Типы почек у животных кратко

Обновлено: 05.07.2024

Нефрогенез - эмбрилогия развития почек

В процессе развития почки происходит онтогенетическая рекапитуляция трех органов: предпочки (пронефроса), первичной почки (мезонефроса) и окончательной почки (метанефроса). Первые две существуют очень недолго, однако необходимы для формирования окончательной почки. До недавнего времени наши знания о морфогенезе почек большей частью ограничивались только описаниями, пусть и изящными, анатомии развития эмбриона. Достижения молекулярной биологии проливают свет на сложные механизмы, лежащие в основе структурного (и функционального) развития почки.

Почка развивается из промежуточной мезодермы. У человека на третьей неделе внутриутробного развития закладывается предпочка — рудиментарный и, по имеющимся данным, нефункционирующий орган, претерпевающий обратное развитие между четвертой и пятой неделями. Предпочка возникает в головном конце эмбриона между вторым и шестым сомитами. Она состоит из пяти—семи везикул, переходящих в канальцы, которые открываются в проток предпочки — предшественник вольфова протока.

Из вольфова протока развивается мочеточниковый вырост, необходимый для образования окончательной почки. Если предпочка не развилась, это приведет к агенезии почки, а в некоторых случаях также надпочечника и легкого на той же стороне тела. Второй временной почкой у человека и других высших позвоночных является первичная почка, которая закладывается между третьей и четвертой неделями внутриутробного развития. В ней развиваются структуры, сходные с клубочками; это первая функциональная единица почки человеческого эмбриона. Между пятой и двенадцатой неделями канальцы первичной почки (около 40) открываются в вольфов проток.

Затем первичная почка подвергается дегенерации от головного конца эмбриона к ножному; из вольфова протока у мальчиков образуются придаток яичка и семявыносящий проток, а из канальцев первичной почки — выносящие канальцы яичка. У девочек вольфов проток частично подвергается обратному развитию, однако сохраняются рудиментарные структуры, такие как придаток яичника, околояичник и гартнеров канал. Вольфов проток у девочек необходим для развития мюллеровых протоков; если первичная почка не развилась нормально, наблюдаются агенезия почки и мочеточника на той же стороне тела, агенезия маточной трубы, а также контралатерально расположенная однорогая матка и атрезия влагалища.

Примерно на пятой неделе внутриутробного развития у млекопитающих закладывается окончательная почка. Ее развитие начинается с того, что мочеточниковый вырост (отросток каудальной части вольфова протока) и клетки мезенхимы метанефрогенной ткани взаимодействуют, индуцируя друг друга. У человеческого эмбриона мочеточниковый вырост дорсально внедряется в каудальную часть метанефрогенной ткани и вместе с ней перемещается в направлении головного конца эмбриона.

Смещение метанефрогенной ткани вверх из тазового положения в окончательное поясничное завершается между восьмой и девятой неделями внутриутробного развития. Перемещаясь вверх, почка, кроме того, разворачивается на 90°, так что почечные ворота занимают окончательное срединное положение. Что управляет смещением почки вверх и ее поворотом, пока не известно. Из мочеточникового выроста образуются чашечно-лоханочная система и мочеточники, и его рост и ветвление определяют сложную трехмерную структуру почки. Специфическая индукция метанефрогенной ткани ампулой мочеточникового выроста ведет к образованию нефронов, или нефрогенезу.

Нефрогенез — это сложный процесс дифференцировки и направленного роста клеток разных типов, приводящий к образованию нефронов. Под воздействием мочеточникового выроста клетки мезенхимы дифференцируются в клетки канальцевого и клубочкового эпителия. В свою очередь, индуцированная мезенхима стимулирует рост мочеточника вглубь метанефрогенной ткани и его ветвление. Вокруг кончика каждой ветви тесно группируются клетки мезенхимы — процесс, называемый конденсацией. После конденсации группа примерно из 100 клеток образует везикулу, которая развивается в клубочек, имеющий сначала форму запятой, а затем S-образную.

В ходе нефрогенеза из мезенхимы метанефрогенной ткани образуются клубочки, проксимальные канальцы, петли Генле и фибробласты интерстиция, а ветви мочеточникового выроста дают начало эпителию собирательных трубочек. У человеческого эмбриона образование клубочков завершается к 35-й неделе внутриутробного развития. После рождения новые нефроны уже не образуются. Однако каждый каналец продолжает созревать в течение еще нескольких месяцев — петля Генле удлиняется в направлении мозгового вещества почки, а проксимальный каналец делается более извитым.

Нефрогенез

А, Б. Взаимодействие эпителия ветвящегося мочеточникового выроста с рыхлой мезенхимой метанефрогенной ткани приводит к конденсации мезенхимы. Цифрами на Б обозначены: 1 — эпителий мочеточникового выроста; 2 — кровеносные сосуды; 3 — недифференцированная мезенхима; 4 — конденсированная мезенхима, дифференцирующаяся в клетки эпителия.

В, Г. Примитивный клубочковый эпителий сворачивается сначала в структуру, имеющую форму запятой, а затем в S-образную. Д, Е. Проксимальные и дистальные канальцы удлиняются; одновременно формируется структура подоцитов, кровеносные сосуды образуют все больше петель внутри капсулы клубочка, и в конечном счете образуется зрелая сеть клубочковых капилляров. Сосуды клубочков, как полагают, начинают образовываться на ранних стадиях формирования клубочков (В, Г).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Рис. 1. Строение почек:
А — множественная почка дельфина,
Б — схема её строения;
В — бороздчатая многососочковая почка коровы,
Г — схема её строения;
Д — гладкая многососочковая почка свиньи,
Е — схема её строения;
Ж — гладкая однососочковая почка собаки,
З — схема её строения;
И — гладкая однососочковая почка лошади;
1 — почечка;
1' — почечная доля;
2 — корковое вещество;
3 — пограничная зона;
4 — мозговое вещество;
5 — почечный сосочек;
6 — почечная чашечка;
7 — стебелёк мочеточника;
8 — мочеточник;
9 — бороздка почки;
10 — ходы мочеточника;
11 — почечная лоханка;
12 — почечная колонка;
13 — почечная пирамида;
14 — почечный концевой рецессус;
15 — дуговые сосуды;
16 — почечная капсула;
17 — почечный синус;
18 — почечная артерия;
19 — почечная вена.

по́чки (Renes), парные паренхиматозные органы мочевыделительной системы, расположенные в поясничном отделе брюшной полости экстраперитонеально, справа и слева от позвоночного столба.

Анатомия. П. развиваются из мезодермы. В зависимости от полноты слияния долей различают П. гладкие однососочковые (лошадь, мелкие жвачные, кошка и кролик), гладкие многососочковые (свинья, человек) и бороздчатые многососочковые (крупный рогатый скот). Имеются и множественные П. (медведь, китообразные), состоящие из маленьких почечек (рис. 1). П. — орган плотной консистенции, красно-бурого цвета, чаще бобовидной формы. В П. имеется внутрипочечное углубление — почечный синус, который заполнен почечной лоханкой, окружающей её жировой тканью и крупными сосудами. Почечный синус открывается наружу через почечные ворота, или хилус, через который, кроме мочеточника, в П. проходят кровеносные сосуды (почечные артерии и вены) и нервы. П. покрыты фиброзной капсулой, которая, в свою очередь, окружена жировой, а с вентральной стороны, кроме того, — брюшиной. В почечной ткани различают тёмно-красную периферическую зону — корковое вещество, или кору, и более светлую, с радиальной исчерченностью центральную зону — мозговое вещество, или медуллу. Кора отделяется от медуллы тёмноокрашенной полоской. Вокруг основания каждого почечного сосочка прикрепляется почечная чашечка, соединённая с почечной лоханкой посредством короткой трубочки. У крупного рогатого скота почечные чашечки открываются непосредственно в разветвлённое начало мочеточника. У лошади почечную лоханку заменяют 2 длинных концевых рецессуса.

Физиология. П. участвуют в поддержании постоянства концентрации осмотически активных веществ, ионного состава, кислотно-щелочного равновесия и объёма жидкостей организма, экскреции продуктов азотистого обмена, чужеродных веществ (см. Мочеобразование), принимают участие в регуляции уровня артериального давления, эритропоэза, секреции альдостерона, продуцируют простагландины.

Исследование. П. животных мало доступны клиническим методам исследования. У мелких животных можно проводить наружную пальпацию, рентгеноскопию и рентгенографию П., у крупных — пальпацию через прямую кишку. Пальпацией можно установить чувствительность, форму, объём, консистенцию и подвижность П. Ценные данные для диагностики болезней П. дают анализ мочи и функциональные пробы.

Патология. Из патологических изменений в П. наиболее часто встречаются разные формы белковых дистрофий (зернистая, вакуольная, гиалиновая и др.) в результате интоксикаций и инфекции. Жировая дистрофия проявляется в виде инфильтративного и дегенеративного ожирения эпителия мочевых трубочек. Углеводная дистрофия сопровождается отложением гликогена в эпителии извитых трубочек. Нарушение минерального обмена проявляется в дистрофическом обызвествлении клубочков и базальных мембран извитых трубочек. К патологическим изменениям в П. относятся также пороки их развития, атрофия, некроз, компенсаторная гипертрофия и различные виды опухолей. Патологические процессы в П. делят на нефрит, нефроз и нефросклероз.

Литература:
Боль К. Г., Боль Б. К., Основы патологической анатомии сельскохозяйственных животных, 3 изд., М., 1961;
Клиническая диагностика внутренних болезней сельскохозяйственных животных, 3 изд., М., 1971;
Физиология почки, Л., 1972;
Акаевский А, И., Анатомия домашних животных, 3 изд., М., 1975.

Рис. 2. Структурные элементы почки (А), отделы нефрона и собирательной трубочки (Б), схема кровообращения (В).

Рис. 2. Структурные элементы почки (А), отделы нефрона и собирательной трубочки (Б), схема кровообращения (В).

Ветеринарный энциклопедический словарь. — М.: "Советская Энциклопедия" . Главный редактор В.П. Шишков . 1981 .

ПО́ЧКИ, пар­ный ор­ган вы­де­ли­тель­ной сис­те­мы по­зво­ноч­ных. В хо­де ис­то­ри­че­ско­го раз­ви­тия по­зво­ноч­ных и в пе­ри­од эм­брио­наль­но­го раз­ви­тия выс­ших по­зво­ноч­ных – пре­смы­каю­щих­ся, птиц, мле­ко­пи­таю­щих, по­сле­до­ва­тель­но сме­ня­ют­ся три ти­па П. – про­неф­рос , ме­зо­неф­рос и ме­та­неф­рос . Про­неф­рос (го­лов­ная поч­ка), име­ет сег­мен­тар­ное строе­ние, рас­по­ла­га­ет­ся вдоль все­го ту­ло­ви­ща и функ­цио­ни­ру­ет в эм­брио­наль­ном и ли­чи­ноч­ном пе­рио­дах. Ис­клю­че­ние со­став­ля­ют мик­си­ны ро­да Bdellostoma , у ко­то­рых он за­дей­ст­во­ван в те­че­ние всей жиз­ни, и ми­но­ги, где он час­тич­но за­ме­ща­ет­ся ме­зо­неф­ро­сом; у не­ко­то­рых ви­дов рыб в той или иной сте­пе­ни он вы­пол­ня­ет функ­цию вы­де­ле­ния и у взрос­лых осо­бей. У взрос­лых рыб и зем­но­вод­ных раз­ви­ва­ет­ся ме­зо­неф­рос (ту­ло­вищ­ная поч­ка), у пре­смы­каю­щих­ся, птиц и мле­ко­пи­таю­щих (в т. ч. че­ло­ве­ка) – ме­та­неф­рос (та­зо­вая поч­ка). Мас­са П. обыч­но со­став­ля­ет 0,45–0,7% мас­сы те­ла. У круг­ло­ро­тых и рыб фор­ма П. лен­то­вид­ная, у зем­но­вод­ных она бо­лее ком­пакт­ная, у пре­смы­каю­щих­ся и птиц ка­ж­дая из П. со­сто­ит из не­сколь­ких свя­зан­ных друг с дру­гом час­тей, или до­лей; у боль­шин­ст­ва мле­ко­пи­таю­щих П. бо­бо­вид­ные. Сна­ру­жи П. по­кры­ты кап­су­лой из со­еди­нит. тка­ни и се­роз­ной обо­лоч­кой. От кап­су­лы внутрь ор­га­на от­хо­дят про­слой­ки рых­лой во­лок­ни­стой не­оформ­лен­ной со­еди­нит. тка­ни, в ко­то­рых на­хо­дят­ся круп­ные кро­ве­нос­ные со­су­ды и нер­вы. Осн. струк­тур­но-функ­цио­наль­ной еди­ни­цей П. яв­ля­ют­ся неф­ро­ны . У выс­ших по­зво­ноч­ных в П. (или в их доль­ках) яс­но про­сле­жи­ва­ет­ся де­ле­ние на две зо­ны – кор­ко­вое ве­ще­ст­во и моз­го­вое ве­ще­ст­во. Кор­ко­вое ве­ще­ст­во рас­по­ла­га­ет­ся под кап­су­лой и об­ра­зо­ва­но гл. обр. клу­боч­ка­ми и ка­наль­ца­ми неф­ро­нов, кро­ве­нос­ны­ми со­су­да­ми и со­еди­нит. тка­нью; в про­цес­се ин­ди­ви­ду­аль­но­го раз­ви­тия этот слой уве­ли­чи­ва­ет­ся и про­ни­ка­ет в моз­го­вое ве­ще­ст­во (т. н. по­чеч­ные стол­бы). В моз­го­вом ве­ще­ст­ве вы­де­ля­ют­ся по­чеч­ные пи­ра­ми­ды – струк­ту­ры, ко­то­рые име­ют ши­ро­кое ос­но­ва­ние, при­мы­каю­щее к кор­ко­во­му ве­ще­ст­ву, и за­круг­лён­ную уз­кую вер­хуш­ку, об­ра­щён­ную к мо­че­точ­ни­ку. Пи­ра­ми­ды об­ра­зо­ва­ны в осн. из пе­тель Ген­ле неф­ро­нов и ниж­них от­де­лов сис­те­мы со­би­ра­тель­ных тру­бо­чек. Круп­ные со­би­ра­тель­ные тру­боч­ки на вер­хуш­ке пи­ра­ми­ды от­кры­ва­ют­ся не­по­сред­ст­вен­но в мо­че­точ­ни­ки ли­бо в сис­те­му рас­ши­ре­ний. В про­цес­се раз­ви­тия П. моз­го­вое ве­ще­ст­во по­сте­пен­но врас­та­ет тон­ки­ми тя­жа­ми (т. н. моз­го­вы­ми лу­ча­ми) в кор­ко­вое ве­ще­ст­во. Кро­во­снаб­же­ние осу­ще­ст­в­ля­ет­ся по по­чеч­ной ар­те­рии и у боль­шин­ст­ва по­зво­ноч­ных (кро­ме пре­сно­вод­ных рыб и мле­ко­пи­таю­щих) по ре­но­пор­таль­ной ве­не, что обес­пе­чи­ва­ет воз­мож­ность осу­ще­ст­в­лять бы­ст­рую экс­кре­цию про­дук­тов об­ме­на у жи­вот­ных с от­но­си­тель­но не­вы­со­ким уров­нем ми­нут­но­го объ­ё­ма серд­ца и ар­те­ри­аль­но­го кро­во­снаб­же­ния. Внут­ри П. фор­ми­ру­ет­ся об­шир­ная ка­пил­ляр­ная сеть. От ор­га­на вся кровь от­те­ка­ет по по­чеч­ной ве­не. Ин­нер­ва­ция обес­пе­чи­ва­ет­ся сим­па­тич. во­лок­на­ми от сол­неч­но­го спле­те­ния (са­мо­го круп­но­го спле­те­ния сим­па­тич. нерв­ной сис­те­мы) и па­ра­сим­па­тич. во­лок­на­ми от блу­ж­даю­ще­го нер­ва.

ПОЧКИ, главный выделительный (выводящий конечные продукты метаболизма) орган позвоночных. У беспозвоночных, например у улитки, тоже есть органы, выполняющие сходную выделительную функцию и иногда называемые почками, но они отличаются от почек позвоночных по строению и эволюционному происхождению.

Функция.

Главная функция почек – выведение воды и конечных продуктов обмена веществ из организма. У млекопитающих важнейшим из таких продуктов является мочевина – основной конечный азотсодержащий продукт распада белков (белкового метаболизма). У птиц и рептилий основной конечный продукт белкового обмена – мочевая кислота, нерастворимое вещество, имеющее вид белой массы в экскрементах. У человека мочевая кислота тоже образуется и выводится почками (ее соли называются уратами).

Почки человека выделяют около 1–1,5 л мочи в сутки, хотя эта величина может сильно варьировать. На увеличение потребления воды почки отвечают увеличением продукции более разбавленной мочи, тем самым поддерживая нормальное содержание воды в организме. Если потребление воды ограничено, почки способствуют сохранению ее в организме, используя для образования мочи как можно меньше воды. Объем мочи может уменьшиться до 300 мл в день, а концентрация выводимых продуктов будет соответственно выше. Объем мочи регулируется антидиуретическим гормоном (АДГ), называемым также вазопрессином. Этот гормон секретируется задней доли гипофиза (железы, расположенной в основании мозга). Если организму необходимо сохранить воду, секреция АДГ возрастает и объем мочи уменьшается. Наоборот, при избытке воды в организме АДГ не выделяется и суточный объем мочи может достигнуть 20 л. Выведение мочи, однако, не превышает 1 л в час.

Строение.

Млекопитающие имеют две почки, расположенные в брюшной полости по обеим сторонам позвоночника. Общий вес двух почек у человека составляет около 300 г, или 0,5–1% веса тела. Несмотря на малые размеры, почки имеют обильное кровоснабжение. В течение 1 мин около 1 л крови проходит через почечную артерию и выходит обратно через почечную вену. Таким образом за 5 мин через почки для удаления продуктов обмена веществ проходит объем крови, равный общему количеству крови в организме (около 5 л).

Почка покрыта соединительнотканной капсулой и серозной оболочкой. На продольном разрезе почки видно, что она подразделяется на две части, получившие название коркового и мозгового вещества. Бóльшая часть вещества почки состоит из огромного количества тончайших извитых трубочек, называемых нефронами. В каждой почке содержится более 1 млн. нефронов. Общая их длина в обеих почках равна примерно 120 км. Почки ответственны за образование жидкости, которая в конечном итоге становится мочой. Структура нефрона – ключ к пониманию его функции. На одном конце каждого нефрона имеется расширение – круглое образование, называемое мальпигиевым тельцем. Оно состоит из двуслойной, т.н. боуменовой капсулы, которая охватывает сеть капилляров, образующих клубочек. Остальная часть нефрона делится на три части. Скрученная часть, ближайшая к клубочку, – проксимальный извитой каналец. Дальше – тонкостенный прямой участок, который, круто разворачиваясь, образует петлю, т.н. петлю Генле; в ней различают (последовательно): нисходящий участок, изгиб, восходящий участок. Скрученная третья часть – дистальный извитой каналец, впадающий вместе с другими дистальными канальцами в собирательную трубочку. Из собирательных трубочек моча попадает в почечную лоханку (фактически – расширенный конец мочеточника) и далее по мочеточнику в мочевой пузырь. Из мочевого пузыря по мочеиспускательному каналу моча через определенные промежутки времени выводится наружу. Корковое вещество содержит все клубочки и все извитые части проксимальных и дистальных канальцев. В мозговом веществе лежат петли Генле и располагающиеся между ними собирательные трубочки.

Образование мочи.

В почечном клубочке вода и растворенные в ней вещества под действием артериального давления выходят из крови через стенки капилляров. Поры капилляров настолько малы, что задерживают кровяные клетки и белки. Следовательно, клубочек работает как фильтр, пропускающий жидкость без белков, но со всеми растворенными в ней веществами. Эта жидкость называется ультрафильтратом, клубочковым фильтратом, или первичной мочой; она подвергается обработке, проходя через остальные части нефрона.

В человеческой почке объем ультрафильтрата составляет около 130 мл в минуту или 8 л в час. Поскольку общий объем крови у человека равен приблизительно 5 литрам, очевидно, что большая часть ультрафильтрата должна всосаться обратно в кровь. Если предположить, что в организме образуется 1 мл мочи в минуту, то оставшиеся 129 мл (больше 99%) воды из ультрафильтрата необходимо вернуть в кровоток, пока они не стали мочой и не выведены из организма.

Ультрафильтрат содержит много ценных веществ (соли, глюкозу, аминокислоты, витамины и проч.), которые организм не может терять в значительных количествах. Большинство из них подвергается обратному всасыванию (реабсорбции) по мере того, как фильтрат проходит по проксимальным канальцам нефрона. Глюкоза, например, реабсорбируется до тех пор, пока полностью не исчезнет из фильтрата, т.е. пока ее концентрация не приблизится к нулю. Поскольку перенос глюкозы обратно в кровь, где ее концентрация выше, идет против градиента концентрации, процесс требует дополнительной энергии и называется активным транспортом.

Следующий сегмент, петля Генле, отвечает за создание очень высоких концентраций солей и мочевины в фильтрате. В восходящем отделе петли происходит активный транспорт растворенных веществ, в первую очередь солей, в окружающую тканевую жидкость мозгового вещества, где в результате создается высокая концентрация солей; благодаря этому из нисходящего колена петли (проницаемого для воды) часть воды отсасывается и сразу поступает в капилляры, тогда как соли постепенно диффундируют в него, достигая наибольшей концентрации в изгибе петли. Этот механизм называется противоточным концентрирующим механизмом. Затем фильтрат поступает в дистальные канальцы, где за счет активного транспорта в него могут перейти и другие вещества.

Наконец, фильтрат попадает в собирательные трубочки. Здесь определяется, какое количество жидкости будет дополнительно выведено из фильтрата, а стало быть, и каков будет окончательный объем мочи, т.е. объем конечной, или вторичной, мочи. Данный этап регулируется наличием или отсутствием АДГ в крови. Собирательные трубочки находятся между многочисленными петлями Генле и идут параллельно им. Под действием АДГ их стенки становятся проницаемыми для воды. Поскольку концентрация солей в петле Генле очень высока, а вода имеет тенденцию следовать за солями, она фактически вытягивается из собирательных трубочек, оставляя раствор с высокой концентрацией солей, мочевины и других растворенных веществ. Этот раствор и есть конечная моча. Если АДГ в крови отсутствует, то собирательные трубочки остаются малопроницаемыми для воды, вода из них не выходит, объем мочи остается большим и она оказывается разведенной.

Почки животных.

Способность концентрировать мочу особенно важна для животных, у которых затруднен доступ к питьевой воде. Кенгуровая крыса, например, живущая в пустыне на юго-западе США, выделяет мочу в 4 раза более концентрированную, чем у человека. Значит, кенгуровая крыса способна выводить шлаки в очень высокой концентрации, используя минимальное количество воды.

Для морских животных отсутствие пресной воды тоже составляет проблему, которая решается по-разному. Если люди, потерпев кораблекрушение и не имея запасов пресной воды, начинают пить морскую воду, они лишь ускоряют свою гибель, так как их почки не могут вывести такое количество солей. Тюлени и киты, которым пресная вода для питья недоступна, имеют очень мощные по своей концентрирующей способности почки, которые выводят избыток солей, получаемых с морской водой. Возможно также, этим животным просто достаточно воды, получаемой с пищей.

Почки морских птиц (чаек, пингвинов, альбатросов и др.) способны концентрировать мочу еще меньше, чем почки человека. Однако эти птицы могут пить морскую воду, так как у них имеются т.н. солевые железы (расположенные на голове), которые выводят избыток соли, в основном хлорид натрия, в виде высококонцентрированного раствора, оставляя достаточно воды на другие физиологические нужды.

Несколько видов рептилий – морские черепахи, морские змеи и галапагосская морская игуана – также живут в морской воде. Их почки не могут выделять мочу, более концентрированную, чем плазма крови. Однако, как и морские птицы, они используют солевые железы.

Основные заболевания почек.

Почечные камни – это отложения солей в почках, образующиеся при высокой концентрации солей в моче или повышении кислотности мочи, т.е. в условиях, способствующих кристаллизации солей. Основные типы камней – оксалаты, фосфаты либо ураты. Мелкие камни (песок) выходят через мочеточники, почти не причиняя вреда. Более крупные могут застревать в мочеточниках, что сопровождается мучительными болями (почечными коликами). Еще более крупные камни остаются в лоханках, вызывая боль, инфицирование и нарушение функции почек. Потребление большого количества воды снижает вероятность образования камней.

Почечные камни удаляют хирургическим путем или методом литотрипсии (применением ультразвуковых волн для раздробления камней на мелкие фрагменты, которые могут быть выведены через мочеточники). Этот метод не наносит ущерба мягким тканям почек.

Почечная недостаточность и гемодиализ.

Множество причин, например почечная инфекция или деструктивный процесс при заболеваниях типа сахарного диабета, может привести к нарушениям функции почек вплоть до почечной недостаточности. При хронической почечной недостаточности происходит нарушение кислотно-щелочного равновесия и накопление азотистых шлаков в крови, в первую очередь мочевины.

Страдающих хронической почечной недостаточностью удается лечить с помощью пересадки почки – сложного хирургического вмешательства, для которого необходимо иметь в распоряжении подходящий донорский материал. После операции проводится длительная иммунодепрессивная терапия, снижающая вероятность отторжения трансплантанта (см. ПЕРЕСАДКА ОРГАНОВ).

Однако чаще больных с почечной недостаточностью поддерживают с помощью гемодиализа (искусственной почки). Его принцип заключается в том, что кровь из артерии (обычно из предплечья) проходит через аппарат искусственной почки и возвращается в вену больного. В приборе кровь протекает через микроскопические канальцы, окруженные тонкой пластиковой мембраной. С другой стороны мембраны находится диализная жидкость. Если бы вместо диализной жидкости канальцы окружала вода, то все растворенные в крови вещества – соли, сахар и другие – вымывались бы из плазмы крови, т.е. выходили бы через мембрану в воду. Чтобы избежать этого, в качестве диализной жидкости берут раствор, содержащий те же компоненты и в тех же концентрациях, что и плазма крови, однако вещества, подлежащие удалению из плазмы (например, мочевина), в диализной жидкости отсутствуют. Во время гемодиализа эти вещества выходят из плазмы, так что в вену больного возвращается очищенная кровь. Гемодиализ можно проводить годами. Регулярно посещая диализный центр, пациенты продолжают вести нормальную жизнь. См. также НЕФРИТ; УРЕМИЯ.

Анатомия человека, под ред. Михайлова С.С. М., 1973
Хэм А., Кормак Д. Гистология, т. 5. М., 1985

Нефрогенез - эмбрилогия развития почек

В процессе развития почки происходит онтогенетическая рекапитуляция трех органов: предпочки (пронефроса), первичной почки (мезонефроса) и окончательной почки (метанефроса). Первые две существуют очень недолго, однако необходимы для формирования окончательной почки. До недавнего времени наши знания о морфогенезе почек большей частью ограничивались только описаниями, пусть и изящными, анатомии развития эмбриона. Достижения молекулярной биологии проливают свет на сложные механизмы, лежащие в основе структурного (и функционального) развития почки.

Почка развивается из промежуточной мезодермы. У человека на третьей неделе внутриутробного развития закладывается предпочка — рудиментарный и, по имеющимся данным, нефункционирующий орган, претерпевающий обратное развитие между четвертой и пятой неделями. Предпочка возникает в головном конце эмбриона между вторым и шестым сомитами. Она состоит из пяти—семи везикул, переходящих в канальцы, которые открываются в проток предпочки — предшественник вольфова протока.

Из вольфова протока развивается мочеточниковый вырост, необходимый для образования окончательной почки. Если предпочка не развилась, это приведет к агенезии почки, а в некоторых случаях также надпочечника и легкого на той же стороне тела. Второй временной почкой у человека и других высших позвоночных является первичная почка, которая закладывается между третьей и четвертой неделями внутриутробного развития. В ней развиваются структуры, сходные с клубочками; это первая функциональная единица почки человеческого эмбриона. Между пятой и двенадцатой неделями канальцы первичной почки (около 40) открываются в вольфов проток.

Затем первичная почка подвергается дегенерации от головного конца эмбриона к ножному; из вольфова протока у мальчиков образуются придаток яичка и семявыносящий проток, а из канальцев первичной почки — выносящие канальцы яичка. У девочек вольфов проток частично подвергается обратному развитию, однако сохраняются рудиментарные структуры, такие как придаток яичника, околояичник и гартнеров канал. Вольфов проток у девочек необходим для развития мюллеровых протоков; если первичная почка не развилась нормально, наблюдаются агенезия почки и мочеточника на той же стороне тела, агенезия маточной трубы, а также контралатерально расположенная однорогая матка и атрезия влагалища.

Примерно на пятой неделе внутриутробного развития у млекопитающих закладывается окончательная почка. Ее развитие начинается с того, что мочеточниковый вырост (отросток каудальной части вольфова протока) и клетки мезенхимы метанефрогенной ткани взаимодействуют, индуцируя друг друга. У человеческого эмбриона мочеточниковый вырост дорсально внедряется в каудальную часть метанефрогенной ткани и вместе с ней перемещается в направлении головного конца эмбриона.

Смещение метанефрогенной ткани вверх из тазового положения в окончательное поясничное завершается между восьмой и девятой неделями внутриутробного развития. Перемещаясь вверх, почка, кроме того, разворачивается на 90°, так что почечные ворота занимают окончательное срединное положение. Что управляет смещением почки вверх и ее поворотом, пока не известно. Из мочеточникового выроста образуются чашечно-лоханочная система и мочеточники, и его рост и ветвление определяют сложную трехмерную структуру почки. Специфическая индукция метанефрогенной ткани ампулой мочеточникового выроста ведет к образованию нефронов, или нефрогенезу.

Нефрогенез — это сложный процесс дифференцировки и направленного роста клеток разных типов, приводящий к образованию нефронов. Под воздействием мочеточникового выроста клетки мезенхимы дифференцируются в клетки канальцевого и клубочкового эпителия. В свою очередь, индуцированная мезенхима стимулирует рост мочеточника вглубь метанефрогенной ткани и его ветвление. Вокруг кончика каждой ветви тесно группируются клетки мезенхимы — процесс, называемый конденсацией. После конденсации группа примерно из 100 клеток образует везикулу, которая развивается в клубочек, имеющий сначала форму запятой, а затем S-образную.

В ходе нефрогенеза из мезенхимы метанефрогенной ткани образуются клубочки, проксимальные канальцы, петли Генле и фибробласты интерстиция, а ветви мочеточникового выроста дают начало эпителию собирательных трубочек. У человеческого эмбриона образование клубочков завершается к 35-й неделе внутриутробного развития. После рождения новые нефроны уже не образуются. Однако каждый каналец продолжает созревать в течение еще нескольких месяцев — петля Генле удлиняется в направлении мозгового вещества почки, а проксимальный каналец делается более извитым.

Нефрогенез

А, Б. Взаимодействие эпителия ветвящегося мочеточникового выроста с рыхлой мезенхимой метанефрогенной ткани приводит к конденсации мезенхимы. Цифрами на Б обозначены: 1 — эпителий мочеточникового выроста; 2 — кровеносные сосуды; 3 — недифференцированная мезенхима; 4 — конденсированная мезенхима, дифференцирующаяся в клетки эпителия.

В, Г. Примитивный клубочковый эпителий сворачивается сначала в структуру, имеющую форму запятой, а затем в S-образную. Д, Е. Проксимальные и дистальные канальцы удлиняются; одновременно формируется структура подоцитов, кровеносные сосуды образуют все больше петель внутри капсулы клубочка, и в конечном счете образуется зрелая сеть клубочковых капилляров. Сосуды клубочков, как полагают, начинают образовываться на ранних стадиях формирования клубочков (В, Г).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Читайте также: