Термоядерные реакции в звездах кратко

Обновлено: 01.07.2024

Ядерные реакции в звездах. Время излучения звезд за счет гравитационного сжатия не превышает 5·10 9 лет для всех звезд в наблюдаемом интервале масс. Процесс гравитационного сжатия звезды с повышением температуры будет продолжаться до тех пор пока температура в центре звезды не поднимется до 10 7 K. Гравитационное сжатие будет остановлено начавшейся ядерной реакцией горения водорода. Масса ядра водорода составляет 1.0073 атомных единиц массы (а.е.м.), масса ядра гелия 4.0015 а.е.м. При образовании одного ядра гелия путем слияния четырех ядер водорода дефект массы составляет ΔM = 0.0277 а.е.м., что соответствует высвободившейся энергии

ΔE = c 2 ΔM = 4.1·10 -5 эрг.

Если считать, что Солнце состоит только из водорода и в результате ядерной реакции 4p → 4 He (рис.14) происходит полное сгорание водорода и превращение его в гелий, полная выделившаяся при этом энергия составляет Eядерн = 1.3·10 52 эрг. Учитывая светимость Солнца (L = 4·10 33 эрг/с), получим, что при современном темпе сгорания водорода за счет ядерного источника Солнце способно излучать 100 млрд лет

(Tядерн) = 1.3·10 52 эрг/ 4·10 33 эрг/c ≈ 3·10 18 с = 10 11 лет.

На самом деле горение водорода с образованием гелия происходит в ограниченной центральной области Солнца. В результате потери энергии на излучение ежесекундно масса Солнца уменьшается на 4.3 млн тонн.
При сгорании водорода температура ядра звезды остается относительно постоянной и составляет примерно 10 7 K. Звезда находится в состоянии квазистатического равновесия, при котором энергия, высвобождаемая в термоядерных реакциях, компенсирует потери энергии на излучение с поверхности звезды. Звезда будет устойчива, когда уравновешиваются противодействующие эффекты гравитации и стремления горячих газов к расширению.
Рассмотрим, что будет происходить со звездой, если температура внутри неё внезапно начнет увеличиваться или уменьшаться. Если температура в центре звезды начнет увеличиваться, то там будет вырабатываться больше энергии, чем излучается с поверхности. При этом давление внутри звезды повышается и она начнет расширяться. Увеличение размеров звезды приведет к тому, что скорость протекания термоядерных реакций уменьшится и температура в центре звезды начнет падать. И, наоборот, если поверхность звезды охлаждается быстрее, чем вырабатывается энергия в звезде, то звезда начнет сжиматься и скорость протекания ядерных реакций увеличивается. Процесс стабилизации температуры звезды на этой стадии её эволюции происходит таким образом, что вырабатываемая в результате термоядерных реакций энергия, излучается без каких-либо резких изменений.
В стадии квазистатического равновесия в каждой точке звезды вес внешних слоев уравновешивается газовым и световым давлением. Таким образом, начавшаяся термоядерная реакция сразу же прекращает дальнейшее сжатие звезды и она обретает стабильные размеры и светимость, которые для звезды с массой Солнца практически не меняются в течение нескольких млрд лет. Время достижения главной последовательности и время жизни на главной последовательности для звезд различной массы приведены в табл. 7.

Время достижения главной последовательности и время жизни на главной последовательности звезд различной массы

Передача энергии из глубины звезды, где вещество существует в виде горячей плазмы, во внешние слои происходит благодаря двум основным механизмам:
1. В результате конвективного движения более горячее вещество из центральной части звезды, расширяясь, перемещается во внешние менее плотные слои.
2. Фотоны, испускаемые атомами, находящимися в возбужденном состоянии, поглощаются другими атомами и вновь излучаются. Такой процесс происходит многократно. При этом энергии фотонов уменьшаются за счет каскадных переходов и существенно возрастает время их диффузии во внешние слои. Так, например, в случае Солнца время диффузии с переизлучением квантов, образовавшихся в центре Солнца, к периферии составляет ~ 60 млн лет.
Какой из этих двух механизмов важнее, зависит от условий внутри звезды. В звездах малой массы в центре звезды преобладает перенос энергии за счет излучения, а в оболочке происходит конвективный процесс. В очень массивных звездах в сердцевине преобладает конвекция, а на периферии - излучение. Так в случае звезд с M > 2M на стадии CNO - цикла основной механизм передачи энергии в центре - конвекция. По мере уменьшения давления увеличивается длина свободного пробега фотона и основную роль начинает играть механизм передачи энергии за счет излучения.
Из-за не очень сильной температурной зависимости pp-цикла ядро Солнца лучистое. Во внутренней области Солнца при температурах 10 6 - 10 7 K атомы водорода и гелия ионизованы. Во внешних областях, где температура падает до 10 4 - 10 5 K, атомы уже могут находиться в нейтральном состоянии. Происходит изменение механизма передачи энергии. Атом водорода может эффективно поглощать фотоны, переходя в ионизованное состояние, и вновь излучать их, становясь нейтральным. Поэтому увеличивается вероятность захвата фотонов и возрастает роль конвективного механизма передачи энергии. Конвекция вещества внутри звезды играет существенную роль в протекании ядерных реакций, так как происходит эффективное перемешивание слоев звезды, имеющих различный химический состав.
Ядерные реакции, протекающие в звездах при сверхвысоких температурах, имеют ряд особенностей. В обычных условиях заряженная частица, обладающая достаточной энергией для того, чтобы произошла ядерная реакция, двигаясь в среде, быстро теряет свою энергию на возбуждение и ионизацию атомов среды. Потеряв энергию, заряженная частица не в состоянии преодолеть кулоновский барьер. Поэтому даже для достаточно энергичных заряженных частиц эффективность ядерного взаимодействия оказывается низкой из-за потерь энергии на ионизацию.
При высоких температурах звездная материя ионизована и поэтому потери энергии на ионизацию и возбуждение атомов отсутствуют.
Следующая особенность протекания реакций в звездах обусловлена распределением ядер по скоростям. Если звезда имеет температуру около 10 7 K, то средняя энергия ядер Eср = 3/2 kT ~ 1 кэВ мала по сравнению с высотой кулоновского барьера даже для самых легких ядер ( ~ 10 3 кэВ). Однако, в системе, находящейся в термодинамическом равновесии, имеются ядра, энергия которых значительно превосходит Eср (число их можно оценить, исходя из распределения Максвелла). Это, наряду с эффектом квантовомеханического туннелирования для основной части ядер, имеющих энергию ниже высоты кулоновского барьера, приводит к тому, что реакции в звездах могут протекать при значительно более низких температурах.

Произведение максвелловского распределения n(E) на скорость протекания ядерной реакции, пропорциональную её эффективному сечению σ(E), имеет максимум, отвечающий ядрам, с наибольшей вероятностью вступающим в ядерную реакцию (рис.11).
Этот максимум для многих термоядерных реакций лежит в районе E0 > 10 kT. Скорость протекания термоядерной реакции raA в звездах (число актов реакции слияния в единицу времени в единице объема) между частицами a и A описывается выражением:

где ρa, ρA - плотности частиц a и A, вступающих во взаимодействие; waA - зависящая от температуры вероятность реакции. Последняя равна произведению эффективного сечения реакции σaA и относительной скорости v взаимодействующих частиц, усредненному по максвелловскому распределению:

Эта величина называется удельной скоростью термоядерной реакции (она совпадает с raA при
ρa= ρA= 1) и определяется из соотношения

где n(v) - распределение по относительным скоростям частиц a и A.
Эффективная энергия ядерных реакций E0 в звездах зависит от температуры T, зарядов частиц, вступающих во взаимодействие, и приведенной массы этих частиц следующим образом:

Здесь заряды выражены в единицах элементарного заряда; T в единицах 10 9 К; М - в а.е.м. (1 а.е.м. = 935.5 МэВ/c 2 ≈ 1/66 · 10 -24 г). При малых энергиях столкновения и предположении, что частица и мишень окажутся в пределах действия ядерных сил, для σaA(E) можно использовать следующее выражение

где - длина волны де Бройля налетающей частицы ( 2 ~ 1/E), а P(E) - фактор кулоновской проницаемости Гамова:

P(E) = (EG/E) 1/2 exp[-(EG/E) 1/2 ], (10)

где EG - энергия Гамова (), которая выражается в МэВ, если М - в а.е.м..
Обычно вводится слабо зависящая от энергии функция S(E), которая позволяет более точно экстраполировать величину сечений реакций, измеренных при более высоких лабораторных энергиях в пороговую область, т.е. к звездным условиям. Эта функция вводится следующим образом:

Отсюда следует, что

S(E) = E(E)exp(EG/E) 1/2 . (11)

Сечения многих термоядерных реакций определены вплоть до довольно низких энергий ~ (5 - 10) кэВ. На основе этих данных получены функции S(E).
Удельная скорость ядерной реакции как функция температуры T (а также вид функции S(E)) существенно зависит от того, есть ли резонанс вблизи энергии сталкивающихся частиц или нет. Для нерезонансной реакции:

нерез ~ S(E0)T -2/3 exp(-3E0/kT). (12)

Для резонансной реакции:

рез ~ S(Eрез)T -3/2 exp(-3Eрез/kT). (13)

Таким образом, для вычисления скорости ядерной реакции в звездах необходимо, помимо плотностей сталкивающихся частиц, знать:
1) распределение температуры внутри звезды;
2) эффективные сечения реакций вплоть до достаточно низких энергий взаимодействующих частиц, соответствующих температуре ~ 10 7 K. Эта температура отвечает кинетической энергии ~ 1 кэВ.
В звездах реакции между двумя ядрами происходят при их сближении до расстояний ~ 10 -13 см в результате туннелирования через кулоновский барьер. Для энергий столкновения ниже кулоновского барьера сечение ядерной реакции падает по экспоненциальному закону. Поэтому для надежных оценок скорости ядерных реакций в звездах необходимы измерения сечений ядерных реакций при энергии ниже кулоновского барьера, что является достаточно сложной экспериментальной задачей. Так, например, в настоящее время для имеющих важное значение ядерных реакций в звездах 7 Be(p,γ), 25 Mg(p,γ), 12 C(α,γ) сечения реакций измерены вплоть до энергий 120 кэВ, 190 кэВ и 1 МэВ, соответственно. Предел со стороны низких энергий определяется величиной космического фона. В то же время сечения для указанных реакций должны быть известны до энергии 19 кэВ, 39 кэВ и 300 кэВ, соответственно. Таким образом, в настоящее время единственная возможность для оценки величины сечения - это экстраполяция к низким энергиям. Однако, как показывает сравнение измеренных сечений с ранее полученными путем экстраполяции, отличие экспериментальных и экстраполированных значений достигает десятков и сотен раз. Необходимые для ядерной астрофизики результаты могут быть получены на сильноточных ускорителях, работающих при энергиях несколько десятков и сотен кэВ и расположенных в низкофоновых условиях (например, по аналогии с нейтринными измерениями, глубоко под Землей).
Определенные трудности при оценке сечений реакций, протекающих в звездах, возникают также при учете эффекта экранирования. Должны быть учтены два основных эффекта прежде, чем использовать экспериментальные результаты, полученные на ускорителях, применительно к звездному веществу.
Лабораторное экранирование. В случае экспериментов на ускорителе сталкиваются не голые ядра, а ядра-мишени и налетающие ядра, имеющие электронные оболочки, т. е. сталкивается атом с ионизованным атомом, в то время как в звездах атомы полностью ионизованы. Наличие электронной оболочки сильно искажает кулоновское поле, что существенно при низких звездных энергиях сталкивающихся частиц.
Экранирование в астрофизической плазме. В ядерной реакции, происходящей в звездной среде, необходимо учесть эффекты поляризации ионизованной звездной материи. Окружающие сталкивающиеся ядра электроны и соседние ионы приводят к изменению кулоновского поля сталкивающихся частиц. Так, расчеты показывают, что в углеродной плазме при плотностях ~ 10 9 г/см 3 и температурах ~ 10 9 K сечение взаимодействия может измениться на фактор 10 10 благодаря влиянию окружающих частиц.
Чем больше заряды ядер, вступающих во взаимодействие, тем выше должна быть температура звездного вещества для того, чтобы реакция могла осуществляться. Таким образом, на начальной стадии звездной эволюции в ядерную реакцию могут вступать лишь легкие ядра - водород, гелий. Затем, по мере эволюции химического состава звезды, увеличения её внутренней температуры, в ядерные реакции будут вовлекаться все более тяжелые ядра. Этот процесс будет продолжаться до тех пор, пока вещество в центре звезды не превратится в элементы, близкие к железу (A ~ 60). Это обусловлено тем, что удельная энергия связи ядер имеет максимум в районе A ~ 60 (см. рис. 3). Получение более тяжелых ядер за счет реакций синтеза происходит с поглощением энергии, а значит и снижения внутренней температуры звезды.
Зная массу, радиус и светимость звезды, можно оценить зависимость давления, плотности и температуры от радиуса звезды. Важную роль в таких расчетах играет химический состав звездного вещества. Обусловлено это следующими причинами.
1. Химический состав в значительной степени определяет прозрачность вещества и, следовательно, скорость, с которой выделяемая в центре звезды энергия будет достигать поверхности.
2. Количество энергии, вырабатываемое в центре звезды, и температура, при которой будут происходить ядерные реакции, зависит от состава ядер, вступающих во взаимодействие.
Если у звезды нет недостатка в ядерном горючем, то чем более тяжелые ядра сгорают в ядерных реакциях, тем большее количество энергии будет выделяться в единицу времени и тем больше будет её светимость. Железная звезда должна светить примерно в 100 раз более ярко, чем водородная. В звезде, имеющей массу и радиус Солнца и состоящей из чистого водорода, температура в центральной части должна составлять около 10 7 K. Чисто гелиевый состав приводит к температуре порядка 10 8 K. Температура в центре звезды, состоящей из железа, достигает примерно 10 9 K.

Термоядерные реакции в звёздах — это внутренние процессы звезды, которые являются основным источником их внутренней энергии наряду с гравитационным сжатием.

При высоких температурах, которые существуют в нед­рах звёзд, происходят термоядерные реакции, в ходе которых в результате слияния ядер атомов выделяется энергия.

Скорость выделения энергии в тер­моядерных реакциях сильно зависит от температуры. Так, в протон-протонной цепочке скорость выделения энергии про­порциональна T 4 , в углеродно-азотном цикле — T 17 , в трой­ной гелиевой реакции — T 30 .

Горение водорода

В центральных областях звёзд главной последовательности протекают реакции преобразования водорода в гелий, как го­ворят, происходит горение водорода (конечно, ничего общего не имеющее с химическим горением). Оно может происходить двумя различными путями: протон-протонный цикл и углеродно-азотный цикл.

Пределы температуры для этих циклов достаточно условны, реакции того или иного цикла происходят и при более высоких температурах; речь идёт только о температурах, при которых подавляющая часть энергии выделяется именно в данной реакции.

При преобразовании 1 кг водорода в гелий выделяется энер­гия, равная 10 14 Дж. Поскольку мощность излучения Солнца равна 4 • 10 26 Вт, а масса водорода в нем составляет 2 • 10 30 кг, то запаса водорода в Солнце хватит на 100 млрд лет; конеч­но, не весь водород может выгореть, а только тот, который сосредоточен в центральных областях, но и его хватит на 10—15 млрд лет. В звёздах с большей светимостью запас водоро­да израсходуется гораздо быстрее.

Протон-протонный цикл (p-p-цикл)

Первый путь — протон-протонный цикл — осуществляется при низких температурах: от 14 • 10 6 до 15 • 10 6 K. Он начинается с того, что два протона сливают­ся, образуя ядро дейтерия, дейтерий поглощает ещё один про­тон, превращаясь в изотоп гелия (He), конец цепочки — об­разование ядра гелия.

Углеродно-азотный цикл (CNO-цикл)

Второй путь — углеродно-азотный цикл — осуществляет­ся при температурах от 18 • 10 6 до 20 • 10 6 K и содержит ряд ядерных реакций. Начинается он с того, что протон сливает­ся с ядром атома углерода, образуя ядро азота, а заканчива­ется тем, что образовавшееся ядро атома кислорода распадает­ся на ядро атома углерода и ядро атома гелия.

Горение гелия (тройная гелиевая реакция)

При температурах, больших чем 10 8 K, и плотностях по­рядка 10 9 кг/м 3 и больше возможны ядерные реакции, в ко­торых три ядра гелия сливаются в ядро углерода. Правда, это осуществимо только на поздних стадиях эволюции звезды, ког­да в её ядре уже полностью исчерпываются запасы водорода и вещество практически полностью состоит из гелия.

Образование элементов тяжелее железа

При боль­ших температурах и плотностях в термоядерных реакциях уча­ствуют все более и более тяжёлые элементы, вплоть до желе­за. С железом и более тяжёлыми элементами термоядерные реакции не происходят, так как в них энергия уже не выде­ляется, а поглощается.

Нейтрино

Осцилляции нейтрино

Существует три вида нейтрино: электронное (ve), мюонное (vμ) и тау-нейтрино (vτ). Согласно некоторым теориям элементарных частиц нейтрино могут превращаться друг в друга. Эксперимент, поставленный в 2000—2001 гг., проходил на двух установках (их часто называют нейтрин­ными телескопами). В одной из них (в Садбери) регистриро­валось только электронное нейтрино, в другой (японская установка Супер-Камиоканде) — все виды нейтрино. Солнце испускает исключительно электронные нейтрино. Оказалось, что Супер-Камиоканде регистрирует примерно на 30% мень­ше ожидаемого количества нейтрино. Но в Садбери регистри­руют ещё примерно на 1/3 меньше, т. е. регистрируемый на Земле поток солнечных нейтрино содержит не только элек­тронные нейтрино! Значит, по дороге к Земле часть электрон­ных нейтрино превратилась в другие виды нейтрино (мюон­ное или тау). Это снимает противоречие наблюдений и теории ядерных источников энергии.

Возможность таких осцилляций предсказывалась, но для их осуществления необходимо, чтобы нейтрино имело массу. А такое предположение, в свою очередь, противоречит мно­гим фундаментальным физическим теориям. Однако в 2015 году Такааки Кадзита и Артур Макдональд решили эту теоретическую проблему и доказали, что нейтрино всё же имеют ненулевую массу, за что получили Нобелевскую премию по физике.

Вторая половина XX века была периодом бурного развития ядерной физики. Стало ясно, что ядерные реакции можно использовать для получения огромной энергии из мизерного количества топлива. От взрыва первой ядерной бомбы до первой АЭС прошло всего девять лет, и когда в 1952 году была испытана водородная бомба, появились прогнозы, что уже в 1960-х вступят в строй термоядерные электростанции. Увы, эти надежды не оправдались.

Основной источник энергии для человечества в настоящее время — сжигание угля, нефти и газа. Но их запасы ограничены, а продукты сгорания загрязняют окружающую среду. Угольная электростанция дает больше радиоактивных выбросов, чем АЭС такой же мощности! Так почему же мы до сих пор не перешли на ядерные источники энергии? Причин тому много, но главной из них в последнее время стала радиофобия. Несмотря на то что угольная электростанция даже при штатной работе вредит здоровью куда большего числа людей, чем аварийные выбросы на АЭС, она делает это тихо и незаметно для публики. Аварии же на АЭС сразу становятся главными новостями в СМИ, вызывая общую панику (часто совершенно необоснованную). Впрочем, это вовсе не означает, что у ядерной энергетики нет объективных проблем. Немало хлопот доставляют радиоактивные отходы: технологии работы с ними все еще крайне дороги, и до идеальной ситуации, когда все они будут полностью перерабатываться и использоваться, еще далеко.

От деления к синтезу

Потенциально решить эти проблемы позволяет переход от реакторов деления к реакторам синтеза. Если типичный реактор деления содержит десятки тонн радиоактивного топлива, которое преобразуется в десятки тонн радиоактивных отходов, содержащих самые разнообразные радиоактивные изотопы, то реактор синтеза использует лишь сотни граммов, максимум килограммы, одного радиоактивного изотопа водорода — трития. Кроме того, что для реакции требуется ничтожное количество этого наименее опасного радиоактивного изотопа, его производство к тому же планируется осуществлять непосредственно на электростанции, чтобы минимизировать риски, связанные с транспортировкой. Продуктами синтеза являются стабильные (не радиоактивные) и нетоксичные водород и гелий. Кроме того, в отличие от реакции деления, термоядерная реакция при разрушении установки моментально прекращается, не создавая опасности теплового взрыва. Так почему же до сих пор не построено ни одной действующей термоядерной электростанции? Причина в том, что из перечисленных преимуществ неизбежно вытекают недостатки: создать условия синтеза оказалось куда сложнее, чем предполагалось в начале.

Z-пинч

Критерий Лоусона

Z-пинч

Принцип работы Z-пинча прост: электрический ток порождает кольцевое магнитное поле, которое взаимодействует с этим же током и сжимает его. В результате плотность и температура плазмы, через которую течет ток, возрастают.

Стабилизировать плазменный жгут удалось, наложив на него мощное внешнее магнитное поле, параллельное току, и поместив в толстый проводящий кожух (при перемещении плазмы перемещается и магнитное поле, что индуцирует в кожухе электрический ток, стремящийся вернуть плазму на место). Плазма перестала изгибаться и пережиматься, но до термоядерной реакции в сколько-нибудь серьезных масштабах все равно было далеко: плазма касается электродов и отдает им свое тепло.

Современные работы в области синтеза на Z-пинче предполагают еще один принцип создания термоядерной плазмы: ток протекает через трубку из плазмы вольфрама, которая создает мощное рентгеновское излучение, сжимающее и разогревающее капсулу с термоядерным топливом, находящуюся внутри плазменной трубки, подобно тому, как это происходит в термоядерной бомбе. Однако эти работы имеют чисто исследовательский характер (изучаются механизмы работы ядерного оружия), а выделение энергии в этом процессе все еще в миллионы раз меньше, чем потребление.

Выбор реакции

На первый взгляд, в качестве термоядерного топлива логичнее всего использовать чистый дейтерий: он стоит относительно дешево и безопасен. Однако дейтерий с дейтерием реагирует в сотню раз менее охотно, чем с тритием. Это означает, что для работы реактора на смеси дейтерия и трития достаточно температуры 10 кэВ, а для работы на чистом дейтерии требуется более 50 кэВ. А чем выше температура — тем выше потери энергии. Поэтому как минимум первое время термоядерную энергетику планируется строить на дейтерий-тритиевом топливе. Тритий при этом будет нарабатываться в самом реакторе за счет облучения образующимися в нем быстрыми нейтронами лития.

Режим с улучшенным удержанием

H-мода токамака — это такой режим его работы, когда при большой мощности дополнительного нагрева потери плазмой энергии резко уменьшаются. Случайное открытие в 1982 году режима с улучшенным удержанием по своей значимости не уступает изобретению самого токамака. Общепринятой теории этого явления пока еще не существует, но это ничуть не мешает использовать его на практике. Все современные токамаки работают в этом режиме, так как он уменьшает потери более чем в два раза. Впоследствии подобный режим был обнаружен и на стеллараторах, что указывает на то, что это общее свойство тороидальных систем, однако на них удержание улучшается лишь примерно на 30%.

Нагрев плазмы

Существует три основных метода нагрева плазмы. Омический нагрев — за счет протекания через нее электрического тока — наиболее эффективен на первых этапах, так как с ростом температуры у плазмы снижается электрическое сопротивление. Электромагнитный нагрев использует частоту, совпадающую с частотой вращения вокруг магнитных силовых линий электронов или ионов. При инжекции быстрых нейтральных атомов создается поток отрицательных ионов, которые затем нейтрализуются, превращаясь в нейтральные атомы, способные проходить через магнитное поле в центр плазмы, чтобы передать свою энергию именно там.

А реакторы ли это?

Гибридный реактор

D-T-реакция рождает 14-МэВ нейтроны, которые могут делить даже обедненный уран. Деление одного ядра урана сопровождается выделением примерно 200 МэВ энергии, что в десять с лишним раз превосходит энергию, выделяющуюся при синтезе. Так что уже существующие токамаки могли бы стать энергетически выгодными, если бы их окружили урановой оболочкой. Перед реакторами деления такие гибридные реакторы имели бы преимущество в невозможности развития в них неуправляемой цепной реакции. Кроме того, крайне интенсивные потоки нейтронов должны перерабатывать долгоживущие продукты деления урана в короткоживущие, что существенно снижает проблему захоронения отходов.

Пробкотрон, стелларатор, токамак

Сферический с вакуумом

Чем меньше отношение большого радиуса тора токамака (расстояния от центра всего тора до центра поперечного сечения его трубы) к малому (радиусу сечения трубы), тем больше может быть давление плазмы при том же магнитном поле.

Уменьшая это отношение, ученые перешли от круглого сечения плазмы и вакуумной камеры к D-образному (в этом случае роль малого радиуса выполняет половина высоты сечения). У всех современных токамаков именно такое сечение.

Предельным случаем стал так называемый сферический токамак. В нем вакуумная камера и плазма имеют почти сферическую форму, за исключением узкого канала, соединяющего полюса сферы. В канале проходят проводники магнитных катушек. Первый сферический токамак, START, появился лишь в 1991 году, так что это достаточно молодое направление, но оно уже показало возможность получить то же давление плазмы при втрое меньшем магнитном поле.

Стеллараторы

Эти фантастически переплетенные трубы не арт-проект, а камера стелларатора, изогнутая в виде сложной трехмерной кривой

Эти фантастически переплетенные трубы не арт-проект, а камера стелларатора, изогнутая в виде сложной трехмерной кривой

В руках инерции

Помимо магнитного удержания существует и принципиально иной подход к термоядерному синтезу — инерциальное удержание. Если в первом случае мы стараемся долгое время удерживать плазму очень низкой концентрации (концентрация молекул в воздухе вокруг вас в сотни тысяч раз больше), то во втором — сжимаем плазму до огромной плотности, на порядок выше плотности самых тяжелых металлов, в расчете, что реакция успеет пройти за то короткое время, пока плазма не успела разлететься в стороны.

Первоначально, в 1960-х годах, планировалось использовать маленький шарик из замороженного термоядерного топлива, равномерно облучаемый со всех сторон множеством лазерных лучей. Поверхность шарика должна была моментально испариться и, равномерно расширяясь во все стороны, сжать и нагреть оставшуюся часть топлива. Однако на практике облучение оказалось недостаточно равномерным. Кроме того, часть энергии излучения передавалась во внутренние слои, вызывая их нагрев, что усложняло сжатие. В итоге шарик сжимался неравномерно и слабо.

Электростатическое удержание

Концепцию электростатического удержания ионов легче всего понять на примере установки, называемой фузором. Ее основу составляет сферический сетчатый электрод, на который подается отрицательный потенциал. Ускоренные в отдельном ускорителе или полем самого центрального электрода ионы попадают внутрь него и удерживаются там электростатическим полем: если ион стремится вылететь наружу, поле электрода разворачивает его назад. Увы, вероятность столкновения иона с сеткой на много порядков выше, чем вероятность вступления в реакцию синтеза, что делает энергетически выгодную реакцию невозможной. Подобные установки нашли применение лишь в качестве источников нейтронов.

Холодный синтез

Внимание — мошенники!

Однако мощность лазеров оказалась недостаточной для того, чтобы в реакцию успела вступить заметная часть топлива. Кроме того, эффективность лазеров была весьма мала, лишь около 1%. Чтобы синтез был энергетически выгодным при таком низком КПД лазеров, должно было прореагировать практически все сжатое топливо. При попытках заменить лазеры на пучки легких или тяжелых ионов, которые можно генерировать с куда большим КПД, ученые также столкнулись с массой проблем: легкие ионы отталкиваются друг от друга, что мешает их фокусировке, и тормозятся при столкновениях с остаточным газом в камере, а ускорителей тяжелых ионов с нужными параметрами создать не удалось.

Магнитные перспективы

Мюонный катализ

Сборка стелларатора wendelstein 7-x института физики плазмы Макса Планка

Инерциальные надежды

Проблемы токамаков

Несмотря на прогресс установок иных типов, токамаки на данный момент все равно остаются вне конкуренции: если на двух токамаках (TFTR и JET) еще в 1990-х реально было получено выделение термоядерной энергии, приблизительно равное затратам энергии на нагрев плазмы (пусть такой режим и длился лишь около секунды), то на установках других типов ничего подобного добиться не удалось. Даже простое увеличение размеров токамаков приведет к осуществимости в них энергетически выгодного синтеза. Сейчас во Франции строится международный реактор ITER, который должен будет продемонстрировать это на практике.

Однако проблем хватает и у токамаков. ITER стоит миллиарды долларов, что неприемлемо для будущих коммерческих реакторов. Ни один реактор не работал непрерывно в течение даже нескольких часов, не говоря уж о неделях и месяцах, что опять же необходимо для промышленного применения. Пока нет уверенности, что материалы внутренней стенки вакуумной камеры смогут выдержать длительное воздействие плазмы.

Сделать проект менее затратным сможет концепция токамака с сильным полем. За счет увеличения поля в два-три раза планируется получить нужные параметры плазмы в относительно небольшой установке. На такой концепции, в частности, основан реактор Ignitor, который совместно с итальянскими коллегами сейчас начинают строить в подмосковном ТРИНИТИ (Троицкий институт инновационных и термоядерных исследований). Если расчеты инженеров оправдаются, то при многократно меньшей по сравнению с ITER цене в этом реакторе удастся получить зажигание плазмы.

Продукты термоядерной реакции разлетаются в разные стороны со скоростями, составляющими тысячи километров в секунду. Это делает возможным создание сверхэффективных ракетных двигателей. Удельный импульс у них будет выше, чем у лучших электрореактивных двигателей, а потребление энергии при этом может быть даже отрицательным (теоретически возможна выработка, а не потребление энергии). Более того, есть все основания полагать, что сделать термоядерный ракетный двигатель будет даже проще, чем наземный реактор: нет проблемы с созданием вакуума, с теплоизоляцией сверхпроводящих магнитов, нет ограничений по габаритам и т. д. Кроме того, выработка двигателем электроэнергии желательна, но вовсе не обязательна; достаточно, чтобы он не слишком много ее потреблял.

По предварительным оценкам, даже при современном уровне техники возможно создание термоядерного ракетного двигателя для полета к планетам Солнечной системы (при соответствующем финансировании). Освоение технологии таких двигателей в десятки раз повысит скорость пилотируемых полетов и даст возможность иметь на борту большие резервные запасы топлива, что позволит сделать полет на Марс не более сложным занятием, чем сейчас работа на МКС. Для автоматических станций потенциально станет доступной скорость в 10% от скорости света, что означает возможность отправки исследовательских зондов к ближайшим звездам и получение научных данных еще при жизни их создателей.

Наиболее проработанной в настоящее время считается концепция термоядерного ракетного двигателя на основе инерциального синтеза. При этом отличие двигателя от реактора заключается в магнитном поле, которое направляет заряженные продукты реакции в одну сторону. Второй вариант предполагает использование открытой ловушки, у которой одна из пробок намеренно ослаблена. Истекающая из нее плазма будет создавать реактивную силу.

Термоядерное будущее

Освоение термоядерного синтеза оказалось на много порядков сложнее, чем это казалось вначале. И хотя множество проблем уже решено, оставшихся хватит на несколько ближайших десятилетий напряженного труда тысяч ученых и инженеров. Но перспективы, которые открывают перед нами превращения изотопов водорода и гелия, столь велики, а проделанный путь уже столь значителен, что останавливаться на полпути не имеет смысла. Что бы ни говорили многочисленные скептики, будущее, безусловно, за синтезом.


Из данного видеоурока Вы узнаете, какие реакции называются термоядерными. А также о тех проблемах, с которыми столкнулось человечество при осуществлении управляемой термоядерной реакции. Узнаете, откуда черпают энергию звезды, в том числе, и наше Солнце.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Термоядерная реакция. Источники энергии Солнца и звезд"

«Надежда на быстрое решение проблемы

управляемого термоядерного синтеза —

то же, что надежда грешника попасть

Лев Андреевич Арцимович

В данной теме речь пойдёт о термоядерных реакциях иисточниках энергии Солнца и звезд.

Известно, что в середине 20 века возникла проблема поиска новых источников энергии. В связи с этим внимание ученых привлекли термоядерные реакции.

Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые ядра.


На примере урана ранее было показано, что при деление тяжелых ядер может выделяться энергия. В случае с легкими ядрами энергия может выделяться при обратном процессе — при их синтезе. Причем реакция синтеза легких ядер энергетически более выгодна, чем реакция деления тяжелых (если сравнивать выделившуюся энергию, приходящуюся на один нуклон).


Таким образом, в термоядерных реакциях выделяется огромная энергия. Например, в реакции синтеза дейтерия с образованием выделяется 3,2 МэВ. В реакции синтеза дейтерия с образованием трития выделяется порядка 4 МэВ, а в реакции синтеза дейтерия и трития выделяется около17,6 МэВ энергии.




Особенно большое практическое значение имеет тот факт, что при термоядерных реакциях на каждый нуклон выделяется значительно большая энергия, чем при цепных ядерных реакциях. Например, при синтезе ядер гелия из ядер водорода на один нуклон выделяется энергия, порядка 6 МэВ, в то время как при делении ядра U-235 на один нуклон выделяется энергия всего лишь порядка 0,9 МэВ.


Самоподдерживающиеся термоядерные реакции происходят в недрах звезд (в том числе Солнца) и играют важнейшую роль в существовании и развитии Вселенной.

На Земле первая термоядерная реакция была осуществлена при взрыве водородной бомбы. Высокую температуру, необходимую для начала термоядерной реакции, в водородной бомбе получали в результате взрыва входящей в ее состав атомной бомбы, играющей роль детонатора, а термоядерным горючим являлся дейтерид лития. Сначала в водородной бомбе взрывается атомная бомба. Этот взрыв сопровождается резким ростом температуры, а также возникновением потока нейтронов. Нейтроны вступают в реакцию с изотопом лития, образуют тритий, затем инициируется термоядерная реакция, которая дает основное выделение энергии.

Термоядерные реакции, происходящие при взрывах водородных бомб, являются неуправляемыми. Если бы в земных условиях была возможность осуществлять легко управляемые термоядерные реакции, человечества получило бы практически неисчерпаемый источник энергии, так как запасы водорода на Земле огромны. Однако на пути осуществления энергетически выгодных управляемых термоядерных реакций стоят большие технические трудности. Прежде всего, необходимо создавать температуры порядка 10 8 К. Только при такой температуре газ почти полностью ионизируется, превращаясь в плазму, в которой и происходит синтез ядер. Такие сверхвысокие температуры могут быть получены путем создания в плазме электрических разрядов большой мощности. Также, для удержания плазмы, необходимо создание очень сильных магнитных полей.

Этот метод используют в установках типа "Токамак", впервые созданных в Институте атомной энергии имени Курчатова.


В таких установках плазму создают в тороидальной камере, являющейся вторичной обмоткой мощного импульсного трансформатора. Его первичная обмотка подключена к батарее конденсаторов очень большой емкости, камеру заполняют дейтерием.


При разряде батареи конденсаторов через первичную обмотку в тороидальной камере возбуждается вихревое электрическое поле, вызывающее ионизацию дейтерия и появление в нем мощного импульса электрического тока, что приводит к сильному нагреванию газа и образованию высокотемпературной плазмы, в которой может возникнуть термоядерная реакция. Главная трудность заключается в том, чтобы удержать плазму внутри камеры в течение от 0,1 до 1 секунды без ее контакта со стенками камеры, поскольку не существует материалов, способных выдерживать столь высокие температуры. Эту трудность удается частично преодолеть с помощью тороидального магнитного поля, в котором находится камера. Под действием магнитных сил плазма скручивается в шнур и как бы "висит" на линиях индукции магнитного поля, не касаясь стенок камеры. Однако плазма в магнитном поле очень неустойчива и плазменный шнур распадается прежде, чем удается нагреть плазму до нужной температуры.

Пока удалось получать плазму с температурой 1,3×10 7 К и удерживать ее в течение 60 — 80 мс на установке "Токамак-10". Для увеличения продолжительности существования управляемой термоядерной реакции необходимо увеличивать размеры установки, поэтому в настоящее время строится новая большая установка "Токамак-20".

Хотя уже сейчас,говорят, что группе китайских ученых удалось стабилизировать плазму на рекордные 30 секунд. Осуществить это позволило усовершенствование токамака EAST в городе Хэфей, который и использовался для эксперимента.

Использование установок типа "Токамак" (в которых для получения и нагревания плазмы используется мощный электрический разряд, а для удержания плазмы магнитное поле) является одним из возможных путей осуществления управляемых термоядерных реакций, другим путем достижения этой цели является лазерный термоядерный синтез. Сущность такого метода состоит в следующем. Замороженную смесь дейтерия и трития, приготовленную в виде шариков диаметром менее 1 мм, равномерно облучают со всех сторон мощным лазерным излучением. Это приводит к нагреванию и испарению вещества с поверхности шариков. При этом давление внутри шариков возрастает до величин порядка 10 15 Па. Под действием такого давления происходят увеличение плотности и сильное нагревание вещества в центральной части шариков и начинается термоядерная реакция.


В настоящее время во многих странах мира ведутся интенсивные работы по осуществлению управляемой термоядерной реакции. Имеются обоснованные предположения, что эта проблема будет решена в течение ближайших 20 лет.

Термоядерные реакции играют важную роль в эволюции Вселенной, в частности в преобразованиях химических веществ в ней.

Благодаря термоядерным реакциям, протекающим в недрах Солнца, выделяется энергия, дающий жизнь обитателям Земли. Солнце излучает в пространство свет и тепло уже почти 4,6 миллиарда лет.

Естественно, что во все времена ученых интересовал вопрос о том, что является топливом, за счет которого на Солнце вырабатывается огромное количество энергии в течении столь длительного времени. На этот счет существовали разные гипотезы. Одна из них заключалась в том, что энергия на Солнце выделяется в результате химической реакции горения. Но в этом случае, как показывают расчеты, Солнце могло бы просуществовать всего несколько тысяч лет, что противоречит действительности.

Оригинальная гипотеза была выдвинута в середине ХIХ в. Она состояла в том, что увеличение внутренней энергии и соответствующее повышение температуры Солнца происходит за счет уменьшения его потенциальной энергии при гравитационном сжатии. Она тоже оказалась несостоятельной, так как вэтом случае срок жизни Солнца увеличивается до миллионов лет, но не до миллиардов.

Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нем термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете. Именно за это Бете получил Нобелевскую премию в 1967 году.


Им же был предложен так называемый водородный цикл, т. е. цепочка из трех термоядерных реакций, приводящая к образованию гелия из водорода.


Чтобы получилось два ядра необходимые для третьей реакции, первые две должны произойти дважды.

Известно, что в соответствии с формулой


с уменьшением внутренней энергии тела уменьшается и его масса. Чтобы представить, какое колоссальное количество энергии теряет Солнце в результате превращения водорода в гелий, достаточно знать, что масса Солнца ежесекундно уменьшается на несколько миллионов тонн.

Но, несмотря на потери, запасов водорода на Солнце должно хватить еще на 5 — 6 миллиардов лет. Между тем, в недрах Солнца к этому времени уже произойдут существенные изменения. В центре весь водород уже будет исчерпан. Центральная область Солнца целиком будет заполнена гелием. В центре не происходит ядерных реакций, поскольку весь водород уже выгорел, а для превращения гелия в углерод температура слишком мала. Только на поверхности этого гелиевого шара, там, где гелий граничит со слоем, богатым водородом, еще происходит сгорание водорода. Постепенно выгорает и этот водород, а радиус гелиевой сферы в центре Солнца увеличивается.

Через 13 миллиардов лет размеры Солнца станут примерно в 100 раз больше, чем сегодня, а светимость увеличится в 2000 раз. В то же время температура поверхности существенно снизится. Она будет составлять всего 4000 градусов, т. е. на 1800 градусов меньше, чем теперь.

Но нас это уже не спасет. К тому времени океаны на Земле давно уже испарятся, а под палящими лучами Солнца будет даже плавиться свинец. Земля превратиться в горячую печь, на которой уже не сможет существовать жизнь. Над безжизненной поверхностью Земли будет светить гигантский красный солнечный шар размером в полнеба.


Когда температура центральной части Солнца достигнет 100 000 000 градусов, начнет сгорать и гелий, превращаясь в тяжелые элементы, и Солнце вступит в стадию сложных циклов сжатия и расширения. На последней стадии эта звезда потеряет внешнюю оболочку, центральное ядро будет иметь очень большую плотность и размеры, как у Земли. Пройдет еще несколько миллиардов лет, и Солнце остынет, превратившись в белый, а затем, и в черный карлик.

Основные выводы:

– Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые ядра.

– Плазма — это частично или полностью ионизированный газ, образованный из нейтральных атомов и заряженных частиц.

– Самоподдерживающиеся термоядерные реакции происходят в недрах звезд и играют важнейшую роль в существовании и развитии Вселенной.

– Если бы в земных условиях была возможность осуществлять легко управляемые термоядерные реакции, человечества получило бы практически неисчерпаемый источник энергии.

Читайте также: