Уравнение прямой с угловым коэффициентом на плоскости кратко

Обновлено: 08.07.2024

Его называют общим уравнением. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

• C = 0, А ≠0, В ≠ 0 – проходит через начало координат

• А = 0, В ≠0, С ≠0 < By + C = 0>- параллельна оси Ох

• В = 0, А ≠0, С ≠ 0 < Ax + C = 0>– параллельна оси Оу

• В = С = 0, А ≠0 – совпадает с осью Оу

• А = С = 0, В ≠0 – совпадает с осью Ох

Уравнение прямой на плоскости может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой Ах + Ву + С = 0.

Пример 1. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору n(3, -1).

Решение. Составим при А = 3 и В = -1 уравнение: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно, С = -1. Окончательно получим: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой, проходящей через две точки:

уравнение прямой проходящей через две точки

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости, записанное выше, упрощается:

Дробь = k называется угловым коэффициентом .

Пример 2. Найти уравнение прямой, проходящей через две точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой на плоскости Ах + Ву + С = 0 привести к виду:

уравнение с угловым коэффициентом

и обозначить , то получим уравнением прямой с угловым коэффициентом k .

Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение через вектор нормали можно ввести задание прямой через точку и направляющий вектор.

Определение. Каждый ненулевой вектор ( α1 , α2 ), компоненты которого удовлетворяют условию А α1 + В α2 = 0 называется направляющим вектором прямой

Пример 3. Найти уравнение прямой, проходящей через точку А(1, 2) с направляющим вектором (1, -1).

Решение.Будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда получим вид: Ax + Ay + C = 0, или x + y + C / A = 0. при х = 1, у = 2 получаем С/ A = -3, т.е. искомое:

Уравнение прямой в отрезках

Если в общем уравнении Ах + Ву + С = 0 С≠0, то, разделив на –С, получим: или

, где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения с осью Оу.

Пример 4. Задано общее уравнение х – у + 1 = 0. Найти его в виде уравнение прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой

Если уравнение прямой на плоскости Ах + Ву + С = 0 умножить на число , которое называется нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 –

нормальное уравнение. Знак ± нормирующего множителя надо выбирать так, чтобы μ * С 2 .

Решение.Искомое уравнение имеет вид: , ab /2 = 8; ab=16; a=4, a=-4. a = -4

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

Угол наклона прямой к оси О х , расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.

Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π ) .

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Посчитать угловой коэффициент прямой при угле наклона равном 120 ° .

Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = - 3 .

Ответ: k = - 3 .

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k 0 , тогда угол тупой, что дает право определить его по формуле α = π - a r c t g k .

Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .

Ответ: α = a r c t g 3 .

Найти угол наклона прямой к оси О х , если угловой коэффициент = - 1 3 .

Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х . Отсюда k = - 1 3 0 , тогда необходимо применить формулу α = π - a r c t g k При подстановке получим выражение:

α = π - a r c t g - 1 3 = π - a r c t g 1 3 = π - π 6 = 5 π 6 .

Ответ: 5 π 6 .

Уравнение с угловым коэффициентом

Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у .

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М , M 1 ( x 1 , y 1 ) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Задана прямая с угловым коэффициентом y = 1 3 x - 1 . Вычислить, принадлежат ли точки M 1 ( 3 , 0 ) и M 2 ( 2 , - 2 ) заданной прямой.

Необходимо подставить координаты точки M 1 ( 3 , 0 ) в заданное уравнение, тогда получим 0 = 1 3 · 3 - 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M 2 ( 2 , - 2 ) , тогда получим неверное равенство вида - 2 = 1 3 · 2 - 1 ⇔ - 2 = - 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.

Ответ: М 1 принадлежит прямой, а М 2 нет.

Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 ( 0 , b ) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х , где k = t g α .

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x - 1 . Получим, что прямая пройдет через точку с координатой 0 , - 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х . Отсюда видно, что коэффициент равен 3 .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 ( x 1 , y 1 ) .

Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 ( x 1 , y 1 ) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y - y 1 = k · ( x - x 1 ) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 ( x 1 , y 1 ) .

Составьте уравнение прямой, проходящей через точку М 1 с координатами ( 4 , - 1 ) , с угловым коэффициентом равным - 2 .

Решение

По условию имеем, что x 1 = 4 , y 1 = - 1 , k = - 2 . Отсюда уравнение прямой запишется таким образом y - y 1 = k · ( x - x 1 ) ⇔ y - ( - 1 ) = - 2 · ( x - 4 ) ⇔ y = - 2 x + 7 .

Ответ: y = - 2 x + 7 .

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами ( 3 , 5 ) , параллельную прямой y = 2 x - 2 .

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x - 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:

y - y 1 = k · ( x - x 1 ) ⇔ y - 5 = 2 · ( x - 3 ) ⇔ y = 2 x - 1

Ответ: y = 2 x - 1 .

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x - x 1 a x = y - y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y - b = k · x ⇔ k · x k = y - b k ⇔ x 1 = y - b k .

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Привести уравнение прямой с угловым коэффициентом y = - 3 x + 12 к каноническому виду.

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y = - 3 x + 12 ⇔ - 3 x = y - 12 ⇔ - 3 x - 3 = y - 12 - 3 ⇔ x 1 = y - 12 - 3

Ответ: x 1 = y - 12 - 3 .

Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x - y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.

Дано уравнение прямой вида y = 1 7 x - 2 . Выяснить, является ли вектор с координатами a → = ( - 1 , 7 ) нормальным вектором прямой?

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y = 1 7 x - 2 ⇔ 1 7 x - y - 2 = 0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , - 1 , отсюда 1 7 x - y - 2 = 0 . Понятно, что вектор a → = ( - 1 , 7 ) коллинеарен вектору n → = 1 7 , - 1 , так как имеем справедливое соотношение a → = - 7 · n → . Отсюда следует, что исходный вектор a → = - 1 , 7 - нормальный вектор прямой 1 7 x - y - 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x - 2 .

Ответ: Является

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ - A B · x - C B .

Результат и является уравннием с угловым коэффициентом, который равняется - A B .

Задано уравнение прямой вида 2 3 x - 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

2 3 x - 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .

Ответ: y = 1 6 x + 1 4 .

Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x - x 1 a x = y - y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

x a + y b = 1 ⇔ y b = 1 - x a ⇔ y = - b a · x + b .

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x - x 1 a x = y - y 1 a y ⇔ a y · ( x - x 1 ) = a x · ( y - y 1 ) ⇔ ⇔ a x · y = a y · x - a y · x 1 + a x · y 1 ⇔ y = a y a x · x - a y a x · x 1 + y 1

Имеется прямая, заданная уравнением x 2 + y - 3 = 1 . Привести к виду уравнения с угловым коэффициентом.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на - 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y - 3 = 1 - x 2 ⇔ - 3 · y - 3 = - 3 · 1 - x 2 ⇔ y = 3 2 x - 3 .

Ответ: y = 3 2 x - 3 .

Уравнение прямой вида x - 2 2 = y + 1 5 привести к виду с угловым коэффициентом.

Необходимо выражение x - 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · ( x - 2 ) = 2 · ( y + 1 ) . Теперь необходимо полностью его разрешить, для этого:

5 · ( x - 2 ) = 2 · ( y + 1 ) ⇔ 5 x - 10 = 2 y + 2 ⇔ 2 y = 5 x - 12 ⇔ y = 5 2 x

Ответ: y = 5 2 x - 6 .

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = - 1 + 2 · λ .

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x = λ y = - 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .

Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x 1 = y + 1 2 ⇔ 2 · x = 1 · ( y + 1 ) ⇔ y = 2 x - 1

Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .

Определение. Угловым коэффициентом прямой называется тангенс угла наклона этой прямой к оси ОХ.

Угловой коэффициент обозначается через k.

Итак, угловой коэффициент обозначается .

Если j- острый угол, то k>0, если j- тупой угол, то k

Очевидно, что векторы и перпендикулярны: .

Условие перпендикулярности двух векторов – это равенство нулю их скалярного произведения:

Итак, получаем уравнение (5)

Уравнение (5) можно записать в виде Ax+By+C=0,

Таким образом, коэффициенты А и В в общем уравнении прямой являются координатами вектора, перпендикулярного к этой прямой. Вектор называется нормальным вектором прямой.

Пример. Написать уравнение прямой, проходящей через точку , перпендикулярно вектору .

Решение. Используем уравнение (5) 3(x+2)+4(y-3)=0

6. Уравнение прямой в отрезках на осях.


Пусть требуется написать уравнение прямой, отсекающей на координатных осях ОХ и ОУ отрезки величин a и b соответственно.

Заданная прямая проходит через две точки A(a,0) и B(0,b). Используем уравнение прямой, проходящей через две точки:

Окончательно, получаем (6)

Пример. Дана прямая 2x-3y-6=0. Привести это уравнение к уравнению в отрезках на осях.

Чтобы получить отрезок a, отсекаемый на оси ОХ, нужно положить в данном уравнении y=0; чтобы получить отрезок b – х=0.

y=0; 2x-6=0; 2x=6; x=3; т.е. a=3

x=0; -3y-6=0; -3y=6; y=-2; т.е. b=-2

Искомое уравнение примет вид:

7. Нормальное уравнение прямой.


Пусть известно расстояние р от прямой до начала координат , и угол α, образуемый перпендикуляром к прямой и положительным направлением оси ОХ. Требуется написать уравнение прямой.

Пусть - произвольная точка прямой, - единичный нормальный вектор прямой.

Найдем скалярное произведение .

По определению скалярного произведения:




где - угол между векторами .

Следовательно, мы получим

Итак, мы получаем уравнение или, окончательно,

Прямая линия на плоскости.

Различные уравнения прямой на плоскости.

Определение. Уравнение прямой – это уравнение, связывающее координаты



x и y любой точки, лежащей на прямой.

Уравнение прямой с угловым коэффициентом.

Определение. Угловым коэффициентом прямой называется тангенс угла наклона этой прямой к оси ОХ.

Прямая – это одна из простейших геометрических фигур. Она бесконечна:

и обозначается маленькими латинскими буквами , как вариант,
с подстрочным индексом, например, . Также прямую можно обозначить двумя различными точками, которые ей принадлежат, например, .


Угловой коэффициент прямой равен тангенсу угла (см. Приложение Тригонометрия) между положительным направлением оси и данной прямой: . Чтобы не загромождать чертёж, я нарисовал углы только для двух прямых:

Таким образом, угловой коэффициент характеризует степень наклона прямой к оси абсцисс. При этом возможны следующие случаи:

Чем больше угловой коэффициент по модулю, тем круче идёт график прямой.

Рассмотрим прямые и . Здесь , поэтому прямая имеет более крутой наклон. Напоминаю, что модуль позволяет не учитывать знак, нас интересуют только абсолютные значения угловых коэффициентов.
В свою очередь, прямая более крутА, чем прямые .

Обратно: чем меньше угловой коэффициент по модулю, тем прямая является более пологой. Так, для прямых справедливо неравенство , таким образом, прямая более пологая.

Сомневался, напоминать ли, но на всякий пожарный: как построить прямую, если известно её уравнение?

Ах да, чуть не забыл: прямая вида называется прямой пропорциональностью. Она проходит через начало координат, и для её построения достаточно найти одну точку. На чертеже выше изображены две таких прямых + ось .

Как составить уравнение прямой с угловым коэффициентом?

Если известна точка , принадлежащая некоторой прямой, и угловой коэффициент этой прямой, то уравнение данной прямой выражается формулой:

Задача 59

Составить уравнение прямой с угловым коэффициентом , если известно, что точка принадлежит данной прямой.

Решение: уравнение составим по формуле . В данном случае:

Ответ:

Проверка выполняется элементарно. Во-первых, смотрим на полученное уравнение и убеждаемся, что наш угловой коэффициент на своём месте. Во-вторых, координаты точки должны удовлетворять данному уравнению. Подставим их в уравнение:

– получено верное равенство, значит, точка удовлетворяет полученному уравнению.

Вывод: уравнение найдено правильно.

Более хитрая задачка для самостоятельного решения:

Задача 60

Составить уравнение прямой, если известна её точка , а угол наклона к положительному направлению оси составляет .

Прямая проходящая через две точки

Прямая (прямая линия) - это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k - угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

Параметрическое уравнение прямой на плоскости

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) - координаты точки лежащей на прямой, a = < l , m >- координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x - 1 2 - 1 = y - 7 3 - 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y - N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом


x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) - координаты точки лежащей на прямой, - координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Читайте также: