователь имеет координационное число к.ч. = 6, поэтому может присоединить 6 лигандов, каждый из которых имеет неподеленную электронную пару и является, таким образом, донором электронов. Акцептор (комплексообразователь) для размещения шести электронных пар должен предоставить шесть вакантных орбиталей.

При образовании комплексного иона [Co(NH3)6] 3+ четыре неспаренных электрона в d – состоянии Co 3+ сначала образуют электронные пары, в результате чего две 3d-орбитали освобождаются:

конфигурация кобальта2

Затем образуется сам комплексный ион [Co(NH3)6] 3+ , имеющий следующее строение:

конфигурация комплексного иона кобальта

В образовании этого комплексного иона принимают участие внутренние 3d-орбитали и внешние 4s- и 4p-орбитали. Тип гибридизации — d 2 sp 3 .

Наличие только спаренных электронов говорит о диамагнитных свойствах иона.

Строение комплексных соединений с точки зрения теории кристаллического поля

Теория кристаллического поля основывается на допущении, что связь между комплексообразователем и лигандами частично ионная. Однако принимается во внимание влияние электростатического поля лигандов на энергетическое состояние электронов центрального иона.

Рассмотрим две комплексные соли:

K2[Zn(CN)4] – имеет тетраэдрическую пространственную структуру (sp 3 — гибридизация)

K3[Fe(CN)6] – имеет октаэдрическую пространственную структуру (sp 3 d 2 -гибридизация)

Комплексообразователи имеют следующую электронную конфигурацию:

d – электроны одного и того же энергетического уровня одинаковы в случае свободного атома или иона. Но действие электростатического поля лигандов способствует расщеплению энергетических уровней d – орбиталей в центральном ионе. И расщепление тем больше (при одном и том же комплексообразователе), чем сильнее поле, создаваемое лигандами. По своей способности вызывать расщепление энергетических уровней лиганды располагаются в ряд:

CN — > NO2 — > NH3 > SCN — > H2O > OH — > F — > Cl — > Br — > I —

Строение комплексного иона влияет на характер расщепления энергетических уровней комплексообразователя.

При октаэдрическом строении комплексного иона, dγ-орбитали (dz 2 -, dx 2 -y 2 -орбитали) подвержены сильному взаимодействию поля лигандов, и электроны этих орбиталей могут иметь большую энергию, чем электроны dε-орбитали (dxy, dxz, dyz – орбитали).

Расщепление энергетических уровней для электронов в d-состоянии в октаэдрическом поле лигандов можно представить в виде схемы:

расщепление энергетических уровней d-орбитали (октаэдр)

Здесь Δокт – энергия расщепления в октаэдрическом поле лигандов.

При тетраэдрической структуре комплексного иона dγ-орбитали обладают более низкой энергией, чем dε-орбитали:

расщепление энергетических уровней d-орбитали (тетраэдр)

Здесь Δтетр– энергия расщепления в тетраэдрическом поле лигандов.

Энергию расщепления Δ определяют экспериментально по спектрам поглощения веществом квантов света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения, а также и окраска комплексных соединений d-элементов, обусловлены переходом электронов с d-орбитали низшей энергии на d-орбиталь с более высокой энергией.

Так, в случае соли K3[Fe(CN)6], при поглощении кванта света, вероятен переход электрона с dε-орбитали на dγ-орбиталь. Этим объясняется, что гексацианоферрат(III) калия K3[Fe(CN)6] имеет оранжево-красную окраску. А соль тетрацианоцинкат калия K2[Zn(CN)4] не может поглощать свет и, вследствие этого, она бесцветна. Это объясняется тем, что переход электронов с dγ-орбитали на dε-орбиталь неосуществим.

Строение комплексных соединений с точки зрения теории молекулярных орбиталей

Метод молекулярных орбиталей (МО) был ранее рассмотрен в разделе Химическая связь и строение молекул.

С помощью этого метода изобразим электронную конфигурацию высокоспинового комплексного иона [Ni(NH3)6] 2+ .

Электронная конфигурация иона Ni 2+ :

1s 2 2s 2 2p 6 3s 2 3p 6 4s 0 3d 8 4p 0 4d 0 или …4s 0 3d 8 4p 0 4d 0

конфигурация иона никеля

В комплексном ионе [Ni(NH3)6] 2+ в образовании химической связи принимают участие 8 электронов центрального иона Ni 2+ и 12 электронов шести лигандов NH3.

Комплексный ион имеет октаэдрическое строение. Образование МО возможно только в том случае, когда энергии исходных взаимодействующих частиц близки по своим значениям, а также ориентированы в пространстве соответствующим образом.

В нашем случае, орбиталь 4s иона Ni 2+ равноценно перекрывается с орбиталями каждого из шести лигандов. В результате этого образуются молекулярные орбитали: связывающая σs св и разрыхляющая σs разр .

Перекрывание трех 4p-орбиталей комплексообразователя с орбиталями лигандов приводит к образованию шести σp-орбиталей: связывающих σх св , σy св , σz св и разрыхляющих σх разр , σy разр , σz разр .

Перекрывание dz 2 и dx 2 y 2 комплексообразователя с орбиталями лигандов способствует образованию четырех молекулярных орбиталей: двух связывающих σ св х 2 y 2 , σ св z 2 и двух разрыхляющих σ разр х 2 — y 2 , σ разр z 2 .

Орбитали dxy, dxz, dyz иона Ni 2+ не связываются с орбиталями лигандов, т.к. не направлены к ним. Вследствие этого, они не принимают участия в образовании σ-связи, и являются несвязывающими орбиталями: πxz, πxy, πyz.

Итого, комплексный ион [Ni(NH3)6] 2+ содержит 15 молекулярных орбиталей. Расположение электронов можно изобразить следующим образом:

Схематично образование молекулярных орбиталей изображено на диаграмме ниже:

Цель. Сформировать понятие о составе, классификации, строении и основах номенклатуры комплексных соединений; рассмотреть их химические свойства и показать значение; расширить представления учащихся о многообразии веществ.

Оборудование. Образцы комплексных соединений.

I. Организационный момент.

II. Изучение нового материала (лекция).

III. Подведение итогов и постановка домашнего задания.

План лекции

1. Многообразие веществ.

2. Координационная теория А.Вернера.

3. Строение комплексных соединений.

4. Классификация комплексных соединений.

5. Природа химической связи в комплексных соединениях.

6. Номенклатура комплексных соединений.

7. Химические свойства комплексных соединений.

8. Значение комплексных соединений.

I. Организационный момент

II. Изучение нового материала

Многообразие веществ

Мир веществ многообразен, и мы уже знакомы с группой веществ, которые принадлежат к комплексным соединениям. Данными веществами стали заниматься с XIX в., но понять их строение с позиций существовавших представлений о валентности было трудно.

Координационная теория А.Вернера

В 1893 г. швейцарским химиком-неоргаником Альфредом Вернером (1866–1919) была сформулирована теория, позволившая понять строение и некоторые свойства комплексных соединений и названная координационной теорией*. Поэтому комплексные соединения часто называют координационными соединениями.

Соединения, в состав которых входят сложные ионы, существующие как в кристалле, так и в растворе, называются комплексными, или координационными.

Строение комплексных соединений

Согласно теории Вернера центральное положение в комплексных соединениях занимает, как правило, ион металла, который называют центральным ионом, или комплексообразователем.

Комплексообразователь – частица (атом, ион или молекула), координирующая (располагающая) вокруг себя другие ионы или молекулы.

Комплексообразователь обычно имеет положительный заряд, является d-элементом, проявляет амфотерные свойства, имеет координационное число 4 или 6. Вокруг комплексообразователя располагаются (координируются) молекулы или кислотные остатки – лиганды (адденды).

Лиганды – частицы (молекулы и ионы), координируемые комплексообразователем и имеющие с ним непосредственно химические связи (например, ионы: Cl – , I – , NO3 – , OH – ; нейтральные молекулы: NH3, H2O, CO).

Лиганды не связаны друг с другом, так как между ними действуют силы отталкивания. Когда лигандами являются молекулы, между ними возможно молекулярное взаимодействие. Координация лигандов около комплексообразователя является характерной чертой комплексных соединений (рис. 1).

Рис. 1. Координация цианид-ионов вокруг иона железа

Координационное число – это число химических связей, которые комплексообразователь образует с лигандами.

Рис. 2. Тетраэдрическая структура иона [AlBr4] –

Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температура, концентрация), при которых протекает реакция комплексообразования. Координационное число может иметь значения от 2 до 12. Наиболее распространенными являются координационные числа 4 и 6. Для координационного числа 4 структура комплексных частиц может быть тетраэдрической [AlBr4] – (рис. 2) и в виде плоского квадрата [Pt(NH3)2Cl2] (рис. 3). Комплексные соединения с координационным числом 6 имеют октаэдрическое строение [AlF6] 3– (рис. 4).

Рис. 3. Соединение [Pt(NH3)2Cl2]
со структурой плоского квадрата
Рис. 4. Ион [AlF6]3– октаэдрического строения

Комплексообразователь и окружающие его лиганды составляют внутреннюю сферу комплекса. Частица, состоящая из комплексообразователя и окружающих лигандов, называется комплексным ионом. При изображении комплексных соединений внутреннюю сферу (комплексный ион) ограничивают квадратными скобками. Остальные составляющие комплексного соединения расположены во внешней сфере (рис. 5).

Суммарный заряд ионов внешней сферы должен быть равен по значению и противоположен по знаку заряду комплексного иона:

Рис. 5. Пояснения к изображению формул соединений с комплексным анионом (а)
и комплексным катионом (б)

Заряд комплексного иона легко подсчитать, зная степень окисления составляющих его частей.

Классификация комплексных соединений

Большое многообразие комплексных соединений и их свойств не позволяет создать единую классификацию. Однако можно группировать вещества по некоторым отдельным признакам.

1) По составу.


2) По типу координируемых лигандов.

а) Аквакомплексы – это комплексные катионы, в которых лигандами являются молекулы H2O. Их образуют катионы металлов со степенью окисления +2 и больше, причем способность к образованию аквакомплексов у металлов одной группы периодической системы уменьшается сверху вниз.

б)Гидроксокомплексы – это комплексные анионы, в которых лигандами являются гидроксид-ионы OH – . Комплексообразователями являются металлы, склонные к проявлению амфотерных свойств – Be, Zn, Al, Cr.

в) Аммиакаты – это комплексные катионы, в которых лигандами являются молекулы NH3. Комплексообразователями являются d-элементы.

г) Ацидокомплексы – это комплексные анионы, в которых лигандами являются анионы неорганических и органических кислот.

3) По заряду внутренней сферы.


Природа химической связи в комплексных соединениях

Во внутренней сфере между комплексообразователем и лигандами существуют ковалентные связи, образованные в том числе и по донорно-акцепторному механизму. Для образования таких связей необходимо наличие свободных орбиталей у одних частиц (имеются у комплексообразователя) и неподеленных электронных пар у других частиц (лиганды). Роль донора (поставщика электронов) играет лиганд, а акцептором, принимающим электроны, является комплексообразователь. Донорно-акцепторная связь возникает как результат перекрывания свободных валентных орбиталей комплексообразователя с заполненными орбиталями донора.

Между внешней и внутренней сферой существует ионная связь. Приведем пример.

Электронное строение атома бериллия:


Электронное строение атома бериллия в возбужденном состоянии:


Электронное строение атома бериллия в комплексном ионе [BeF4] 2– :


Пунктирными стрелками показаны электроны фтора; две связи из четырех образованы по донорно-акцепторному механизму. В данном случае атом Be является акцептором, а ионы фтора – донорами, их свободные электронные пары заполняют гибридизованные орбитали (sp 3 -гибридизация).

Номенклатура комплексных соединений

K3[Fe(CN)6] – гексацианоферрат(III) калия,

K2[Zn(OH)4] – тетрагидроксоцинкат калия.

Названия соединений, содержащих комплексный катион, строятся из названий анионов внешней среды, после которых указывается число лигандов, дается латинское название лиганда (молекула аммиака NH3 – аммин, молекула воды H2O – аква от латинского названия воды) и русское название элемента-комплексообразователя; римской цифрой в скобках указывается степень окисления элемента-комплексообразователя, если она переменная. Например:

Химические свойства комплексных соединений

1. В растворе комплексные соединения ведут себя как сильные электролиты, т.е. полностью диссоциируют на катионы и анионы:

Диссоциация по такому типу называется первичной.

Вторичная диссоциация связана с удалением лигандов из внутренней сферы комплексного иона:

Вторичная диссоциация происходит ступенчато: комплексные ионы ([PtCl4] 2– ) являются слабыми электролитами.

2. При действии сильных кислот происходит разрушение гидроксокомплексов, например:

а) при недостатке кислоты

б) при избытке кислоты

3. Нагревание (термолиз) всех аммиакатов приводит к их разложению, например:

Значение комплексных соединений

Координационные соединения имеют исключительно большое значение в природе. Достаточно сказать, что почти все ферменты, многие гормоны, лекарства, биологически активные вещества представляют собой комплексные соединения. Например, гемоглобин крови, благодаря которому осуществляется перенос кислорода от легких к клеткам ткани, является комплексным соединением, содержащим железо (рис. 6), а хлорофилл, ответственный за фотосинтез в растениях, – комплексным соединением магния (рис. 7).

Рис. 6. Гем-группа в молекуле гемоглобина

Значительную часть природных минералов, в том числе полиметаллических руд и силикатов, также составляют координационные соединения. Более того, химические методы извлечения металлов из руд, в частности меди, вольфрама, серебра, алюминия, платины, железа, золота и других, также связаны с образованием легкорастворимых, легкоплавких или летучих комплексов. Например: Na3[AlF6] – криолит, KNa3[AlSiO4]4 – нефелин (минералы, комплексные соединения, содержащие алюминий).

Рис. 7. Хлорофилл c1

Современная химическая отрасль промышленности широко использует координационные соединения как катализаторы при синтезе высокомолекулярных соединений, при химической переработке нефти, в производстве кислот.

III. Подведение итогов и постановка домашнего задания

Домашнее задание.

2) Письменно дать характеристику следующим комплексным соединениям по строению и классифицировать по признакам:

3) Написать уравнения реакций, при помощи которых можно осуществить превращения:


* За открытие этой новой области науки А.Вернер в 1913 г. был удостоен Нобелевской премии.

Комплексный ион состоит из комплексообразователя и лигандов и образует внутреннюю сферу (внутреннюю сферу заключают в квадратные скобки).

Комплексообразователь – это d-элемент, имеющий на внешнем уровне достаточное количество свободных орбиталей (Cu +2 , Ag + , Pt +4 , Fe +2 , Fe +3 , Co +2 , Co +3 , Co +2 )

Лиганды – это ионы и молекулы, имеющие свободные электронные пары (OH - , CN - , Cl - , NH 3 , H 2 O)

Координационное число (КЧ) - это число лигандов в комплексном ионе

Координационное число зависит:

от природы центрального атома;

условий образования комплексов.

Виды комплексов

Соединения с комплексными анионами

K 2 [PtCl 4 ] - тетрахлороплатинат (II) калия

Na 2 [Zn(OH) 4 ] - тетрагидроксоцинкат натрия

Na[Cr(H 2 O) 2 F 4 ] - тетрафтородиаквахромат (III) натрия

Соединения с комплексными катионами

[Ag(NH 3 ) 2 ]Cl – хлорид диамминсеребра

[Al(H 2 O) 5 OH]SO 4 – сульфат гидроксопентаакваалюминия

[Pt(H 2 O)(NH 3 ) 2 OH] NO 3 – нитрат гидроксодиамминакваплатины (II)

Соединения без внешней сферы

[Al (H 2 O) 3 (OH) 3 ] - тригидроксотриакваалюминий

[Pt(NH 3 ) 2 Cl 2 ] – дихлородиамминплатина (II)

[Co(NH 3 ) 3 Cl 3 ] – трихлоротриамминкобальт (III)

Номенклатура

в названиях комплексных ионов сначала указываются лиганды;

название комплексного иона завершается названием металла с указанием его степени окисления (римским цифрами в скобках);

в названиях комплексных катионов используются русские названия металлов;

в названиях комплексных анионов используются латинские названия металлов: Al –алюминат, Cr – хромат, Fe – феррат;

Читайте также: